toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hardy, A.; Van Elshocht, S.; De Dobbelaere, C.; Hadermann, J.; Pourtois, G.; De Gendt, S.; Afanas'ev, V.V.; Van Bael, M.K. pdf  doi
openurl 
  Title Properties and thermal stability of solution processed ultrathin, high-k bismuth titanate (Bi2Ti2O7) films Type A1 Journal article
  Year (up) 2012 Publication Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 47 Issue 3 Pages 511-517  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ultrathin bismuth titanate films (Bi2Ti2O7, 5-25 nm) are deposited onto SiO2/Si substrates by aqueous chemical solution deposition and their evolution during annealing is studied. The films crystallize into a preferentially oriented, pure pyrochlore phase between 500 and 700 degrees C, depending on the film thickness and the total thermal budget. Crystallization causes a strong increase of surface roughness compared to amorphous films. An increase of the interfacial layer thickness is observed after anneal at 600 degrees C, together with intermixing of bismuth with the substrate as shown by TEM-EDX. The band gap was determined to be similar to 3 eV from photoconductivity measurements and high dielectric constants between 30 and 130 were determined from capacitance voltage measurements, depending on the processing conditions. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000301994100001 Publication Date 2012-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited Open Access  
  Notes Approved Most recent IF: 2.446; 2012 IF: 1.913  
  Call Number UA @ lucian @ c:irua:97797 Serial 2727  
Permanent link to this record
 

 
Author Gengler, R.Y.N.; Toma, L.M.; Pardo, E.; Lloret, F.; Ke, X.; Van Tendeloo, G.; Gournis, D.; Rudolf, P. doi  openurl
  Title Prussian blue analogues of reduced dimensionality Type A1 Journal article
  Year (up) 2012 Publication Small Abbreviated Journal Small  
  Volume 8 Issue 16 Pages 2532-2540  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Mixed-valence polycyanides (Prussian Blue analogues) possess a rich palette of properties spanning from room-temperature ferromagnetism to zero thermal expansion, which can be tuned by chemical modifications or the application of external stimuli (temperature, pressure, light irradiation). While molecule-based materials can combine physical and chemical properties associated with molecular-scale building blocks, their successful integration into real devices depends primarily on higher-order properties such as crystal size, shape, morphology, and organization. Herein a study of a new reduced-dimensionality system based on Prussian Blue analogues (PBAs) is presented. The system is built up by means of a modified Langmuir-Blodgett technique, where the PBA is synthesized from precursors in a self-limited reaction on a clay mineral surface. The focus of this work is understanding the magnetic properties of the PBAs in different periodic, low-dimensional arrangements, and the influence of the “on surface” synthesis on the final properties and dimensionality of the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000307390300012 Publication Date 2012-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 17 Open Access  
  Notes Approved Most recent IF: 8.643; 2012 IF: 7.823  
  Call Number UA @ lucian @ c:irua:101104 Serial 2736  
Permanent link to this record
 

 
Author Cao, S.; Pourbabak, S.; Schryvers, D. pdf  doi
openurl 
  Title Quantitative 3-D morphologic and distributional study of Ni4Ti3 precipitates in a Ni51Ti49 single crystal alloy Type A1 Journal article
  Year (up) 2012 Publication Scripta materialia Abbreviated Journal Scripta Mater  
  Volume 66 Issue 9 Pages 650-653  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The size, shape and distribution of Ni4Ti3 precipitates in Ni51Ti49 single crystals annealed under stress-free and 〈1 1 1〉B2 compressive conditions are studied via focused ion beam/scanning electron microscopy slice-and-view. The precipitates in the stress-free material grow in autocatalytic pockets with larger size, lower number density, flatter shape and larger inter-particle distance than in the compressed material. Nevertheless, a new quantification method called water penetration reveals that, due to the precipitate alignment, martensite can grow more easily in the compressed material perpendicular to the compression direction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000302425100010 Publication Date 2012-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.747 Times cited 8 Open Access  
  Notes Fwo Approved Most recent IF: 3.747; 2012 IF: 2.821  
  Call Number UA @ lucian @ c:irua:97387 Serial 2743  
Permanent link to this record
 

 
Author Heidari Mezerji, H. openurl 
  Title Quantitative electron tomography of nanoparticles Type Doctoral thesis
  Year (up) 2012 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:100629 Serial 2755  
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M. pdf  doi
openurl 
  Title Quantum cascades in nano-engineered superconductors : geometrical, thermal and paramagnetic effects Type A1 Journal article
  Year (up) 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 24 Issue 26 Pages 265702  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of a parallel magnetic field on the orbital motion of electrons in high-quality superconducting nanowires resulting in a superconductor-to-normal transition which occurs through a cascade of jumps in the order parameter as a function of the magnetic field. Such cascades originate from the transverse size quantization that splits the conduction band into a series of subbands. Here, based on a numerical solution of the Bogoliubov-de Gennes equations for a hollow nanocylinder, we investigate how the quantum-size cascades depend on the confining geometry, i.e., by changing the cylinder radius R and its thickness d we cover the range from the nanowire-like to the nanofilm-like regime. The cascades are shown to become much less pronounced when increasing R/d, i.e., when the nanofilm-like regime is approached. When the temperature is non-zero they are thermally smoothed. This includes the spin-magnetic-field interaction which reduces the critical (depairing) parallel magnetic field H-c,H-parallel to but does not have any qualitative effect on the quantum cascades. From our calculations it is seen that the paramagnetic limiting field H-par significantly exceeds H-c,H-parallel to even in extremely narrow nanocylinders, i.e., when R, d are down to a few nanometers, and H-c,H-parallel to is only about 10% larger when switching-off the spin-magnetic-field interaction in this case. Both characteristic fields, H-c,H-parallel to and H-par, exhibit pronounced quantum-size oscillations. We demonstrate that the quantum cascades and the quantum-size oscillations survive in the presence of surface roughness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000305640800014 Publication Date 2012-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 6 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the ESF-AQDJJ network. MDC acknowledges the support of the EU Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). ; Approved Most recent IF: 2.649; 2012 IF: 2.355  
  Call Number UA @ lucian @ c:irua:100281 Serial 2773  
Permanent link to this record
 

 
Author Pham, A.-T.; Sorée, B.; Magnus, W.; Jungemann, C.; Meinerzhagen, B.; Pourtois, G. pdf  doi
openurl 
  Title Quantum simulations of electrostatics in Si cylindrical junctionless nanowire nFETs and pFETs with a homogeneous channel including strain and arbitrary crystallographic orientations Type A1 Journal article
  Year (up) 2012 Publication Solid state electronics Abbreviated Journal Solid State Electron  
  Volume 71 Issue Pages 30-36  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Simulation results of electrostatics in Si cylindrical junctionless nanowire transistors with a homogenous channel are presented. Junctionless transistors including strain and arbitrary crystallographic orientations are studied. Size quantization effects are simulated by self-consistent solutions of the Poisson and Schrodinger equations. The 6 x 6 k.p method is employed for the calculation of the valence subband structure in a junctionless nanowire pFET. The influence of stress/strain and crystallographic channel orientation on to the electrostatics in terms of subband structure, charge density, and C-V curve is systematically studied. (C) 2011 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000303033800007 Publication Date 2011-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.58 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 1.58; 2012 IF: 1.482  
  Call Number UA @ lucian @ c:irua:98245 Serial 2786  
Permanent link to this record
 

 
Author Delabie, A.; Sioncke, S.; Rip, J.; Van Elshocht, S.; Pourtois, G.; Mueller, M.; Beckhoff, B.; Pierloot, K. doi  openurl
  Title Reaction mechanisms for atomic layer deposition of aluminum oxide on semiconductor substrates Type A1 Journal article
  Year (up) 2012 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume 30 Issue 1 Pages 01a127-01a127,10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, we have studied the TMA/H(2)O (TMA Al(CH(3))(3)) atomic layer deposition (ALD) of Al(2)O(3) on hydroxyl (OH) and thiol (SH) terminated semiconductor substrates. Total reflection x-ray fluorescence reveals a complex growth-per-cycle evolution during the early ALD reaction cycles. OH and SH terminated surfaces demonstrate growth inhibition from the second reaction cycle on. Theoretical calculations, based on density functional theory, are performed on cluster models to investigate the first TMA/H(2)O reaction cycle. Based on the theoretical results, we discuss possible mechanisms for the growth inhibition from the second reaction cycle on. In addition, our calculations show that AlCH(3) groups are hydrolyzed by a H(2)O molecule adsorbed on a neighboring Al atom, independent of the type of backbonds (Si-O, Ge-O, or Ge-S) of AlCH(3). The coordination of Al remains four-fold after the first TMA/H(2)O reaction cycle. (C) 2012 American Vacuum Society. [DOI: 10.1116/1.3664090]  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000298992800027 Publication Date 2011-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 41 Open Access  
  Notes Approved Most recent IF: 1.374; 2012 IF: 1.432  
  Call Number UA @ lucian @ c:irua:96253 Serial 2818  
Permanent link to this record
 

 
Author Vlasov, I.I.; Turner, S.; Van Tendeloo, G.; Shiryaev, A.A. isbn  openurl
  Title Recent results on characterization of detonation nanodiamonds Type H3 Book chapter
  Year (up) 2012 Publication Abbreviated Journal  
  Volume Issue Pages 291-322  
  Keywords H3 Book chapter; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Amsterdam Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4377-3465-2 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:105303 Serial 2840  
Permanent link to this record
 

 
Author Krstajić, P.M.; Peeters, F.M. url  doi
openurl 
  Title Remote electron plasmon polaron in graphene Type A1 Journal article
  Year (up) 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 8 Pages 085436-085436,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Coulomb interaction and the correlation of a remote electron with a single layer of graphene is investigated in the presence of a magnetic field applied perpendicular to the graphene layer. The remote electron polarizes the electron gas in the graphene layer, which we describe in terms of excitations of virtual plasmons in graphene. The composite quasiparticle formed by electron plus polarization is called a plasmon polaron. The ground-state energy of this quasiparticle is calculated within perturbation theory for remote electrons in different environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000300831900012 Publication Date 2012-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:97202 Serial 2869  
Permanent link to this record
 

 
Author Nowak, M.P.; Szafran, B.; Peeters, F.M. url  doi
openurl 
  Title Resonant harmonic generation and collective spin rotations in electrically driven quantum dots Type A1 Journal article
  Year (up) 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 12 Pages 125428  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Spin rotations induced by an ac electric field in a two-electron double quantum dot are studied by an exact numerical solution of the time-dependent Schrodinger equation in the context of recent electric-dipole spin resonance experiments on gated nanowires. We demonstrate that the splitting of the main resonance line by the spin exchange coupling is accompanied by the appearance of fractional resonances and that both these effects are triggered by interdot tunnel coupling. We find that the ac-driven system generates residual but distinct harmonics of the driving frequency, which are amplified when tuned to the main transition frequency. The mechanism is universal for electron systems in electrically driven potentials and works also in the absence of electron-electron interaction or spin-orbit coupling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000308867300005 Publication Date 2012-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes ; This work was supported by funds of the Ministry of Science and Higher Education (MNiSW) for 2012-2013 under Project No. IP2011038671, and by PL-Grid Infrastructure. M.P.N. gratefully acknowledges support from the Foundation for Polish Science (FNP) under START and MPD program cofinanced by the EU European Regional Development Fund. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101839 Serial 2885  
Permanent link to this record
 

 
Author Moldovan, D.; Masir, M.R.; Covaci, L.; Peeters, F.M. pdf  url
doi  openurl
  Title Resonant valley filtering of massive Dirac electrons Type A1 Journal article
  Year (up) 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 11 Pages 115431  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrons in graphene, in addition to their spin, have two pseudospin degrees of freedom: sublattice and valley pseudospin. Valleytronics uses the valley degree of freedom as a carrier of information similarly to the way spintronics uses electron spin. We show how a double-barrier structure consisting of electric and vector potentials can be used to filter massive Dirac electrons based on their valley index. We study the resonant transmission through a finite number of barriers and we obtain the energy spectrum of a superlattice consisting of electric and vector potentials. When a mass term is included, the energy bands and energy gaps at the K and K′ points are different and they can be tuned by changing the potential.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000309173300004 Publication Date 2012-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 55 Open Access  
  Notes This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro- GRAPHENE within the project CONGRAN, and the Flemish Science Foundation (FWO-Vl). Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101835 Serial 2896  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. pdf  doi
openurl 
  Title Rigid-plane phonons in layered crystals Type A1 Journal article
  Year (up) 2012 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 249 Issue 12 Pages 2604-2607  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The determination of the layer number ${\cal N}$ in nanoscale thin layered crystals is a challenging problem of technological relevance. In addition to innovative experimental techniques, a thorough knowledge of the underlying lattice dynamics is required. Starting from phenomenological atomic interaction potentials we have carried out an analytical study of the low-frequency optical phonon dispersions in layered crystals. At the gamma point of the two-dimensional Brillouin zone the optical phonon frequencies correspond to rigid-plane shearing and compression modes. We have investigated graphene multilayers (GML) and hexagonal boron-nitride multilayers (BNML). The frequencies show a characteristic dependence on ${\cal N}$. The results which are represented in the form of fan diagrams are very similar for both materials. Due to charge neutrality within layers Coulomb forces play no role, only van der Waals forces between nearest neighbor layers are relevant. The theoretical results agree with recent low-frequency Raman results on rigid-layer modes [Tan et al., Nature Mater. 11, 294 (2012)] in GML and double-resonant Raman scattering data on rigid-layer compression modes [Herziger et al., Phys. Rev. B 85, 235447 (2012)] in GML. (C) 2012 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000312215300072 Publication Date 2012-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 1 Open Access  
  Notes ; This work has been supported by the Flemish Science Foundation (FWO-Vl) and the Bijzonder Onderzoeksfonds, Universiteit Antwerpen (BOF-UA). ; Approved Most recent IF: 1.674; 2012 IF: 1.489  
  Call Number UA @ lucian @ c:irua:105992 Serial 2907  
Permanent link to this record
 

 
Author Salman, O.U.; Finel, A.; Delville, R.; Schryvers, D. pdf  doi
openurl 
  Title The role of phase compatibility in martensite Type A1 Journal article
  Year (up) 2012 Publication Journal of applied physics T2 – 22nd International Symposium on Integrated Functionalities (ISIF), JUN 13-16, 2010, San Juan, PR Abbreviated Journal J Appl Phys  
  Volume 111 Issue 10 Pages 103517  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Shape memory alloys inherit their macroscopic properties from their mesoscale microstructure originated from the martensitic phase transformation. In a cubic to orthorhombic transition, a single variant of martensite can have a compatible (exact) interface with the austenite for some special lattice parameters in contrast to conventional austenite/twinned martensite interface with a transition layer. Experimentally, the phase compatibility results in a dramatic drop in thermal hysteresis and gives rise to very stable functional properties over cycling. Here, we investigate the microstructures observed in Ti50Ni50-xPdx alloys that undergo a cubic to orthorhombic martensitic transformation using a three-dimensional phase field approach. We will show that the simulation results are in very good agreement with transmission electron microscopy observations. However, the understanding of the drop in thermal hysteresis requires the coupling of phase transformation with plastic activity. We will discuss this point within the framework of thermoelasticity, which is a generic feature of the martensitic transformation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4712629]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000305363700053 Publication Date 2012-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.068; 2012 IF: 2.210  
  Call Number UA @ lucian @ c:irua:100310 Serial 2919  
Permanent link to this record
 

 
Author Phung, Q.M.; Vancoillie, S.; Delabie, A.; Pourtois, G.; Pierloot, K. doi  openurl
  Title Ruthenocene and cyclopentadienyl pyrrolyl ruthenium as precursors for ruthenium atomic layer deposition : a comparative study of dissociation enthalpies Type A1 Journal article
  Year (up) 2012 Publication Theoretical chemistry accounts : theory, computation, and modeling Abbreviated Journal Theor Chem Acc  
  Volume 131 Issue 7 Pages 1238  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract RuCp2 (ruthenocene) and RuCpPy (cyclopentadienyl pyrrolyl ruthenium) complexes are used in ruthenium (Ru) atomic layer deposition (ALD) but exhibit a markedly different reactivity with respect to the substrate and co-reactant. In search of an explanation, we report here the results of a comparative study of the heterolytic and homolytic dissociation enthalpy of these two ruthenium complexes, making use of either density functional theory (DFT) or multiconfigurational perturbation theory (CASPT2). While both methods predict distinctly different absolute dissociation enthalpies, they agree on the relative values between both molecules. A reduced heterolytic dissociation enthalpy is obtained for RuCpPy compared to RuCp2, although the difference obtained from CASPT2 (19.9 kcal/mol) is slightly larger than the one obtained with any of the DFT functionals (around 17 kcal/mol). Both methods also agree on the more pronounced stability of the Cp- ligand in RuCpPy than in RuCp2 (by around 9 kcal/mol with DFT and by 6 kcal/mol with CASPT2).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000307274300003 Publication Date 2012-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-881X;1432-2234; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.89 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.89; 2012 IF: 2.233  
  Call Number UA @ lucian @ c:irua:101139 Serial 2935  
Permanent link to this record
 

 
Author Matulis, A.; Masir, M.R.; Peeters, F.M. url  doi
openurl 
  Title Scattering of a Dirac electron on a mass barrier Type A1 Journal article
  Year (up) 2012 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 86 Issue 2 Pages 022101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interaction of a wave packet (and in particular the wave front) with a mass barrier is investigated in one dimension. We discuss the main features of the wave packet that are inherent to two-dimensional wave packets, such as compression during reflection, penetration in the case when the energy is lower than the height of the barrier, waving tails, precursors, and the retardation of the reflected and penetrated wave packets. These features depend on the wave-packet envelope function which we demonstrate by considering the case of a rectangular wave packet with sharp front and trailing edges and a smooth Gaussian wave packet. The method of Fourier integral for obtaining the nonstationary solutions is used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000306991200001 Publication Date 2012-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 9 Open Access  
  Notes ; This research was supported by the Flemish Science Foundation (FWO-Vl) and (in part) by the Lithuanian Science Council under Project No. MIP-79/2010. ; Approved Most recent IF: 2.925; 2012 IF: 3.042  
  Call Number UA @ lucian @ c:irua:100822 Serial 2948  
Permanent link to this record
 

 
Author Angelomé, P.C.; Heidari Mezerji, H.; Goris, B.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Liz-Marzán, L.M. pdf  doi
openurl 
  Title Seedless synthesis of single crystalline Au nanoparticles with unusual shapes and tunable LSPR in the near-IR Type A1 Journal article
  Year (up) 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 7 Pages 1393-1399  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The plasmonic properties of metal nanoparticles have acquired great importance because of their potential applications in very diverse fields. Metal nanoparticles with localized surface plasmon resonances (LSPR) in the near-infrared (NIR, 7501300 nm) are of particular interest because tissues, blood, and water display low absorption in this spectral range, thus facilitating biomedical applications. Cetyltrimethylammonium chloride (CTAC) was used to induce the seedless formation of highly anisotropic, twisted single crystalline Au nanoparticles in a single step. The LSPR of the obtained particles can be tuned from 600 nm up to 1400 nm by simply changing the reaction temperature or the reagents concentrations. The tunability of the LSPR is closely associated with significant changes in the final particle morphology, which was studied by advanced electron microscopy techniques (3D Tomography and HAADF-STEM). Kinetic experiments were carried out to establish the growth mechanism, suggesting that slow kinetics together with the complexation of the gold salt precursor to CTAC are key factors favoring the formation of these anisotropic particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000302487500020 Publication Date 2012-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 42 Open Access  
  Notes Fwo Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:97388 Serial 2959  
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; van Duin, A.C.T.; Neyts, E.C. doi  openurl
  Title Self-limiting oxidation in small-diameter Si nanowires Type A1 Journal article
  Year (up) 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 11 Pages 2141-2147  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Recently, core shell silicon nanowires (Si-NWs) have been envisaged to be used for field-effect transistors and photovoltaic applications. In spite of the constant downsizing of such devices, the formation of ultrasmall diameter core shell Si-NWs currently remains entirely unexplored. We report here on the modeling of the formation of such core shell Si-NWs using a dry thermal oxidation of 2 nm diameter (100) Si nanowires at 300 and 1273 K, by means of reactive molecular dynamics simulations using the ReaxFF potential. Two different oxidation mechanisms are discussed, namely a self-limiting process that occurs at low temperature (300 K), resulting in a Si core I ultrathin SiO2 silica shell nanowire, and a complete oxidation process that takes place at a higher temperature (1273 K), resulting in the formation of an ultrathin SiO2 silica nanowire. The oxidation kinetics of both cases and the resulting structures are analyzed in detail. Our results demonstrate that precise control over the Si-core radius of such NWs and the SiOx (x <= 2.0) oxide shell is possible by controlling the growth temperature used during the oxidation process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000305092600021 Publication Date 2012-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 45 Open Access  
  Notes Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:99079 Serial 2976  
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Zhao, S.-X.; Jiang, W.; Wang, Y.-N. pdf  doi
openurl 
  Title Separate control between geometrical and electrical asymmetry effects in capacitively coupled plasmas Type A1 Journal article
  Year (up) 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 45 Issue 30 Pages 305203  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Both geometrical and electrical asymmetry effects in capacitive argon discharges are investigated using a two-dimensional particle-in-cell coupled with Monte Carlo collision model. When changing the ratio of the top and bottom electrode surface areas and the phase shift between the two applied harmonics, the induced self-bias was found to develop separately. By adjusting the ratio between the high and low harmonic amplitudes, the electrical asymmetry effect at a fixed phase shift can be substantially optimized. However, the self-bias caused by the geometrical asymmetry hardly changed. Moreover, the separate control of these two asymmetry effects can also be demonstrated from their power absorption profiles. Both the axial and radial plasma density distributions can be modulated by the electrical asymmetry effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000306475200007 Publication Date 2012-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 20 Open Access  
  Notes Approved Most recent IF: 2.588; 2012 IF: 2.528  
  Call Number UA @ lucian @ c:irua:100751 Serial 2984  
Permanent link to this record
 

 
Author Djotyan, A.P.; Avetisyan, A.A.; Hao, Y.L.; Peeters, F.M. doi  openurl
  Title Shallow donor near a semiconductor surface in the presence of locally spherical scanning tunneling microscope tip Type P1 Proceeding
  Year (up) 2012 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers T2 – Conference on Photonics and Micro and Nano-structured Materials, JUN 28-30, 2011, Yerevan, ARMENIA Abbreviated Journal  
  Volume Issue Pages 84140-84148  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We developed a variational approach to investigate the ground state energy and the extend of the wavefunction of a neutral donor located near a semiconductor surface in the presence of scanning tunneling microscope (STM) metallic tip. We apply the effective mass approximation and use a variational wavefunction that takes into account the influence of all image charges that arise due to the presence of a metallic tip. The behavior of the ground state energy when the tip approaches the semiconductor surface is investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303856600020 Publication Date 2012-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 8414 Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy. One of us (AAA) was supported by a fellowship from the Belgian Federal Science Policy Office (Belspo). ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:113047 Serial 2987  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Abakumov, A.M.; Ritter, C.; Henry, P.F.; Janson, O.; Rosner, H. url  doi
openurl 
  Title Short-range order of Br and three-dimensional magnetism in (CuBr)LaNb2O7 Type A1 Journal article
  Year (up) 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 21 Pages 214427  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present a comprehensive study of the crystal structure, magnetic structure, and microscopic magnetic model of (CuBr)LaNb2O7, the Br analog of the spin-gap quantum magnet (CuCl) LaNb2O7. Despite similar crystal structures and spin lattices, the magnetic behavior and even peculiarities of the atomic arrangement in the Cl and Br compounds are very different. The high- resolution x-ray and neutron data reveal a split position of Br atoms in (CuBr) LaNb2O7. This splitting originates from two possible configurations developed by [CuBr] zigzag ribbons. While the Br atoms are locally ordered in the ab plane, their arrangement along the c direction remains partially disordered. The predominant and energetically more favorable configuration features an additional doubling of the c lattice parameter that was not observed in (CuCl) LaNb2O7. (CuBr) LaNb2O7 undergoes long-range antiferromagnetic ordering at T-N = 32 K, which is nearly 70% of the leading exchange coupling J4 similar or equal to 48 K. The Br compound does not show any experimental signatures of low-dimensional magnetism because the underlying spin lattice is three-dimensional. The coupling along the c direction is comparable to the couplings in the ab plane, even though the shortest Cu-Cu distance along c (11.69 angstrom) is three times larger than nearest-neighbor distances in the ab plane (3.55 angstrom). The stripe antiferromagnetic long-range order featuring columns of parallel spins in the ab plane and antiparallel spins along c is verified experimentally and confirmed by the microscopic analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305557600002 Publication Date 2012-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:100289 Serial 2998  
Permanent link to this record
 

 
Author Quintana, M.; Grzelczak, M.; Spyrou, K.; Calvaresi, M.; Bals, S.; Kooi, B.; Van Tendeloo, G.; Rudolf, P.; Zerbetto, F.; Prato, M. doi  openurl
  Title A simple road for the transformation of few-layer graphene into MWNTs Type A1 Journal article
  Year (up) 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 32 Pages 13310-13315  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the direct formation of multiwalled carbon nanotubes (MWNT) by ultrasonication of graphite in dimethylformamide (DMF) upon addition of ferrocene aldehyde (Fc-CHO). The tubular structures appear exclusively at the edges of graphene layers and contain Fe clusters. Pc in conjunction with benzyl aldehyde, or other Fc derivatives, does not induce formation of NT. Higher amounts of Fc-CHO added to the dispersion do not increase significantly MWNT formation. Increasing the temperature reduces the amount of formation of MWNTs and shows the key role of ultrasound-induced cavitation energy. It is concluded that Fc-CHO first reduces the concentration of radical reactive species that slice graphene into small moieties, localizes itself at the edges of graphene, templates the rolling up of a sheet to form a nanoscroll, where it remains trapped, and finally accepts and donates unpaired electron to the graphene edges and converts the less stable scroll into a MWNT. This new methodology matches the long held notion that CNTs are rolled up graphene layers. The proposed mechanism is general and will lead to control the production of carbon nanostructures by simple ultrasonication treatments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000307487200034 Publication Date 2012-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 56 Open Access  
  Notes This work was supported by the University of Trieste, the Italian Ministry of Education MIUR (cofin Prot. 20085M27SS), the European Union through the ERC grant No. 246791 – COUNTATOMS, the grant agreement for an Integrated Infrastructure Initiative N. 262348 ESMI, and the “Graphene-based electronics” research program of the Foundation for Fundamental Research on Matter (FOM). Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:101109 Serial 3003  
Permanent link to this record
 

 
Author Euán-Díaz, E.C.; Misko, V.R.; Peeters, F.M.; Herrera-Velarde, S.; Castaneda-Priego, R. url  doi
openurl 
  Title Single-file diffusion in periodic energy landscapes : the role of hydrodynamic interactions Type A1 Journal article
  Year (up) 2012 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 86 Issue 3Part 1 Pages 031123  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report on the dynamical properties of interacting colloids confined to one dimension and subjected to external periodic energy landscapes. We particularly focus on the influence of hydrodynamic interactions on the mean-square displacement. Using Brownian dynamics simulations, we study colloidal systems with two types of repulsive interparticle interactions, namely, Yukawa and superparamagnetic potentials. We find that in the homogeneous case, hydrodynamic interactions lead to an enhancement of the particle mobility and the mean-square displacement at long times scales as t(alpha), with alpha = 1/2 + epsilon and epsilon being a small correction. This correction, however, becomes much more important in the presence of an external field, which breaks the homogeneity of the particle distribution along the line and, therefore, promotes a richer dynamical scenario due to the hydrodynamical coupling among particles. We provide here the complete dynamical scenario in terms of the external potential parameters: amplitude and commensurability.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000308873500002 Publication Date 2012-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 14 Open Access  
  Notes ; This work was partially supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-Vl), and PIFI 3.4-PROMEP and CONACyT (Grant Nos. 61418/2007 and 102339/2008, Ph.D. Scholarship No. 230171/ 2010). ; Approved Most recent IF: 2.366; 2012 IF: 2.313  
  Call Number UA @ lucian @ c:irua:101840 Serial 3021  
Permanent link to this record
 

 
Author Turner, S.; Egoavil, R.; Batuk, M.; Abakumov, A.A.; Hadermann, J.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Site-specific mapping of transition metal oxygen coordination in complex oxides Type A1 Journal article
  Year (up) 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 101 Issue 24 Pages 241910  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate site-specific mapping of the oxygen coordination number for transition metals in complex oxides using atomically resolved electron energy-loss spectroscopy in an aberration-corrected scanning transmission electron microscope. Pb2Sr2Bi2Fe6O16 contains iron with a constant Fe3+ valency in both octahedral and tetragonal pyramidal coordination and is selected to demonstrate the principle of site-specific coordination mapping. Analysis of the site-specific Fe-L2,3 data reveals distinct variations in the fine structure that are attributed to Fe in a six-fold (octahedron) or five-fold (distorted tetragonal pyramid) oxygen coordination. Using these variations, atomic resolution coordination maps are generated that are in excellent agreement with simulations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000312490000035 Publication Date 2012-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes Fwo; Countatoms; Vortex; Esteem 312483; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:105302UA @ admin @ c:irua:105302 Serial 3030  
Permanent link to this record
 

 
Author De Trizio, L.; Figuerola, A.; Manna, L.; Genovese, A.; George, C.; Brescia, R.; Saghi, Z.; Simonutti, R.; van Huis, M.; Falqui, A. pdf  doi
openurl 
  Title Size-tunable, hexagonal plate-like Cu3P and Janus-like Cu-Cu3P nanocrystals Type A1 Journal article
  Year (up) 2012 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 6 Issue 1 Pages 32-41  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We describe two synthesis approaches to colloidal Cu3P nanocrystals using trioctylphosphine (TOP) as phosphorus precursor. One approach is based on the homogeneous nucleation of small Cu3P nanocrystals with hexagonal plate-like morphology and with sizes that can be tuned from 5 to 50 nm depending on the reaction time. In the other approach, metallic Cu nanocrystals are nucleated first and then they are progressively phosphorized to Cu3P. In this case, intermediate Janus-like dimeric nanoparticles can be isolated, which are made of two domains of different materials, Cu and Cu3P, sharing a flat epitaxial interface. The Janus-like nanoparticles can be transformed back to single-crystalline copper particles if they are annealed at high temperature under high vacuum conditions, which makes them an interesting source of phosphorus. The features of the Cu Cu3P Janus-like nanoparticles are compared with those of the Wiped microstructure discovered more than two decades ago in the rapidly quenched Cu Cu3P eutectic of the Cu P alloy, suggesting that other alloy/eutectic systems that display similar behavior might give origin to nanostructures with flat, epitaxial Interface between domains of two diverse materials. Finally, the electrochemical properties of the copper phosphide plates are studied, and they are found to be capable of undergoing lithiation/delithiation through a displacement reaction, while the Janus-like Cu Cu3P particles do not display an electrochemical behavior that would make them suitable for applications in batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000299368300006 Publication Date 2011-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 60 Open Access  
  Notes Approved Most recent IF: 13.942; 2012 IF: 12.062  
  Call Number UA @ lucian @ c:irua:99172 Serial 3039  
Permanent link to this record
 

 
Author Tempère, J.; Vermeyen, E.; Van Duppen, B. pdf  doi
openurl 
  Title Skyrmion rows, vortex rows, and phase slip lines in sheared multi-component condensates Type A1 Journal article
  Year (up) 2012 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 479 Issue Pages 61-64  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract When a condensate is sheared by imparting a velocity to a part of the condensate, phase singularities must appear at the interface between the region that is still at rest and the region that has acquired a velocity. For helium, Feynman argued that these phase singularies will arrange themselves in the form of a vortex row. BoseEinstein condensates of ultracold atomic gases differ from helium in that the healing length is generally much larger and is, in fact, tunable. Another difference is that multicomponent condensates can be created, where the two components forming the mixture are usually two different hyperfine states of the condensed atoms. These two components can be manipulated separately and can be interconverted. In this contribution, we investigate how these additional degrees of freedom, available in quantum gases, change what happens in sheared condensates. In particular, we consider skyrmion rows as an alternative to vortex rows, and we also consider phase slip lines filled with the second, unmoving component, in a condensate mixture. We show that depending on the ratios of the interaction strengths between the components, and depending on the shear velocity, skyrmion rows and phase slip lines can become lower in energy than vortex rows, and hence should be observable in quantum gases. Moreover, we find that the velocity field affects the stability region of the condensate with respect to phase separation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000308580600013 Publication Date 2012-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 1 Open Access  
  Notes ; This work was supported by the Research Foundation – Flanders (FWO) through Projects G.0356.06, G.0370.09 N, G.0180.09 N, and G.0365.08. E. V. acknowledges financial support in the form of a Ph.D. fellowship of the Research Foundation – Flanders (FWO). ; Approved Most recent IF: 1.404; 2012 IF: 0.718  
  Call Number UA @ lucian @ c:irua:100617 Serial 3040  
Permanent link to this record
 

 
Author Barbier, M.; Papp, G.; Peeters, F.M. doi  openurl
  Title Snake states and Klein tunneling in a graphene Hall bar with a pn-junction Type A1 Journal article
  Year (up) 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 16 Pages 163121-163121,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Hall (R-H) and bend (R-B) resistances of a graphene Hall bar structure containing a pn-junction are calculated when in the ballistic regime. The simulations are done using the billiard model. Introducing a pn-junction-dividing the Hall bar geometry in two regions-leads to two distinct regimes exhibiting very different physics: (1) both regions are of n-type and (2) one region is n-type and the other p-type. In regime (1), a “Hall plateau”-an enhancement of the resistance-appears for R-H. On the other hand, in regime (2), we found a negative R-H, which approaches zero for large B. The bend resistance is highly asymmetric in regime (2) and the resistance increases with increasing magnetic field B in one direction while it reduces to zero in the other direction. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704667]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000303128500064 Publication Date 2012-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 20 Open Access  
  Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:99129 Serial 3047  
Permanent link to this record
 

 
Author Wendelen, W.; Mueller, B.Y.; Autrique, D.; Rethfeld, B.; Bogaerts, A. pdf  doi
openurl 
  Title Space charge corrected electron emission from an aluminum surface under non-equilibrium conditions Type A1 Journal article
  Year (up) 2012 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 111 Issue 11 Pages 113110  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A theoretical study has been conducted of ultrashort pulsed laser induced electron emission from an aluminum surface. Electron emission fluxes retrieved from the commonly employed Fowler-DuBridge theory were compared to fluxes based on a laser-induced non-equilibrium electron distribution. As a result, the two-and three-photon photoelectron emission parameters for the Fowler-DuBridge theory have been approximated. We observe that at regimes where photoemission is important, laser-induced electron emission evolves in a more smooth manner than predicted by the Fowler-DuBridge theory. The importance of the actual electron distribution decreases at higher laser fluences, whereas the contribution of thermionic emission increases. Furthermore, the influence of a space charge effect on electron emission was evaluated by a one dimensional particle-in-cell model. Depending on the fluences, the space charge reduces the electron emission by several orders of magnitude. The influence of the electron emission flux profiles on the effective electron emission was found to be negligible. However, a non-equilibrium electron velocity distribution increases the effective electron emission significantly. Our results show that it is essential to consider the non-equilibrium electron distribution as well as the space charge effect for the description of laser-induced photoemission. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729071]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000305401400043 Publication Date 2012-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 30 Open Access  
  Notes Approved Most recent IF: 2.068; 2012 IF: 2.210  
  Call Number UA @ lucian @ c:irua:100300 Serial 3057  
Permanent link to this record
 

 
Author Fei, G.; Xue-Chun, L.; Zhao, S.-X.; You-Nian, W. pdf  doi
openurl 
  Title Spatial variation behaviors of argon inductively coupled plasma during discharge mode transition Type A1 Journal article
  Year (up) 2012 Publication Chinese physics B Abbreviated Journal Chinese Phys B  
  Volume 21 Issue 7 Pages 075203  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A Langmuir probe and an ICCD are employed to study the discharge mode transition in Ar inductively coupled plasma. Electron density and plasma emission intensity are measured during the E (capacitive discharge) to H (inductive discharge) mode transitions at different pressures. It is found that plasma exists with a low electron density and a weak emission intensity in the E mode, while it has a high electron density and a strong emission intensity in the H mode. Meanwhile, the plasma emission intensity spatial (2D image) profile is symmetrical in the H mode, but the 2D image is an asymmetric profile in the E mode. Moreover, the electron density and emission intensity jump up discontinuously at high pressure, but increase almost continuously at the E to H mode transition under low pressure.  
  Address  
  Corporate Author Thesis  
  Publisher IOP publishing Place of Publication Bristol Editor  
  Language Wos 000306558300058 Publication Date 2012-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1056; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.223 Times cited 11 Open Access  
  Notes Approved Most recent IF: 1.223; 2012 IF: 1.148  
  Call Number UA @ lucian @ c:irua:100843 Serial 3065  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. pdf  doi
openurl 
  Title Spatially dependent sensitivity of superconducting meanders as single-photon detectors Type A1 Journal article
  Year (up) 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 26 Pages 262603  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The photo-response of a thin current-carrying superconducting stripe with a 90 degrees turn is studied within the time-dependent Ginzburg-Landau theory. We show that the photon acting near the inner corner (where the current density is maximal due to the current crowding [J. R. Clem and K. K. Berggren, Phys. Rev. B 84, 174510 (2011)]) triggers the nucleation of superconducting vortices at currents much smaller than the expected critical one, but does not bring the system to a higher resistive state and thus remains undetected. The transition to the resistive state occurs only when the photon hits the stripe away from the corner due to there uniform current distribution across the sample, and dissipation is due to the nucleation of a kinematic vortex-antivortex pair near the photon incidence. We propose strategies to account for this problem in the measurements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731627]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000305831500057 Publication Date 2012-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 27 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI). G. R. B. acknowledges individual support from FWO-VI. ; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:100336 Serial 3066  
Permanent link to this record
 

 
Author Gotter, R.; Fratesi, G.; Bartynski, R.A.; da Pieve, F.; Offi, F.; Ruocco, A.; Ugenti, S.; Trioni, M.I.; Brivio, G.P.; Stefani, G. url  doi
openurl 
  Title Spin-dependent on-site electron correlations and localization in itinerant f erromagnets Type A1 Journal article
  Year (up) 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 109 Issue 12 Pages 126401  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Spin selectivity in angle-resolved Auger photoelectron coincidence spectroscopy (AR-APECS) is used to probe electron correlation in ferromagnetic thin films. In particular, exploiting the AR-APECS capability to discriminate Auger electron emission events characterized by valence hole pairs created either in the high or in the low total spin state, a strong correlation effect in the Fe M2,3VV Auger line shape (measured in coincidence with the Fe 3p photoelectrons) of Fe/Cu(001) thin films is detected and ascribed to interactions within the majority spin subband. Such an assignment follows from a close comparison of the experimental AR-APECS line shapes with the predictions of a model based on spin polarized density functional theory and the Cini-Sawatzky approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000308877000002 Publication Date 2012-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 9 Open Access  
  Notes Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ lucian @ c:irua:101841 Serial 3084  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: