toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Lattice thermal properties of graphane : thermal contraction, roughness, and heat capacity Type A1 Journal article
  Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 23 Pages 235437-235437,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using atomistic simulations, we determine the roughness and the thermal properties of a suspended graphane sheet. As compared to graphene, we found that (i) hydrogenated graphene has a larger thermal contraction, (ii) the roughness exponent at room temperature is smaller, i.e., ≃ 1.0 versus ≃ 1.2 for graphene, (iii) the wavelengths of the induced ripples in graphane cover a wide range corresponding to length scales in the range 30125 Å at room temperature, and (iv) the heat capacity of graphane is estimated to be 29.32±0.23 J/mol K, which is 14.8% larger than that for graphene, i.e., 24.98±0.14 J/mol K. Above 1500 K, we found that graphane buckles when its edges are supported in the x-y plane.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292253400011 Publication Date 2011-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 42 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90921 Serial 1803  
Permanent link to this record
 

 
Author He, Z.; Lee, C.S.; Maurice, J.-L.; Pribat, D.; Haghi-Ashtiani, P.; Cojocaru, C.S. pdf  doi
openurl 
  Title Vertically oriented nickel nanorod/carbon nanofiber core/shell structures synthesized by plasma-enhanced chemical vapor deposition Type A1 Journal article
  Year (down) 2011 Publication Carbon Abbreviated Journal Carbon  
  Volume 49 Issue 14 Pages 4710-4718  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Plasma-enhanced chemical vapor deposition, without a nickel-containing gaseous precursor, was used to synthesize continuous nickel (Ni) nanorods inside the hollow cavity of carbon nanofibers (CNFs), thus forming vertically aligned Ni/CNF core/shell structures. Scanning and transmission electron microscopic images indicate that the elongated Ni nanorods originate from the catalyst particles at the tips of the CNFs and that their formation is due to the effect of extrusion induced by the compressive force of the graphene layers during growth. Different from previous work, each vertically-aligned core/shell structure reported is totally isolated from its neighbors. Continuous Ni nanorods are found to separate into smaller ones with increasing growth time, which was ascribed to (i) the limited amount of Ni available in the tip of the CNF, (ii) the polycrystalline nature of the Ni nanorods and (iii) the combined effects of the compressive stresses on the side of the Ni nanorods and of the tensile stress along their axis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000295308300010 Publication Date 2011-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 16 Open Access  
  Notes Approved Most recent IF: 6.337; 2011 IF: 5.378  
  Call Number UA @ lucian @ c:irua:92782 Serial 3841  
Permanent link to this record
 

 
Author Guda, A.A.; Smolentsev, N.; Verbeeck, J.; Kaidashev, E.M.; Zubavichus, Y.; Kravtsova, A.N.; Polozhentsev, O.E.; Soldatov, A.V. pdf  doi
openurl 
  Title X-ray and electron spectroscopy investigation of the coreshell nanowires of ZnO:Mn Type A1 Journal article
  Year (down) 2011 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 151 Issue 19 Pages 1314-1317  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract ZnO/ZnO:Mn coreshell nanowires were studied by means of X-ray absorption spectroscopy of the Mn K- and L2,3-edges and electron energy loss spectroscopy of the O K-edge. The combination of conventional X-ray and nanofocused electron spectroscopies together with advanced theoretical analysis turned out to be fruitful for the clear identification of the Mn phase in the volume of the coreshell structures. Theoretical simulations of spectra, performed using the full-potential linear augmented plane wave approach, confirm that the shell of the nanowires, grown by the pulsed laser deposition method, is a real dilute magnetic semiconductor with Mn2+ atoms at the Zn sites, while the core is pure ZnO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000295492200003 Publication Date 2011-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 12 Open Access  
  Notes We acknowledge the Helmholtz-Zentrum Berlin – Electron storage ring BESSY-II for provision of synchrotron radiation at the Russian-German beamline and financial support. This research was supported by the Russian Ministry to education and science (RPN 2.1.1. 5932 grant and RPN 2.1.1.6758 grant). N.S. and A.G. would like to thank the Russian Ministry of Education for providing the fellowships of President of Russian Federation to study abroad. We would like to thank the UGINFO computer center of Southern federal university for providing the computer time. Approved Most recent IF: 1.554; 2011 IF: 1.649  
  Call Number UA @ lucian @ c:irua:92831 Serial 3925  
Permanent link to this record
 

 
Author Chaves, A.; Komendová, L.; Milošević, M.V.; Andrade, J.S.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Conditions for nonmonotonic vortex interaction in two-band superconductors Type A1 Journal article
  Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 21 Pages 214523-214523,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We describe a semianalytic approach to the two-band Ginzburg-Landau theory, which predicts the behavior of vortices in two-band superconductors. We show that the character of the short-range vortex-vortex interaction is determined by the sign of the normal domain-superconductor interface energy, in analogy with the conventional differentiation between type I and type II superconductors. However, we also show that the long-range interaction is determined by a modified Ginzburg-Landau parameter κ*, different from the standard κ of a bulk superconductor. This opens the possibility for nonmonotonic vortex-vortex interaction, which is temperature dependent, and can be further tuned by alterations of the material on the microscopic scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292252300009 Publication Date 2011-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 46 Open Access  
  Notes ; Discussions with A. Moreira, A. Shanenko, R. Prozorov, and A. Golubov are gratefully acknowledged. This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the bilateral project FWO-CNPq, CAPES, and PRONEX/CNPq/FUNCAP. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90922 Serial 477  
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M. url  doi
openurl 
  Title Heating of quasiparticles driven by oscillations of the order parameter in short superconducting microbridges Type A1 Journal article
  Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 22 Pages 224523-224523,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We predict heating of quasiparticles driven by order parameter oscillations in the resistive state of short superconducting microbridges. The finite relaxation time of the magnitude of the order parameter |Δ| and the dependence of the spectral functions both on |Δ| and the supervelocity Q are the origin of this effect. Our results are opposite to those of Aslamazov and Larkin [ Zh. Eks. Teor. Fiz. 70 1340 (1976)] and Schmid et al. [ Phys. Rev. B 21 5076 (1980)] where cooling of quasiparticles was found.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292218200010 Publication Date 2011-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; This work was supported by the Russian Foundation for Basic Research, Russian Agency of Education under the Federal Target Programme “Scientific and educational personnel of innovative Russia in 2009-2013,” Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90924 Serial 1415  
Permanent link to this record
 

 
Author Horemans, B.; Cardell, C.; Bencs, L.; Kontozova-Deutsch, V.; De Wael, K.; Van Grieken, R. pdf  doi
openurl 
  Title Evaluation of airborne particles at the Alhambra monument in Granada, Spain Type A1 Journal article
  Year (down) 2011 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 99 Issue 2 Pages 429-438  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract As a part of an ongoing investigation regarding the air quality at the Alhambra monument (UNESCO World Cultural Heritage), indoor and outdoor atmospheric aerosols (PM1 and PM10-1) and pollutant gases (O3, NO2, SO2 and NH3) were studied during summer and winter. Bulk elements, ionic compounds and black carbon (BC) in aerosols were analyzed with X-ray fluorescence spectrometry, ion chromatography and aethalometry/reflectometry, respectively. Natural PM10-1 aerosols, such as carbonate-rich soil and sea salts, reacted with a typical urban atmosphere, producing a mixture of particulates with diverse chemical composition. The content/formation of secondary inorganic aerosols depended on the air temperature and absolute humidity. Ratios of typical mineral elements (i.e., Ti/Fe and Si/Fe) showed that Saharan dust events contribute to the composition of the observed mineral aerosol content. BC, V and Ni originated from diesel exhaust, while Cu, Cr, Pb and Zn came mainly from non-exhaust vehicular emissions. Weathering phenomena, such as blackening and pigment discoloration, which could arise from gradual aerosol deposition indoors, are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000295770700042 Publication Date 2011-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 39 Open Access  
  Notes ; ; Approved Most recent IF: 3.034; 2011 IF: 3.048  
  Call Number UA @ admin @ c:irua:91720 Serial 5611  
Permanent link to this record
 

 
Author Hauchecorne, B.; Terrens, D.; Verbruggen, S.; Martens, J.A.; van Langenhove, H.; Demeestere, K.; Lenaerts, S. pdf  doi
openurl 
  Title Elucidating the photocatalytic degradation pathway of acetaldehyde : an FTIR in situ study under atmospheric conditions Type A1 Journal article
  Year (down) 2011 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 106 Issue 3/4 Pages 630-638  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this paper, new insights of the photocatalytic oxidation pathway of acetaldehyde are obtained by means of an in-house constructed FTIR in situ reactor. It is shown that there are generally three different intermediates present: acetic acid, formic acid and formaldehyde. By means of FTIR in situ spectroscopy, this study revealed that these intermediates are bound on the TiO2 surface in different ways, resulting in the presence of more intermediate species, such as molecularly adsorbed acetic acid, bidentate acetate, molecularly adsorbed formic acid, monodentate formate, bidentate formate, formaldehyde and dioxymethylene. Furthermore, spectroscopic evidence is obtained concerning the formation of 3-hydroxybutanal and crotonaldehyde upon adsorption of acetaldehyde on TiO2 prior to UV illumination. The presented results thus give new insights in the photocatalytic oxidation pathway of acetaldehyde.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000294092400042 Publication Date 2011-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 46 Open Access  
  Notes ; The authors wish to thank the University of Antwerp for the funding of this research. ; Approved Most recent IF: 9.446; 2011 IF: 5.625  
  Call Number UA @ admin @ c:irua:92433 Serial 5948  
Permanent link to this record
 

 
Author Jochems, P.; Satyawali, Y.; van Roy, S.; Doyen, W.; Diels, L.; Dejonghe, W. pdf  doi
openurl 
  Title Characterization and optimization of \beta-galactosidase immobilization process on a mixed-matrix membrane Type A1 Journal article
  Year (down) 2011 Publication Enzyme and microbial technology Abbreviated Journal  
  Volume 49 Issue 6/7 Pages 580-588  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract β-Galactosidase is an important enzyme catalyzing not only the hydrolysis of lactose to the monosaccharides glucose and galactose but also the transgalactosylation reaction to produce galacto-oligosaccharides (GOS). In this study, β-galactosidase was immobilized by adsorption on a mixed-matrix membrane containing zirconium dioxide. The maximum β-galactosidase adsorbed on these membranes was 1.6 g/m2, however, maximal activity was achieved at an enzyme concentration of around 0.5 g/m2. The tests conducted to investigate the optimal immobilization parameters suggested that higher immobilization can be achieved under extreme parameters (pH and temperature) but the activity was not retained at such extreme operational parameters. The investigations on immobilized enzymes indicated that no real shift occurred in its optimal temperature after immobilization though the activity in case of immobilized enzyme was better retained at lower temperature (5 °C). A shift of 0.5 unit was observed in optimal pH after immobilization (pH 6.5 to 7). Perhaps the most striking results are the kinetic parameters of the immobilized enzyme; while the Michaelis constant (Km) value increased almost eight times compared to the free enzyme, the maximum enzyme velocity (Vmax) remained almost constant.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000298529600015 Publication Date 2011-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-0229 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:90060 Serial 7608  
Permanent link to this record
 

 
Author Alejo, ellys; Morales, M.C.; Nuñez, V.; Bencs, L.; Van Grieken, R.; van Espen, P. pdf  doi
openurl 
  Title Monitoring of tropospheric ozone in the ambient air with passive samplers Type A1 Journal article
  Year (down) 2011 Publication Microchemical journal Abbreviated Journal  
  Volume 99 Issue 2 Pages 383-387  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Two sampling campaigns in suburban places in the north zone of Santa Clara city, Cuba, have been carried out on a weekly base with the use of Radiello passive diffusion tubes in order to monitor the tropospheric ozone (O3) levels in 2010. The first campaign was scheduled from February to April (cold season) and the second one in August and October (warm season), both of them at two sampling sites, i.e., Farm and School of Art Instructors. After aqueous extraction, the samples were analyzed by UVVIS spectrophotometry. A seasonal trend was observed with the maximum O3 concentrations in the cold season and the minimum levels in the warm season. Samples collected during the cold season showed the highest O3 levels. Higher levels were reached at the Farm site with average values of about 58 ± 12 μg/m3, which exceeded the limit of the Cuban Standard 99:1999. In the warm season, the O3 concentrations were similar for both sites, but lower than those observed in the cold season. The overall, seasonal average value was found to be 24 μg/m3. Despite the higher weekly average temperatures in August, the O3 concentrations during this month showed the lowest values of the whole sampling period, which finding is in agreement with that reported by the Meteorological Institute of Cuba. Mathematical models, based on the Cochrane-Orcutt algorithm, were fitted to the acquired data set to explain the change in the tropospheric ozone concentrations under various meteorological conditions during the two campaigns. The correlation coefficients for both the cold and the warm seasons demonstrated a strong correlation, i.e., 0.779 and 0.951, respectively. The high correlation of wind speed in the model from the first sampling campaign explains the sharp decrease in O3 concentrations at the SAI sampling site from the sixth week of sampling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000295770700034 Publication Date 2011-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:93294 Serial 8277  
Permanent link to this record
 

 
Author Nourbakhsh, A.; Cantoro, M.; Klekachev, A.V.; Pourtois, G.; Vosch, T.; Hofkens, J.; van der Veen, M.H.; Heyns, M.M.; de Gendt, S.; Sels, B.F. doi  openurl
  Title Single layer vs bilayer graphene : a comparative study of the effects of oxygen plasma treatment on their electronic and optical properties Type A1 Journal article
  Year (down) 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 115 Issue 33 Pages 16619-16624  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This contribution presents the effects of a mild O2 plasma treatment on the structural, optical, and electrical properties of single-layer (SLG) and bilayer graphene (BLG). Unexpectedly, we observe only photoluminescence in the SLG parts of a graphene flake composed of regions of various thickness upon O2 plasma treatment, whereas the BLG and few-layer graphene (FLG) parts remain optically unchanged. Confirmed with X-ray photoelectron spectroscopy (XPS) that O2 plasma induces epoxide and hydroxyl-like groups in graphene, density functional theory (DFT) calculations are carried out on representative epoxidized and hydroxylated SLG and BLG models to predict density of states (DOS) and band structures. Sufficiently oxidized SLG shows a bandgap and thus loss of semimetallic behavior, while oxidized BLG maintains its semimetallic behavior even at high oxygen density in agreement with the results of the photoluminescence spectroscopy (PL) experiments. DFT calculations confirm that the Fermi velocity in epoxidized BLG is remarkably comparable with that of pristine SLG, pointing to a similarity of electronic band structure. The similarity is also experimentally demonstrated by the electrical characterization of a plasma-treated BLG-FET. As expected from the electronegative oxygen adatoms in the graphene, epoxidized BLG presents conductive features typical of hole doping. Moreover, the electrical characteristics suggest band structures closely related to that of epoxidized graphene while deviating from that of hydroxylated graphene. Finally, upon O2 plasma treatment of BLG, the four-component 2D peak around 2700 cm1 in the Raman spectrum evolves into a single Lorentzian line, very like the 2D peak of pristine SLG. Summarizing, the data in this contribution recommend that a controlled O2 plasma treatment, which is compatible with CMOS process flow in contrast to wet chemical oxidation methods, provides an efficient and valuable technique to exploit the transport properties of the bottom layer of BLG.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000294077000047 Publication Date 2011-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 46 Open Access  
  Notes Approved Most recent IF: 4.536; 2011 IF: 4.805  
  Call Number UA @ lucian @ c:irua:91715 Serial 3024  
Permanent link to this record
 

 
Author Leroux, O.; Leroux, F.; Bagniewska-Zadworna,.; Knox, J.P.; Claeys, M.; Bals, S.; Viane, R.L.L. pdf  doi
openurl 
  Title Ultrastructure and composition of cell wall appositions in the roots of Asplenium (Polypodiales) Type A1 Journal article
  Year (down) 2011 Publication Micron Abbreviated Journal Micron  
  Volume 42 Issue 8 Pages 863-870  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Cell wall appositions (CWAs), formed by the deposition of extra wall material at the contact site with microbial organisms, are an integral part of the response of plants to microbial challenge. Detailed histological studies of CWAs in fern roots do not exist. Using light and electron microscopy we examined the (ultra)structure of CWAs in the outer layers of roots of Asplenium species. All cell walls studded with CWAs were impregnated with yellow-brown pigments. CWAs had different shapes, ranging from warts to elongated branched structures, as observed with scanning and transmission electron microscopy. Ultrastructural study further showed that infecting fungi grow intramurally and that they are immobilized by CWAs when attempting to penetrate intracellularly. Immunolabelling experiments using monoclonal antibodies indicated pectic homogalacturonan, xyloglucan, mannan and cellulose in the CWAs, but tests for lignins and callose were negative. We conclude that these appositions are defense-related structures made of a non-lignified polysaccharide matrix on which phenolic compounds are deposited in order to create a barrier protecting the root against infections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000294942600013 Publication Date 2011-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 20 Open Access  
  Notes Fwo Approved Most recent IF: 1.98; 2011 IF: 1.527  
  Call Number UA @ lucian @ c:irua:92540 Serial 3798  
Permanent link to this record
 

 
Author Vandenberghe, W.; Sorée, B.; Magnus, W.; Fischetti, M.V. doi  openurl
  Title Generalized phonon-assisted Zener tunneling in indirect semiconductors with non-uniform electric fields : a rigorous approach Type A1 Journal article
  Year (down) 2011 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 109 Issue 12 Pages 124503-124503,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A general framework to calculate the Zener current in an indirect semiconductor with an externally applied potential is provided. Assuming a parabolic valence and conduction band dispersion, the semiconductor is in equilibrium in the presence of the external field as long as the electron-phonon interaction is absent. The linear response to the electron-phonon interaction results in a non-equilibrium system. The Zener tunneling current is calculated from the number of electrons making the transition from valence to conduction band per unit time. A convenient expression based on the single particle spectral functions is provided, enabling the evaluation of the Zener tunneling current under any three-dimensional potential profile. For a one-dimensional potential profile an analytical expression is obtained for the current in a bulk semiconductor, a semiconductor under uniform field, and a semiconductor under a non-uniform field using the WKB (Wentzel-Kramers-Brillouin) approximation. The obtained results agree with the Kane result in the low field limit. A numerical example for abrupt p-n diodes with different doping concentrations is given, from which it can be seen that the uniform field model is a better approximation than the WKB model, but a direct numerical treatment is required for low bias conditions.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000292331200134 Publication Date 2011-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 41 Open Access  
  Notes ; William Vandenberghe gratefully acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). ; Approved Most recent IF: 2.068; 2011 IF: 2.168  
  Call Number UA @ lucian @ c:irua:90808 Serial 1325  
Permanent link to this record
 

 
Author Engbarth, M.A.; Bending, S.J.; Milošević, M.V. url  doi
openurl 
  Title Geometry-driven vortex states in type-I superconducting Pb nanowires Type A1 Journal article
  Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 22 Pages 224504-224504,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hall probe magnetometry has been used to investigate the magnetization of individual cylindrically shaped Pb nanowires grown by electrocrystallization on a highly oriented pyrolytic graphite electrode. These measurements have been interpreted by comparison with three-dimensional Ginzburg-Landau (GL) calculations for nanowires with our sample parameters. We find that the measured superheating field and the critical field for surface superconductivity are strongly influenced by the temperature-dependent coherence length, ξ(T) and penetration depth λ(T) and their relationship to the nanowire diameter. As the temperature is increased toward Tc this drives a change in the superconductor-normal transition from first order irreversible to first order reversible and finally second order reversible. We find that the geometrical flux confinement in our type-I nanowires leads to the formation of a one-dimensional row of single-quantum vortices. While GL calculations show a quite uniform distribution of vortices in thin nanowires, clear vortex bunching is found as the diameter increases, suggesting a transition to a more classical type-I behavior. Subtle changes in minor magnetization loops also indicate that slightly different flux configurations can form with the same vorticity, which depend on the sample history.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291888300012 Publication Date 2011-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes ; We acknowledge valuable conversations with F. V. Kusmartsev and W. M. Wu at Loughborough University, UK. This work was supported by the EPSRC-UK under Grant No. EP/E039944/1, and the Flemish Science Foundation (FWO). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90927 Serial 1331  
Permanent link to this record
 

 
Author Peirs, J.; Verleysen, P.; Tirry, W.; Rabet, L.; Schryvers, D.; Degrieck, J. doi  openurl
  Title Dynamic shear localization in Ti6Al4V Type P1 Proceeding
  Year (down) 2011 Publication Procedia Engineering T2 – 11th International Conference on the Mechanical Behavior of Materials, (ICM), 2011, Como, ITALY (ICM11) Abbreviated Journal  
  Volume Issue Pages 1-6  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract The alloy Ti6Al4V is known to be prone to the formation of adiabatic shear bands when dynamically loaded in shear. This causes a catastrophic decrease of the load carrying capacity and is usually followed by fracture. Although, the main mechanism is recognized to be the competition between strain hardening and thermal softening, a detailed understanding of the role of microstructural plasticity mechanisms and macroscopic loading conditions does not exist yet. To study strain localization and shear fracture, different high strain rate shear tests have been carried out: compression of hat-shaped specimens, torsion of thin walled tubular specimens and in-plane shear tests. The value of the three techniques in studying shear localization is evaluated. Post-mortem analysis of the fracture surface and the materials' microstructure is performed with optical and electron microscopy. In all cases a ductile fracture is observed. SEM and TEM techniques are used to study the local microstructure and composition in the shear band and as such the driving mechanism for the ASB formation. (C) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ICM11  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000300451302060 Publication Date 2011-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 10 Series Issue Edition  
  ISSN 1877-7058; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:113069 Serial 767  
Permanent link to this record
 

 
Author Nikolova, I.; Janssen, S.; Vrancken, K.; Vos, P.; Mishra, V.; Berghmans, P. pdf  doi
openurl 
  Title Size resolved ultrafine particles emission model : a continues size distribution approach Type A1 Journal article
  Year (down) 2011 Publication The science of the total environment Abbreviated Journal  
  Volume 409 Issue 18 Pages 3492-3499  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A new parameterization for size resolved ultrafine particles (UFP) traffic emissions is proposed based on the results of PARTICULATES project (Samaras et al., 2005). It includes the emission factors from the Emission Inventory Guidebook (2006) (total number of particles, #/km/veh), the shape of the corresponding particle size distribution given in PARTICULATES and data for the traffic activity. The output of the model UFPEM (UltraFine Particle Emission Model) is a sum of continuous distributions of ultrafine particles emissions per vehicle type (passenger cars and heavy duty vehicles), fuel (petrol and diesel) and average speed representative for urban, rural and highway driving. The results from the parameterization are compared with measured total number of ultrafine particles and size distributions in a tunnel in Antwerp (Belgium). The measured UFP concentration over the entire campaign shows a close relation to the traffic activity. The modelled concentration is found to be lower than the measured in the campaign. The average emission factor from the measurement is 4.29E + 14 #/km/veh whereas the calculated is around 30% lower. A comparison of emission factors with literature is done as well and in overall a good agreement is found. For the size distributions it is found that the measured distributions consist of three modes Nucleation, Aitken and accumulation and most of the ultrafine particles belong to the Nucleation and the Aitken modes. The modelled Aitken mode (peak around 0.040.05 μm) is found in a good agreement both as amplitude of the peak and the number of particles whereas the modelled Nucleation mode is shifted to smaller diameters and the peak is much lower that the observed. Time scale analysis shows that at 300 m in the tunnel coagulation and deposition are slow and therefore neglected. The UFPEM emission model can be used as a source term in dispersion models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293260100026 Publication Date 2011-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:91949 Serial 8546  
Permanent link to this record
 

 
Author Brauns, E.; van Hoof, E.; Huyskens, C.; de Wever, H. doi  openurl
  Title On the concept of a supervisory, fuzzy set logic based, advanced filtration control in membrane bioreactors Type A1 Journal article
  Year (down) 2011 Publication Desalination and water treatment Abbreviated Journal  
  Volume 29 Issue 1/3 Pages 119-127  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The filtration process within a membrane bioreactor (MBR) is mostly controlled in a classic way through typical set-points such as aeration flow rate, filtration duration, backwash frequency or relaxation duration. The values of these filtration set-points result from experience and remain often unchanged during the installations operational lifetime. Filtration is dictated considerably by membrane fouling phenomena. The fouling potential of the mixed liquor however can significantly fluctuate, even daily, from changing influent characteristics. Fixed set-point values thus may represent sub-optimal filtration conditions. Consequently, a supervising advanced control system, being able to continuously adapt the set-points values would be beneficial regarding the MBR filtration process optimization. Such optimization could reduce the corresponding MBR energy consumption, e.g. linked to the filtration related membrane aeration. An Advanced Control System (ACS) based on Fuzzy Set Logic (FSL) is introduced here, enabling to supervise an existing classic membrane filtration control system. Such ACS is able to daily (or even more frequent) optimize the set-points of the underlying classic control system, from the input of various sensor and process parameter values. The theoretical background and practical implementation of the FSL based ACS concept is explained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291314400014 Publication Date 2011-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-3994; 1944-3986 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:90094 Serial 8328  
Permanent link to this record
 

 
Author Rakhimov, K.Y.; Chaves, A.; Farias, G.A.; Peeters, F.M. pdf  doi
openurl 
  Title Wavepacket scattering of Dirac and Schrödinger particles on potential and magnetic barriers Type A1 Journal article
  Year (down) 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 23 Issue 27 Pages 275801,1-275801,16  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the dynamics of a charged particle moving in a graphene layer and in a two-dimensional electron gas, where it obeys the Dirac and the Schrödinger equations, respectively. The charge carriers are described as Gaussian wavepackets. The dynamics of the wavepackets is studied numerically by solving both quantum-mechanical and relativistic equations of motion. The scattering of such wavepackets by step-like magnetic and potential barriers is analysed for different values of wavepacket energy and width. We find: (1) that the average position of the wavepacket does not coincide with the classical trajectory, and (2) that, for slanted incidence, the path of the centre of mass of the wavepacket does not have to penetrate the barrier during the scattering process. Trembling motion of the charged particle in graphene is observed in the absence of an external magnetic field and can be enhanced by a substrate-induced mass term.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000291993600009 Publication Date 2011-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 32 Open Access  
  Notes ; Discussions with A Matulis are gratefully acknowledged. KR is beneficiary of a mobility grant from the Belgian Federal Science Policy Office, co-funded by the European Commission and was supported in part by a grant of the Third World Academy of Sciences (ref. 09-188 RG/PHYS/AS-I). In addition, this work was financially supported by CNPq, under contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES, the Bilateral programme between Flanders and Brazil, the joint project CNPq-FWO, the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.649; 2011 IF: 2.546  
  Call Number UA @ lucian @ c:irua:90880 Serial 3908  
Permanent link to this record
 

 
Author Tognalii, N.G.; Cortés, E.; Hernández-Nieves, A.D.; Carro, P.; Usaj, G.; Balseiro, C.A.; Vela, M.E.; Salvarezza, R.C.; Fainstein, A. doi  openurl
  Title From single to multiple Ag-layer modification of Au nanocavity substrates : a tunable probe of the chemical surface-enhanced Raman scattering mechanism Type A1 Journal article
  Year (down) 2011 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 5 Issue 7 Pages 5433-5443  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present experimental and computational results that enlighten the mechanisms underlying the chemical contribution to surface-enhanced Raman scattering (SERS). Gold void metallic arrays electrochemically covered either by a Ag monolayer or 10100 Ag layers were modified with a self-assembled monolayer of 4-mercaptopyridine as a molecular Raman probe displaying a rich and unexpected Raman response. A resonant increase of the Raman intensity in the red part of the spectrum is observed that cannot be related to plasmon excitations of the cavity-array. Notably, we find an additional 1020 time increase of the SERS amplification upon deposition of a single Ag layer on the Au substrate, which is, however, almost quenched upon deposition of 10 atomic layers. Further deposition of 100 atomic Ag layers results in a new increase of the SERS signal, consistent with the improved plasmonic efficiency of Ag bulk-like structures. The SERS response as a function of the Ag layer thickness is analyzed in terms of ab initio calculations and a microscopic model for the SERS chemical mechanism based on a resonant charge transfer process between the molecular HOMO state and the Fermi level in the metal surface. We find that a rearrangement of the electronic charge density related to the presence of the Ag monolayer in the Au/Ag/molecule complex causes an increase in the distance between the HOMO center of charge and the metallic image plane that is responsible for the variation of Raman enhancement between the studied substrates. Our results provide a general platform for studying the chemical contribution to SERS, and for enhancing the Raman efficiency of tailored Au-SERS templates through electrochemical modification with Ag films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293035200019 Publication Date 2011-06-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 26 Open Access  
  Notes ; We acknowledge financial support from ANPCyT (Argentina, PICT08-1617, PICT08-2236, PICT06-621, PICT-CNPQ-08-0019, PAE 22711, PICT06-01061, PICT06-483) and Project CTQ2008-06017/BQU, Spain. N.G.T, E.C., A.D.H.N., R.C.S, G.U., C.A.B., and A.F. are also at CONICET. M.E.V. is a member of the research career of CIC BsAs. R.C.S., C.A.B., and A.F. are Guggenheim Foundation Fellows. We would like to thank Dr. M. H. Fonticelli for fruitful discussions on the electrochemical measurements and Dr. H. Pastoriza for the help with the SEM measurements. ; Approved Most recent IF: 13.942; 2011 IF: 11.421  
  Call Number UA @ lucian @ c:irua:91775 Serial 1285  
Permanent link to this record
 

 
Author Tinck, S.; Boullart, W.; Bogaerts, A. pdf  doi
openurl 
  Title Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching : effects of SiO2 chamber wall coating Type A1 Journal article
  Year (down) 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 20 Issue 4 Pages 045012-045012,19  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, simulations are performed to gain a better insight into the properties of a Cl2/Ar plasma, with and without O2, during plasma etching of Si. Both plasma and surface properties are calculated in a self-consistent manner. Special attention is paid to the behavior of etch products coming from the wafer or the walls, and how the chamber walls can affect the plasma and the resulting etch process. Two modeling cases are considered. In the first case, the reactor walls are defined as clean (Al2O3), whereas in the second case a SiO2 coating is introduced on the reactor walls before the etching process, so that oxygen will be sputtered from the walls and introduced into the plasma. For this reason, a detailed reaction set is presented for a Cl2/O2/Ar plasma containing etched species, as well as an extensive reaction set for surface processes, including physical and chemical sputtering, chemical etching and deposition processes. Density and flux profiles of various species are presented for a better understanding of the bulk plasma during the etching process. Detailed information is also given on the composition of the surfaces at various locations of the reactor, on the etch products in the plasma and on the surface loss probabilities of the plasma species at the walls, with different compositions. It is found that in the clean chamber, walls are mostly chlorinated (Al2Cl3), with a thin layer of etch products residing on the wall. In the coated chamber, an oxy-chloride layer is grown on the walls for a few nanometers during the etching process. The Cl atom wall loss probability is found to decrease significantly in the coated chamber, hence increasing the etch rate. SiCl2, SiCl4 and SiCl3 are found to be the main etch products in the plasma, with the fraction of SiCl2 being always slightly higher. The simulation results compare well with experimental data available from the literature.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000295829800014 Publication Date 2011-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 22 Open Access  
  Notes Approved Most recent IF: 3.302; 2011 IF: 2.521  
  Call Number UA @ lucian @ c:irua:91045 Serial 2141  
Permanent link to this record
 

 
Author Bultinck, E.; Bogaerts, A. pdf  doi
openurl 
  Title Characterization of an Ar/O2 magnetron plasma by a multi-species Monte Carlo model Type A1 Journal article
  Year (down) 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 20 Issue 4 Pages 045013-045013,12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A combined Monte Carlo (MC)/analytical surface model is developed to study the plasma processes occurring during the reactive sputter deposition of TiOx thin films. This model describes the important plasma species with a MC approach (i.e. electrons, Ar+ ions, {\rm O}_2  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000295829800015 Publication Date 2011-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 7 Open Access  
  Notes Approved Most recent IF: 3.302; 2011 IF: 2.521  
  Call Number UA @ lucian @ c:irua:89732 Serial 316  
Permanent link to this record
 

 
Author Shenderova, O.A.; Vlasov, I.I.; Turner, S.; Van Tendeloo, G.; Orlinskii, S.B.; Shiryaev, A.A.; Khomich, A.A.; Sulyanov, S.N.; Jelezko, F.; Wrachtrup, J. pdf  doi
openurl 
  Title Nitrogen control in nanodiamond produced by detonation shock-wave-assisted synthesis Type A1 Journal article
  Year (down) 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 115 Issue 29 Pages 14014-14024  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Development of efficient production methods of nanodiamond (ND) particles containing substitutional nitrogen and nitrogen-vacancy (NV) complexes remains an important goal in the nanodiamond community. ND synthesized from explosives is generally not among the preferred candidates for imaging applications owing to lack of optically active particles containing NV centers. In this paper, we have systematically studied representative classes of NDs produced by detonation shock wave conversion of different carbon precursor materials, namely, graphite and a graphite/hexogen mixture into ND, as well as ND produced from different combinations of explosives using different cooling methods (wet or dry cooling). We demonstrate that (i) the N content in nanodiamond particles can be controlled through a correct selection of the carbon precursor material (addition of graphite, explosives composition); (ii) particles larger than approximately 20 nm may contain in situ produced optically active NV centers, and (iii) in ND produced from explosives, NV centers are detected only in ND produced by wet synthesis. ND synthesized from a mixture of graphite/explosive contains the largest amount of NV centers formed during synthesis and thus deserves special attention.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000292892500009 Publication Date 2011-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 54 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 4.536; 2011 IF: 4.805  
  Call Number UA @ lucian @ c:irua:91259 Serial 2342  
Permanent link to this record
 

 
Author Hezareh, T.; Razavi, F.S.; Kremer, R.K.; Habermeier, H.-U.; Lebedev, O.I.; Kirilenko, D.; Van Tendeloo, G. pdf  doi
openurl 
  Title Effect of PbZr0.52Ti0.48O3 thin layer on structure, electronic and magnetic properties of La0.65Sr0.35MnO3 and La0.65Ca0.30MnO3 thin-films Type A1 Journal article
  Year (down) 2011 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 109 Issue 11 Pages 113707,1-113707,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial thin film heterostructures of high dielectric PbZr<sub>1-x</sub>Ti<sub>x</sub>O<sub>3</sub> (PZT) and La<sub>1-x</sub>A<sub>x</sub>MnO<sub>3</sub> (A-divalent alkaline earth metals such as Sr (LSMO) and Ca (LCMO)) were grown on SrTiO<sub>3</sub> substrates and their structure, temperature dependence of electrical resistivity, and magnetization were investigated as a function of the thickness of the LSMO(LCMO) layer. The microstructures of the samples were analyzed by TEM. By applying an electric field across the PZT layer, we applied a ferrodistortive pressure on the manganite layer and studied the correlations between lattice distortion and electric transport and magnetic properties of the CMR materials.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000292214700069 Publication Date 2011-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.068; 2011 IF: 2.168  
  Call Number UA @ lucian @ c:irua:90964 Serial 843  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M. url  doi
openurl 
  Title Metallic nanograins : spatially nonuniform pairing induced by quantum confinement Type A1 Journal article
  Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 21 Pages 214509-214509,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract It is well known that the formation of discrete electron levels strongly influences the pairing in metallic nanograins. Here, we focus on another effect of quantum confinement in superconducting grains that was not studied previously, i.e., spatially nonuniform pairing. This effect is very significant when single-electron levels form bunches and/or a kind of shell structure. We find that, in highly symmetric grains, the order parameter can exhibit variations with position by an order of magnitude. Nonuniform pairing is closely related to a quantum-confinement-induced modification of the pairing-interaction matrix elements and size-dependent pinning of the chemical potential to groups of degenerate or nearly degenerate levels. For illustrative purposes, we consider spherical metallic nanograins and also rectangular shapes. We show that the relevant matrix elements are, as a rule, enhanced in the presence of quantum confinement, which favors spatial variations of the order parameter, compensating the corresponding energy cost. The size-dependent pinning of the chemical potential further increases the spatial variation of the pair condensate. The role of nonuniform pairing is smaller in less symmetric confining geometries and/or in the presence of disorder. However, it always remains of importance when the energy spacing between discrete electron levels δ is approaching the scale of the bulk gap ΔB, i.e., δ>0.10.2 ΔB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291310000006 Publication Date 2011-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes ; This work was supported by the Alexander von Humboldt Foundation, the Flemish Science Foundation (FWO-VI), and the Belgian Science Policy (IAP). M. D. C. acknowledges support of the European Community under a Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90081 Serial 2010  
Permanent link to this record
 

 
Author Nasirpouri, F.; Engbarth, M.A.; Bending, S.J.; Peter, L.M.; Knittel, A.; Fangohr, H.; Milošević, M.V. url  doi
openurl 
  Title Three-dimensional ferromagnetic architectures with multiple metastable states Type A1 Journal article
  Year (down) 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 22 Pages 222506,1-222506,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We demonstrate controllable dual-bath electrodeposition of nickel on architecture-tunable three-dimensional (3D) silver microcrystals. Magnetic hysteresis loops of individual highly faceted Ag-Ni core-shell elements reveal magnetization reversal that comprises multiple sharp steps corresponding to different stable magnetic states. Finite-element micromagnetic simulations on smaller systems show several jumps during magnetization reversal which correspond to transitions between different magnetic vortex states. Structures of this type could be realizations of an advanced magnetic data storage architecture whereby each element represents one multibit, storing a combination of several conventional bits depending on the overall number of possible magnetic states associated with the 3D core-shell shape.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000291405700044 Publication Date 2011-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 8 Open Access  
  Notes ; This work was supported by EPSRC in the U.K. under Grant Nos. EP/E039944/1 and EP/E040063/1, DYNAMAG project (EU FP7/2007-2013 Grant No. 233552), and FWO-Vlaanderen. ; Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:90008 Serial 3652  
Permanent link to this record
 

 
Author Houssa, M.; Scalise, E.; Sankaran, K.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. doi  openurl
  Title Electronic properties of hydrogenated silicene and germanene Type A1 Journal article
  Year (down) 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 22 Pages 223107  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The electronic properties of hydrogenated silicene and germanene, so called silicane and germanane, respectively, are investigated using first-principles calculations based on density functional theory. Two different atomic configurations are found to be stable and energetically degenerate. Upon the adsorption of hydrogen, an energy gap opens in silicene and germanene. Their energy gaps are next computed using the HSE hybrid functional as well as the G(0)W(0) many-body perturbation method. These materials are found to be wide band-gap semiconductors, the type of gap in silicane (direct or indirect) depending on its atomic configuration. Germanane is predicted to be a direct-gap material, independent of its atomic configuration, with an average energy gap of about 3.2 eV, this material thus being potentially interesting for optoelectronic applications in the blue/violet spectral range. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3595682]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000291405700057 Publication Date 2011-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 63 Open Access  
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:105586 Serial 1003  
Permanent link to this record
 

 
Author Dixit, H.; Tandon, N.; Cottenier, S.; Saniz, R.; Lamoen, D.; Partoens, B.; van Speybroeck, V.; Waroquier, M. pdf  url
doi  openurl
  Title Electronic structure and band gap of zinc spinel oxides beyond LDA : ZnAl2O4, ZnGa2O4 and ZnIn2O4 Type A1 Journal article
  Year (down) 2011 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 13 Issue 6 Pages 063002-063002,11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We examine the electronic structure of the family of ternary zinc spinel oxides ZnX2O4 (X=Al, Ga and In). The band gap of ZnAl2O4 calculated using density functional theory (DFT) is 4.25 eV and is overestimated compared with the experimental value of 3.83.9 eV. The DFT band gap of ZnGa2O4 is 2.82 eV and is underestimated compared with the experimental value of 4.45.0 eV. Since DFT typically underestimates the band gap in the oxide system, the experimental measurements for ZnAl2O4 probably require a correction. We use two first-principles techniques capable of describing accurately the excited states of semiconductors, namely the GW approximation and the modified BeckeJohnson (MBJ) potential approximation, to calculate the band gap of ZnX2O4. The GW and MBJ band gaps are in good agreement with each other. In the case of ZnAl2O4, the predicted band gap values are >6 eV, i.e. ~2 eV larger than the only reported experimental value. We expect future experimental work to confirm our results. Our calculations of the electron effective masses and the second band gap indicate that these compounds are very good candidates to act as transparent conducting host materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000292137500002 Publication Date 2011-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 98 Open Access  
  Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.786; 2011 IF: 4.177  
  Call Number UA @ lucian @ c:irua:89555 Serial 1008  
Permanent link to this record
 

 
Author Abakumov, A.M.; Tsirlin, A.A.; Perez-Mato, J.M.; Petřiček, V.; Rosner, H.; Yang, T.; Greenblatt, M. url  doi
openurl 
  Title Spiral ground state against ferroelectricity in the frustrated magnet BiMnFe2O6 Type A1 Journal article
  Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 21 Pages 214402-214402,10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The spiral magnetic structure and underlying spin lattice of BiMnFe2O6 are investigated by low-temperature neutron powder diffraction and density functional theory band structure calculations. In spite of the random distribution of the Mn3+ and Fe3+ cations, this centrosymmetric compound undergoes a transition into an incommensurate antiferromagnetically ordered state below TN≃220 K. The magnetic structure is characterized by the propagation vector k=[0,β,0] with β≃0.14 and the P221211′(0β0)0s0s magnetic superspace symmetry. It comprises antiferromagnetic helixes propagating along the b axis. The magnetic moments lie in the ac plane and rotate about π(1+β)≃204.8-deg angle between the adjacent magnetic atoms along b. The spiral magnetic structure arises from the peculiar frustrated arrangement of exchange couplings in the ab plane. The antiferromagnetic coupling along the c axis cancels the possible electric polarization and prevents ferroelectricity in BiMnFe2O6.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291197400001 Publication Date 2011-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90080 Serial 3107  
Permanent link to this record
 

 
Author Esquivel, M.R.; Zelaya, E. doi  openurl
  Title Synthesis and characterisation of lanthanide-based dioxide Type A1 Journal article
  Year (down) 2011 Publication Advances in applied ceramics Abbreviated Journal Adv Appl Ceram  
  Volume 110 Issue 4 Pages 219-224  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the present work, the microstructure and structure of La(0.25)Ce(0.52)Nd(0.17)Pr(0.06)(OH)(3) and La(0.25)Ce(0.52)Nd(0.17)Pr(0.06)O(2) is obtained from transmission electron microscopy and X-ray diffraction measurements. Space group P6(3)/m is assigned to the structure of La(0.25)Ce(0.52)Nd(0.17)Pr(0.06)(OH)(3). Lanthanides are assigned to Wyckoff positions 2c. Cell parameters are a=6.375(5) angstrom and c=3.753(5) angstrom. The thermal decomposition of this compound was studied by differential scanning calorimetry. The process is exothermal with an enthalpy change Delta H degrees value of -254 +/- 10 kJ mol(-1). The decomposition kinetics is complex and two global processes with E(a) values of 98 +/- 4 and 61 +/- 2 kJ mol 21 were observed. The product is a lanthanide dioxide. Space group Fm3m is assigned to the La(0.25)Ce(0.52)Nd(0.17)Pr(0.06)O(2). Lanthanides are distributed in Wyckoff positions 4a. The cell parameter is a=5.479(5) angstrom. Nanopores in the oxide surface are obtained using this method and characterised by STEM measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Leeds Editor  
  Language Wos 000291206700006 Publication Date 2011-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1743-6753;1743-6761; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.325 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.325; 2011 IF: 0.871  
  Call Number UA @ lucian @ c:irua:105588 Serial 3410  
Permanent link to this record
 

 
Author György, K.; Ajtony, Z.; van Meel, K.; Van Grieken, R.; Czitrovszky, A.; Bencs, L. pdf  doi
openurl 
  Title Fast heating induced impulse halogenation of refractory sample components in electrothermal atomic absorption spectrometry by direct injection of a liquid halogenating agent Type A1 Journal article
  Year (down) 2011 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal  
  Volume 85 Issue 3 Pages 1253-1259  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A novel electrothermal atomic absorption spectrometry (ETAAS) method was developed for the halogenation of refractory sample components (Er, Nd and Nb) of lithium niobate (LiNbO3) and bismuth tellurite (Bi2TeO5) optical single crystals to overcome memory effects and carry-over. For this purpose, the cleaning step of a regular graphite furnace heating program was replaced with a halogenation cycle. In this cycle, after the graphite tube cooled to room temperature, a 20 μL aliquot of liquid carbon tetrachloride (CCl4) was dispensed with a conventional autosampler into the graphite tube. The CCl4 was partially dried at 80 °C under the mini-flow (40 cm3 min−1) condition of the Ar internal furnace gas (IFG), then the residue was decomposed (pyrolyzed) by fast furnace heating at 19002100 °C under interrupted flow of the IFG. This step was followed by a clean-out stage at 2100 °C under the maximum flow of the IFG. The advantage of the present method is that it does not require any alteration to the graphite furnace gas supply system in contrast to most of the formerly introduced halogenation techniques. The effectiveness of the halogenation method was verified with the determination of Er and Nd dopants in the optical crystals. In these analyses, a sensitivity decrease was observed, which was likely due to the enhanced deterioration of the graphite tube surface. Therefore, the application of mathematical correction (resloping) of the calibration was also required. The calibration curves were linear up to 1.5 and 10 μmol L−1 for Er and Nd, respectively. Characteristic masses of 18 and 241 pg and the limit of detection (LOD) values of 0.017 and 0.27 μmol L−1 were found for Er and Nd, respectively. These LOD data correspond to 0.68 μmol mol−1 Er and 11 μmol mol−1 Nd in solid bismuth tellurite samples. The analytical results were compared with those obtained by a conventional ETAAS method and validated with X-ray fluorescence spectrometry analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000294092800006 Publication Date 2011-05-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:91721 Serial 7960  
Permanent link to this record
 

 
Author Jochems, P.; Satyawali, Y.; Diels, L.; Dejonghe, W. doi  openurl
  Title Enzyme immobilization on/in polymeric membranes : status, challenges and perspectives in biocatalytic membrane reactors (BMRs) Type A1 Journal article
  Year (down) 2011 Publication Green chemistry : cutting-edge research for a greener sustainable future Abbreviated Journal  
  Volume 13 Issue 7 Pages 1609-1623  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Immobilization of enzymes is beneficial in terms of improving the process economics by enabling enzyme re-use and enhancing overall productivity and robustness. Increasingly, membranes are thought to be good supports for enzyme immobilization. These resulting biocatalytic membranes are integrated in reactors known as biocatalytic membrane reactors (BMRs) which enable the integration of biocatalysis and separation. Often the available commercial membranes require modifications to make them suitable for enzyme immobilization. Different immobilization techniques can be used on such suitable membranes, but no general rules exist for making a choice between them. Despite the advantages of BMR application, there are some issues which need to be addressed in order to achieve up-scaling of such systems. In this review, the different aspects of enzyme immobilization on membranes are discussed to show the complexity of this interdisciplinary technology. In addition, the existing issues which require further investigation are highlighted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292450600002 Publication Date 2011-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:89567 Serial 7930  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: