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Single-file diffusion in periodic energy landscapes: The role of hydrodynamic interactions
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We report on the dynamical properties of interacting colloids confined to one dimension and subjected to
external periodic energy landscapes. We particularly focus on the influence of hydrodynamic interactions on
the mean-square displacement. Using Brownian dynamics simulations, we study colloidal systems with two
types of repulsive interparticle interactions, namely, Yukawa and superparamagnetic potentials. We find that
in the homogeneous case, hydrodynamic interactions lead to an enhancement of the particle mobility and the
mean-square displacement at long times scales as ¢, with « = % + € and € being a small correction. This
correction, however, becomes much more important in the presence of an external field, which breaks the
homogeneity of the particle distribution along the line and, therefore, promotes a richer dynamical scenario due
to the hydrodynamical coupling among particles. We provide here the complete dynamical scenario in terms of
the external potential parameters: amplitude and commensurability.
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I. INTRODUCTION

Colloidal suspensions are made of mesoscopic objects,
i.e., colloids, that, even in the absence of any kind of
external perturbation, exhibit interesting static and dynamical
properties [1]. Furthermore, when the suspension is confined, it
shows new features that are not found in the bulk. For instance,
in highly restricted geometries, such as quasi-one-dimensional
(q1D) and one-dimensional (1D) systems, the long-time
mean-square displacement (MSD) follows a subdiffusive non-
Fickian behavior, i.e., W(t) o t*, with ¢ < 1 [2-17].

Single-file diffusion (SFD) is the diffusion of particles
in q1D geometries where the particles exhibit random-walk
movements in channels so narrow that no mutual passage is
possible [18]. Rigorous theoretical results for SFD have been
derived in detail for the simple case of hard rods [19-22]. It
was predicted that the W(z), for times much longer than the
direct interaction time 7, i.e., the time that a particle needs to
move a significant fraction of the mean particle distance, is
given by the relation [23,24]

lim W(t) = FV/1, 1)
>t

where F is the so-called SFD mobility factor. Recently,
Kollmann [25] reported a theoretical study on the long-time
behavior of SFD that is valid for atomic and colloidal systems
as long as the interaction is the same and of finite range.
For overdamped systems, i.e., colloidal suspensions, Kollmann
also showed that the mobility factor can be expressed as [25]
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where p is the number particle density, o is the particle
diameter, and ¢, S(g), and D.(q) are the magnitude of the
wave vector, the static structure factor, and the short-time
collective-diffusion coefficient, respectively, in g space [1].
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According to Eq. (2), the long-time character of SFD is
thus determined by the short-time collective dynamics at long
wavelengths; ¢ — 0. In this limit, S(g) — S(0), where S(0) of
monodisperse systems corresponds to the normalized isother-
mal compressibility [1], which can be measured using either
experiments [4] or computer simulations [16]. Furthermore,
D.(q) can be rewritten as D.(q) = DoH(q)/S(g) [1], with
Dy and H(q) the free-particle diffusion coefficient and the
hydrodynamic factor, respectively. Using previous expressions
in Eq. (2), it now reads

pa— L [DoS@H(q)
= / .

Equations (1) and (3) draw a remarkably simple picture of 1D
diffusion at long times: the self-diffusion process, determined
by the width of the probability density, is proportional to
t'72 and the proportionality constant is determined by the
short-time individual particle dynamics, which is a function
of the interparticle interactions and density through S(g) and
the hydrodynamic coupling given by H(g). If one assumes
that hydrodynamic interactions (HIs) can be neglected, i.e.,
H(q) = 1, one finds that the mobility factor reduces to F? =
1 /DS

3)

q—0

SV Tr Lin et al. showed that this expression accurately

reproduces the mobility factor of hard rods, FHR [4]. Addi-
tionally, using hybrid molecular dynamics and the stochastic
rotations dynamics computer simulation method, Sané et al.
corroborated the /7 dependence of the MSD of hard rods
and found that the particle mobility factor, with the explicit
inclusion of HIs, is given by FHR [26].

Recent experiments on charged macroscopic particles
(millimetric steel balls) confined in circular channels [27]
and a linear channel of finite length [28] exhibited particle
diffusion slower than the ¢!'/? behavior. Delfau et al. [28]
experimentally identified three dynamical regimes, which have
recently been studied theoretically [29,30], and found that
the particle response to thermal fluctuations strongly depends
either on the particle position in the channel or on the local
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potential it experiences. The slower diffusion found in the
previous experiments can be explained in terms of the lack
of an overdamped dynamics in a system composed of steel
particles [31].

During the last decade, the influence of interparticle
interactions on the SFD of 1D colloidal suspensions has been
discussed extensively using experiments, simulations, and
theory [2-9,11,13-17,26-42]. However, as far as we know, the
effects of HIs on the SFD have seldom been studied [26]. Fur-
thermore, to the best of our knowledge, numerical simulations
for high densities or large potential strengths are not available
for the case in which HIs are explicitly included. Thus, a
natural question that arises is whether the SFD of colloidal
systems with different interaction ranges is affected by HIs.
This question has been experimentally addressed using 2D
colloidal systems composed of superparamagnetic colloidal
particles on the air-water interface and exposed to external
magnetic fields [43,44]. Authors reported experimental [43]
and computer simulation [44] evidence for an enhancement,
due to the HIs, of the self-diffusion function, D,(t), of colloids
at intermediate and long times.

Moreover, the action that both external fields and HIs
exert on colloidal particles results in interesting hydrodynamic
behaviors [45-48]. For example, the motion of a colloidal
particle in a strong optical trap reveals that at short time
scales resonances in the Brownian motion exist, in contrast to
overdamped systems [45]. Besides, the influence of external
fields in 1D colloidal systems has been studied [14,15,37,49]
without taking into account HIs or in dilute samples [50],
where HIs can be simply ignored. In addition, we have to
point out that the coupling of external fields with HIs gives
rise to a rich dynamical scenario that has not been studied in
detail yet.

Thus, the main goal of this work is to understand the
effects of HIs on the SFD of repulsively interacting colloidal
particles subjected to spatially periodic energy landscapes. We
provide the full dynamical description in terms of the external
potential parameters, namely, strength and commensurability.
We particularly demonstrate that the MSD at long times
undergoes subdiffusive behavior of the form W(r) = Fr“,
with o = % + € and € being a correction that, together with
the particle mobility factor, F, is sensitive to the potential
parameters and HIs.

After the present Introduction, the article is organized as
follows. In Sec. II we briefly explain the Brownian dynamics
(BD) simulation. We also introduce the interaction potentials
and the expressions of the physical quantities to be measured
during the simulations. In Sec. III we present a detailed
analysis and discussion of our results. Finally, the paper ends
with a section of concluding remarks.

II. BROWNIAN DYNAMICS SIMULATION AND
INTERACTION POTENTIALS

Diffusion in 1D channels is studied by means of BD com-
puter simulations. We apply the same simulation methodology
described in Refs. [14-16], but we now include HIs by using
the Rotne-Prager mobility tensor [51]. We typically consider
N particles, N ~ 400 with HIs and N ~ 1000 without HIs.
Particles move in a line of length L, which is linked to the
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number particle density according to the expression p = N/L;
L has to be chosen to guarantee the continuity of the external
potential on the borders of the line; this point is discussed
further below. Since particles are restricted to diffusing on
the line, we only use periodic boundary conditions in the x
direction in order to simulate an infinite system. The packing
fraction is ¢ = op and the mean particle distance is defined as
d = p~' [14-16].

The time step used in the BD simulations is Ar =2 X
10~ (p*Dy)~", with Dy = 6";; the free-particle diffusion
coefficient of particles of radius a immersed in a solvent of
viscosity 7, kg the Boltzmann constant, and 7 the absolute
temperature. The maximum time window reached in the
simulations is fmax = 500 (p2Dp) ", i.e., 2.5 x 10° time steps.
To facilitate the analysis and reduce the set of parameters in
our study, we use the following scaling factors: d for distance,
d?/ Dy for time, and kT for energy.

A. Brownian dynamics

We now point out some details of the BD. (i) The
mesoscopic size of the colloids (o ~ some nanometers to a
few micrometers) ensures the validity of Langevin dynamics
[51]. Solvent molecules are treated as variables having fast
dynamics and they are integrated out in the dynamics of col-
loids, whereas the latter follow slow dynamics and are treated
explicitly. (ii) We assume local thermodynamic equilibrium,
i.e., particle velocities obey fast dynamics, which implies that
the memory of velocities is lost much more rapidly than the
time scales of interest. We are thus interested in time scales
longer than the momentum relaxation time, ¢ > t,, = JW;
this is known as the diffusive temporal regime [52], with m
being the mass of the colloid.

We express the discrete position Langevin equation for
particle i as [52]

N
it + AN =10+ {8 pi[ — Ve, UEY) + F]
j=1

N

+ D Ve i p A+ &), 4)

j=1

which gives us the new position of particle i at time ¢ + At.
Equation (4) depends on the particle position at a previous
time, r; (¢), the net force acting on the particle and the stochastic
force due to the collisions with the solvent molecules. The net
force on particle i has two contributions: the force due to the
particle-particle interaction and U is the total pair potential
energy, and its coupling with the external field is F$*'. HIs
are also included through the Rotner-Prager mobility tensor
[51,52],

kgT kgT rer
i = Dol = L = I
’ 7 6rna Hij <8nnrij>< + r2 )

tj

I r®r
+kBT(a2/4m7rl-3j) (5 — ) , (5)
ij
where I'is a 3 x 3 unit matrix (in the 3D case) and the symbol
® denotes a dyadic product. One notes that this mobility
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tensor includes the lowest corrections of particle size over
the Oseen tensor description [51] and corresponds to the case
of an unbounded fluid. One thus should keep in mind that our
treatment of HIs is only approximate for particles which are
separated by a distance of the order of a. One notes that the
mobility tensor introduces long-range interactions and couples
distant particles. Equation (4) reduces to the standard Langevin
equation without HIs when p;; — Dol [14-16].

The stochastic term, £(¢), mimics the action of a thermal
heat bath and obeys the fluctuation-dissipation relation [51],

(&i(ADE;(AD)) = 2ui;At, (6)

which is numerically implemented by a Cholesky decomposi-
tion [52,53]. We deal with the dynamics of nondeformable
particles in an unbounded fluid. One can then check that
V., - uij = 0 for the Rotner-Prager mobility tensor. This is
different when we deal with a nonslip surface, where this
term is nonzero and therefore should be taken into account
explicitly [51,52].

B. Pair distribution function and mean-square displacement

To obtain structural information of the particle ordering
along the channel, we calculate the pair distribution function,
g(x). The function g(x) is the probability of finding a particle
at a distance x from a particle located at the origin. It can
be measurable in both experiments and computer simulations
according to the definition [14-16]

| N
g =— (> > 8(x—x;j)). (7
Np \i5 j>i
where the angular brackets (- - - ) denote a statistical (temporal

or ensemble) average.
The MSD is computed using the expression [14-16]

|
2 2

W) = (Ax(t)") = N ;([xz(t) xi(0)]7). 3
As we see further below, at short times the MSD behaves
as W,(t) « t, i.e., normal diffusion, whereas at long times it
shows a much slower power-law dependence. Then, for the
sake of discussion, at long times we fit our simulation data
according to the relation

W, (t) = Ft*. )

Thus, all the effects associated with the HI can be described
in terms of « and the particle mobility factor F.

During our simulations, the averages are taken over at least
10 different independent stochastic realizations to reduce the
statistical uncertainties. Error bars in the plots are smaller
than the symbol size. For the MSD, the associated errors are
statistically significant only at reduced times ¢ Dy/d*> > 350,
but still, there is a clear separation between the MSD curves,
and no overlap between error bars is observed during the time
window used in this work.

C. Interaction potentials

We consider a system of charged colloidal particles with ra-
dius a interacting via a repulsive screened Coulomb potential.
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For distances r < o = 2a, the interaction is hard-core, but for
r > o,two colloidal particles separated by a distance r interact
via the repulsive part of the DLVO pair potential [14,16,54,55],

Ka —Kr

]2e : (10)

r

e
14+ «a

Bu(r) = ngf)\'Bl:

where 8 = (kzT)~! is the inverse of the thermal energy, Ze is
the effective charge, Ag = e*/4mwekpT is the Bjerrum length
(in international units) [56], with e the proton charge and € the
solvent dielectric permittivity, and « is the Debye screening
parameter [54,55]. We have used the same set of parameters
as in Ref. [14]. In our study, the packing fraction, ¢ = op, is
a control parameter for Yukawa systems.

Additionally, paramagnetic colloids have served as excel-
lent models to investigate fundamental properties that are
related to the role of hydrodynamics, melting transitions,
order-disordered transitions, and elastic behavior in 2D crys-
tals [44,57]. In the experiments, an external and constant
magnetic field is applied in the perpendicular direction of the
air-water interface [43]. This leads to a tunable quasi-long-
range magnetic dipole-dipole interaction between colloids.
Such an interaction can be described by the potential [44,57]

r
Bu(r) = 3

7

(1)

where r is the reduced separation (in units of the mean particle
distance) between two colloids and I' = B(}2)x5;B*d 7 is
the mean interaction energy in units of the thermal energy, o
is the vacuum susceptibility, B is the applied magnetic field,
and y.f is the magnetic susceptibility of the particles. For
paramagnetic colloids the potential strength, I', is the relevant
parameter to be varied, which is equivalent to changing the
particle number density because an increase in I results in an
increase in collision rates between particles [12,44,57].

Among important experimental tools that help us to
understand complex fluids are optical traps created by the
interference of two laser beams [58]. In experiments, the
interaction between laser beams and the colloids induces
potentials with incredible precision, which permits one to
create precise and strong confinement and, as a consequence,
reliable control of the colloidal motion [59,60]. In recent years,
optical traps have also been implemented in colloidal systems
to induce an optical substrate [61], i.e., a periodic or random
energy landscape. Its effect on the dynamics and the structure
turned out to be fascinating [62,63].

The total external energy can then be written as
Uext = Z,N:  u™(r;), where u®*'(r;) is the external potential,
usually referred to as the substrate, acting on particle i, which
here is given by the expression [14,15,63]

27 x;
W) = Vo sin( ™ ) , (12)
ar
where V) is the amplitude or strength of the external potential
and a; is its periodicity. Now it is appropriate to define the
commensurability factor as [14,15]
d N
p=—=—, 13)

ar Ng,

where n,, is the number of sinusoidal potential periods within
the channel of length L. The commensurability factor is an
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FIG. 1. (Color online) Parameter space used in the present work.
The left and right vertical scales correspond to the Yukawa and
paramagnetic cases, respectively. Homogeneous cases correspond to
p = 0. Heterogeneous cases are those with p # 0. Inset: Values of
the substrate strength, Vj, for each value of the commensurability
factor, p.

important control parameter in our further analysis. In our
simulations, L is also chosen to guarantee the continuity of
the external potential on the borders of the channel.

Thus, a systematic variation of all parameters allows us
to investigate the diffusive behavior of particles along the
channel. We performed a detailed analysis and present only
representative results here.

III. RESULTS AND DISCUSSION

Our results cover a wide range of homogeneous and
heterogeneous systems, which are characterized by the set
of parameters displayed in Fig. 1. The former parameters are
represented by a commensurability factor p = 0, and the latter
are explicitly described in the inset, with ¢ = 0.43 for charged
colloids and I' = 4.67 for superparamagnetic particles.

A. Homogeneous systems: Vy = 0

It is well known that, in the absence of external fields, the
static properties of any complex fluid do not depend explicitly
on HIs. This simply means that in homogeneous systems,
HI effects always average to 0. This provides a benchmark
to test the BD methods that explicitly include HIs. We then
test the reliability of our simulation method by looking at
the structure of the colloids along the channel. In Fig. 2 we
show the pair distribution functions, g(x), of both Yukawa and
superparamagnetic particles. We explicitly provide results with
and without HIs and for different particle densities (low and
high) and potential parameters (weak and strong couplings).
We observe that g(x) exhibits the typical behavior found
in homogeneous fluids and recently discussed in Ref. [16].
More important is the fact that g(x) does not depend on HIs.
This confirms that even in 1D fluids, HIs do not affect the
equilibrium structure. It also guarantees that our BD method
with Hls at the level of the Rotner-Prager mobility tensor is
correctly implemented.
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x/d

FIG. 2. (Color online) Pair distribution functions of 1D col-
loidal homogeneous systems. Curves are shifted for clarity. Upper
curves represent superparamagnetic particles; lower curves, charged
(Yukawa) colloids. Results with HIs are indicated by symbols; results
without HIs, by lines.

We turn now to the MSD. We first study the case reported
by Sané et al., where a very short-range Weeks-Chandler-
Andersen potential is used to mimic the properties of a
hard-rod system [26]. Our simulation results are in good
agreement with those predicted by the authors [26] (data not
shown), although we do not consider the influence of walls
and find that the MSD at long times is given by Eq. (1)
and the mobility factor is completely described by FHR [26].
Thus, we might conclude that for overdamped systems with
hard-core-like interactions, the SFD is accurately determined
by the theoretical approximation proposed by Kollmann
[4,25].

The MSD of the systems discussed above are displayed in
Fig. 3. The physical behavior of the MSD, without HIs, has
also been studied in detail in Ref. [16], where it is shown that
Eq. (1) describes the long-time behavior of particle diffusion
along the channel and the mobility factor depends on the
particle-particle interaction [see also Eq. (2)] until it reaches
almost the same value at high densities (Yukawa) or strong
couplings (superparamagnetic). However, we also plot those
cases obtained with the explicit inclusion of Hls, which were
not considered in Ref. [16]. Interestingly, we observe that
for the time window indicated as “the region of interest,”
i.e., long times, MSDs with HIs are larger than MSDs in
the absence of HIs. The reason for this behavior can be
understood in terms of the long-range hydrodynamic coupling
between particles (see, e.g., Refs. [43,44]). This coupling also
enhances the diffusion due to collective diffusion induced and
mediated by HIs. Collective diffusion is a dynamic process
related to the cooperative movements of many particles that
lead and promote collective and faster diffusion of particles in
the line. We should note, interestingly, that similar collective
diffusion is observed at long times in finite-size systems,
i.e., circular channels, composed of particles interacting
with long-range potentials and where HIs are not present
[17,37].
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FIG. 3. (Color online) Mean-square displacements of 1D col-
loidal homogeneous systems: Yukawa particles and superparamag-
netic colloids. Results with HIs are indicated by stars; results without
HIs, by triangles. The time window where the dynamic factors, o and
F, are calculated is indicated between vertical lines.

To better understand the effects of HIs on the diffusion of
particles along the line, we also compute the exponent « and
the mobility factor F', where the MSD can be approximated,
with a high accuracy, by the power-law relation given by Eq.
(9). Both parameters are depicted in Fig. 4. In general, we find
that the values of the parameters predicted with the inclusion
of HIs are larger than those where HIs are disregarded, but
they behave in a similar way. In particular, « is 0.5 for the
case without HIs, in excellent agreement with the theoretical
predictions of Kollmann [25] [see Eq. (1)], and it takes the
value of 0.56 with HIs and independently of the interaction
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FIG. 4. (Color online) Dynamic factors, & and F', of 1D colloidal
homogeneous systems as a function of the density (Yukawa particles)
and coupling strengths (superparamagnetic colloids). Results with
HIs are indicated by squares; results without HIs, by triangles. They
were obtained by fitting the mean-square displacement to Eq. (9).
Lines are guides for the eye.
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potential between particles; the inclusion of HIs results in
an increase of about 12% in «, which means faster, but still
subdiffusive behavior. We also find that F decreases (in an
exponential-like fashion) with an increase in either the density
(Yukawa) or the interparticle coupling (superparamagnetic).
This phenomenon is explained in Ref. [16] as follows: as
the density (or potential strength) is increased, the colloids
are more localized and just oscillate around their equilibrium
positions; at this point, the highly packed fluid consists of a
quasi—regularly spaced sequence of particles where the relative
distance is represented to within a few percent by 1/p.

B. Heterogeneous systems: V, # 0

One-dimensional colloidal systems under periodic energy
landscapes show interesting structural and dynamic properties.
For example, it is observed that the competition between
both particle-particle and particle-field interactions gives rise
to a rich variety of adsorbate phases [14]. It has also been
demonstrated that the action of the external field leads to very
interesting phenomena, such as the localization of particles
and, under special conditions, to depinning-like effects, which
are observed in an enhancement of the mobility factor and
a loss of spatial correlation along the line [14,15]. Thus, the
study of particle diffusion in energy landscapes turns out to be
fascinating and, even more, complex when HIs are taken into
account explicitly.

Before we discuss our results in detail, we should point out
that in previous work two of us studied the MSD for p > 1
and found that its long-time behavior follows the power law
given by Eq. (1). Hence, in the present section we explore
the influence of the external sinusoidal potential [see Eq.
(12)] in an extended regime of commensurabilities, i.e., 0 <
p < 1, and its consequences on the dynamical properties of
particles moving in periodic energy landscapes. The potential
parameters are displayed in Fig. 1.

1. Yukawa particles

For the sake of discussion and for illustrative purposes, we
show in Fig. 5 the equilibrium positions of Yukawa particles
along the line. The energy landscape imposed by the external
field is depicted by sinusoidal curves, which are shifted in the
vertical direction for clarity. One can note that the variation
of the number of particles per potential minima is dictated by
the commensurability factor p. Regarding the structure, we do
not observe considerable differences when HIs are explicitly
included (data not shown). Thus, from here on, we focus our
attention on the dynamical properties.

We start by analyzing the behavior of «, which is displayed
in Fig. 6. Figure 6(a) shows cases with p < 1/2, and Fig. 6(b),
with 1/2 < p < 1. Inthe former cases, we observe that, except
for p=1/2, « = 0.5 and o ~ 0.6 without and with HIs,
respectively. This behavior is independent of the coupling
parameter V. This means that the particles experience faster
diffusion due to their hydrodynamical coupling with the
external potential. However, for p = 1/2, particles will diffuse
more slowly for Vy 2 1.8kzT, even without considering HIs
explicitly; this slow decay should be associated with the
distribution of particles along the sinusoidal field. This point
is discussed in more detail below.
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FIG. 5. (Color online) Circles: Equilibrium positions of Yukawa
particles along the line for different values of the commensurability
factor p (1/4, 1/3, 1/2, 2/3, 3/4, 1). Three values of the external
coupling strength, Vj, are displayed. Solid lines: Sinusoidal contribu-
tion of the external potential [see Eq. (12)]. Curves are shifted in the
vertical direction for clarity. The packing fraction is ¢ = 0.43 and the
parameters of the external field are indicated in the inset in Fig. 1.

For p > 1/2 [see Fig. 6(b)] the following interesting
features are noted: (i) for p = 2/3 and p = 3/4, diffusive
behavior occurs with the characteristic exponent o = 0.5,
i.e., normal SFD, when Hls are neglected; however, with
the inclusion of HIs the diffusive behavior is a ~ 0.6, but
it decreases with Vj, reaching a saturation value of o ~ 0.55
for p =2/3 and @ = 0.5 for p = 3/4. The latter is in good
agreement with Ref. [14], where the commensurability factor
p ~ 0.82 was investigated. (ii) p = 1 exhibits nonmonotonic
behavior, with a minimum located at Vi, ~ 0.4kgT . After this
point, the diffusion becomes faster, until it reaches a plateau
of about o ~ 0.55. However, contrary to the previous cases,
the inclusion of HIs led to a completely unexpected slower
diffusion when Vy 2 0.6kgT. This behavior is explained
below.

So far we have found that, except for p = 1, HIs promote
faster particle diffusion compared with the case without
HIs, but the exponent o depends on the coupling with the
external potential. Thus, to understand the dynamical scenario
discussed above, we now use simple physical arguments to
better appreciate the competition between the particle-particle
potential and the accommodation of the particles on the
potential minima along the line. The way in which particles
are accommodated in the channel depends on the particular
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FIG. 6. (Color online) Dynamic factors, o and F, that character-
ize the diffusion of Yukawa particles as a function of the coupling
strength, Vj, for different commensurability scenarios. The packing
fraction is ¢ = 0.43. We show results with (stars) and without (open
triangles) HIs. Lines are guides for the eye.

choice of p. For example, the difference between p = 1/4
and p = 3/4 resides in the fact that for the former there are
four particles per potential minimum, and for the latter, four
particles are distributed over three potential minima. This can
best be seen in Fig. 5.

Then, for p = 1/2 both F and « show decay starting at
about Vy/kpT = 2.0. This case corresponds to two particles
per minimum. Thus, from an energetic point of view, the
pair of particles is competing for their localization at the
minimum (see Fig. 5 for p = 1/2), but due to their repulsive
interaction [see Eq. (10)], they will never be in contact, and
as a consequence, they cannot be located at the minimum.
However, the pair behaves like an effective dimer whose center
of massis, on average, at the position of the potential minimum.
When Vj is small (<2kgT), due to thermal fluctuations, the
dimers overcome the well depth and also the energetic barrier
induced by the surrounding dimers, i.e., weak localization.
Thus, normal SFD is found without including HIs and @ = 0.6
with HIs. For larger Vy (>2kgT), the dimers turn out to
be more strongly localized around the minimum, with each
particle of the effective dimer trying to occupy the potential
minimum. This competition makes collective diffusion harder
and diffusion of the entire line becomes slower even in the
presence of hydrodynamical coupling.
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In contrast to p = 1/2, the dynamical behavior for the
case p =1 is more complex and less intuitive. First, this
case corresponds to one particle per minimum (see Fig. 5
for p = 1). Our results reveal three dynamical regimes: (i)
very weak coupling (Vy < 0.6k T), which shows a decrease in
diffusion; (ii) weak coupling (0.6kg T < Vi < 1.6kpT), which
exhibits an increase in diffusion; and (iii) strong coupling
(Vo > 1.6kpT), where an almost-normal SFD is observed. The
latter regime is consistent with the results presented in Ref.
[14]. In all the regimes, diffusion is subdiffusive, i.e., @ < 1.
However, it is important to stress that for very weak couplings,
as expected, HIs describe faster diffusion than in the situation
without HIs; in the limit V) < kgT, the value 0.6 is recovered
(data not shown). Nonetheless, at weak and strong couplings
the opposite scenario is found: hydrodynamical coupling
among particles leads to slower diffusion. This behavior is
completely unexpected, since for the other commensurability
factors HIs promoted faster diffusion. Thus, in these regimes
HIs give rise to anticooperative dynamics, which can be
associated with a possible increase in energy dissipation due
to friction with the solvent. Moreover, for p = 1 every colloid
could be, on average, located at the potential minimum. When
this condition is satisfied, a collective dynamics along the line
emerges and the diffusion is given by the normal SFD; this
scenario is observed at strong couplings, where the external
field forces the particles to occupy the potential minima.
This is the same mechanism that allows us to observe the
exponential decay of the correspondingly reduced mobility
factor displayed in the inset in Fig. 6 [16]. Unfortunately,
the complexity of the dynamics at weak couplings cannot be
entirely explained in terms of the competition to occupy the
potential minimum of the external field.

To visualize in a better way the nonmonotonic dependence
of the particle dynamics for p = 1, we show in Fig. 7 the
MSD for different values of V{, which are chosen according
to the dynamical regimes discussed above. At short times,

10 prrrrre

W(t)/d?

01§

0.01
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tD,/d

FIG. 7. (Color online) Mean-square displacements of 1D Yukawa
particles on a sinusoidal potential given by Eq. (12) with a commen-
surability factor p = 1 and different values of the external potential
strength Vj. Results with Hls are indicated by stars; results without
HlIs, by triangles.
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diffusion is normal and independent of both the interparticle
interaction and the external potential. At intermediate times the
dynamics becomes subdiffusive (in all cases), with an almost-
well-defined plateau, which indicates that the particle spends
a considerable time on the potential minimum. However,
the long-time behavior shows an unexpected nonmonotonic
variation that strongly depends on the external potential
strength Vj. This is the evidence of the nontrivial and complex
competition between particle-particle and particle-substrate
interactions that leads to the dynamical factors displayed in
Fig. 6.

The behavior of the reduced mobility factor, F*, is also
depicted in Fig. 6. The mobilities calculated with inclusion of
HIs for p # 1 are higher than those obtained without them, as
in the homogeneous case. Thus, Hls allow faster motion and
strong dynamic couplings, which lead to collective motions
that resultin an enhancement of particle mobility. For p = 1/4,
1/3,2/3,and 3/4 (see Fig. 5), F shows a slow increase with Vj,
being more noticeable for p = 3/4. The latter effect has been
investigated in Ref. [14]. The increase in the mobility factor,
even larger than in the homogeneous case (see insetin Fig. 4), is
due to the noise-assisted effect, in which thermal fluctuations
act cooperatively, leading to a higher particle mobility [14].
The enhancement of F' also reveals a depinning of the line
from its sinusoidal substrate. Thus, HIs contribute to this noise-
assisted effect due to the fact that they promote the diffusion
of particles and provide the opportunity for particles to be less
pinned to the external field.

2. Paramagnetic colloids

In order to answer the question whether the previous dy-
namical scenario depends on the kind of interaction potential,
we turn now to the case of superparamagnetic colloids, where
particles interact with a long-range potential given by Eq. (11).
In the following paragraphs we focus on the similarities and
differences among the dynamical properties exhibited by both
superparamagnetic and Yukawa particles. We should mention
that in previous Yukawa many-particle systems, the screening
parameter ¥ was chosen in the intermediate range such that
nearest-neighbor particles are correlated but the interparticle
interaction is completely screened for larger distances.

Due to the strong repulsion, paramagnetic colloids show
particle configurations along the line similar to those of
Yukawa particles (see Fig. 8). In this case, we consider that
the long-time behavior of the MSD scales as o t“ and can be
fitted according to Eq. (9). The external potential parameters
are depicted in Fig. 1 and the corresponding dynamic factors,
o and F, are displayed in Fig. 9.

For p < 1/2 we find that « is independent of the nature of
the repulsive interaction potential among the particles and the
inclusion of Hls promotes faster diffusion. For 1/2 < p < 1
we observe that « decays slowly when Vy 2> 1.0kpT; it
decreases, reaching a saturation value of ¢ ~ 0.54 for p = 2/3
and o ~ 0.52for p = 3/4. The latter is in good agreement with
Ref. [15] for p &~ 0.82. In the particular case where p = 1/2,
it decays at smaller values of V and its magnitude is also
smaller than that obtained for Yukawa particles. This means
that the dynamics of superparamagnetic particles is slightly
slower. This can also be associated with the accommodation
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FIG. 8. (Color online) Circles: Equilibrium positions of super-
paramagnetic colloids along the line for different values of the
commensurability factor p (1/4,1/3,1/2,2/3,3/4, 1). Three values
of the external coupling strength, Vj, are displayed. Solid lines:
Sinusoidal contribution of the external potential [see Eq. (12)]. Curves
are shifted in the vertical direction for clarity. The coupling parameter
I' = 4.67 and the parameters of the external field are indicated in the
inset in Fig. 1.

of the particles on the potential minima. From Fig. §, we
still see effective dimers around some minima, however,
we can also appreciate that some particles are located on
the maxima (in this case the probability is higher) due to the
stronger repulsion at short distances and the long-range spatial
correlation between particles. This increases the contribution
of the interparticle potential to the particle distribution along
the sinusoidal substrate. In fact, we can argue that particles
find meta-stable equilibrium positions that are not frequently
observed when the interaction potential is short-range and,
consequently, makes collective diffusion in the channel more
difficult.

For p =1 we have similar dynamical regimes: (i) very
weak coupling (Vy < 0.4kpT), which shows a decrease in
diffusion; (ii) weak coupling (0.4kp T < Vy < 2.0kpT), which
exhibits an increase in diffusion; and (iii) strong coupling
(Vo > 2.0kpT). The transition from weak to strong coupling
is located at larger Vy (>2kpT) than for Yukawa particles.
Interestingly, this strong-coupling dynamical region seems to
be, in both cases, almost independent of HIs and the kind of
interaction between particles (o ~ 0.55).

The insets in Fig. 9 show the behavior of F for different
values of p and Vj. Specifically, for p < 1/2and1/2 < p < 1

PHYSICAL REVIEW E 86, 031123 (2012)

06 | PIVIVEY . (@

05 g

04 k=% p=1/3

| < % p=1/20-2° ]
5 osf 0.20} ]
| 0.15} |
02 | ‘o 0.10} .
: 0.05} 1
01 F ool S XKe=12 ]
| 08.00571.015 2025 3.0 35 40
0.0 " 1 " 1 " " 1 . 0| B, 1 " " 1
06
05
0.4
s 03
02 | |
\ 0-05'<e«ﬁ%§£;;%%w%%
X ~ 0 ]
O el OO b
1 e < p=3/4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0]
a4 % p= V /K. T 1
0.0 | .p|1. oo, 4,08y
00 05 10 15 20 25 30 35 40
V kT

FIG. 9. (Color online) Dynamic factors, o and F, that charac-
terize the diffusion of superparamagnetic colloids as a function of
the coupling strength, Vj, for different commensurability scenarios.
The coupling parameter I' = 4.67. We show results with (stars) and
without (open triangles) HIs. Lines are guides for the eye.

there is an increase in the mobility factor, which is more
dramatic for Vy/kgT > 2.0 and similar to that for Yukawa
particles. For p = 1/2, the decrease in the mobility factor
for Vo/kpT > 2.0 is larger than the decay of F shown by
Yukawa particles [see inset in Fig. 9(a)]. Thus, superparamag-
netic colloids exhibit stronger noncooperative behavior than
Yukawa particles. Moreover, as in the case of Yukawa particles,
for p = 1 we find that F' decays exponentially [see inset in
Fig. 9(b)]. This confirms that the behavior of F imposed by
the external field is present regardless of the kind of repulsive
interaction potential between particles [16].

IV. CONCLUDING REMARKS

We have theoretically investigated the effects due to HIs
on the diffusive properties of repulsively interacting colloids
confined in a 1D channel and subjected to a periodic external
potential. We have considered two types of interparticle
interactions, namely, Yukawa and super-paramagnetic poten-
tials. We have performed an extensive study covering an
extended parameter space that includes weak and strong
couplings among particles and different values of the ex-
ternal potential strength. We found that, in general, the
complex dynamical scenarios of both systems are basically
the same because both potentials lead to a correlation of the
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particles at long interparticle separations. A different behavior
is thus expected with attractive and repulsive short-range
potentials.

We also found that HIs lead to an enhancement of the
particle mobility. In particular, the MSD exhibits subdiffusive
behavior at long times and it scales as a power law W(t) «
t*, with o < 1. In homogeneous systems, we found that o
deviates from the normal SFD and takes the value of o = 0.6.
When the external potential is switched on, particle diffusion
became sensitive to the strength and commensurability of
the sinusoidal potential with the interparticle spacing. Most
of the dynamical properties can be explained in terms of
collective diffusion, due to the long-range nature of the HIs,
and the competition between particle-particle and particle-
substrate interactions. The latter are responsible for the particle
accommodation on the minima of the external potential.
However, the case p = 1 is particular due to the fact that

PHYSICAL REVIEW E 86, 031123 (2012)

the system exhibits three dynamical regimes, which still need
to be explored in detail in order to understand the dynamical
anticooperative behavior imposed, in this case, by HlIs.

Last, but not least, we must point out that our simulations
have allowed us to extend the understanding of the SFD in
systems composed of interacting Brownian particles under 1D
modulated energy landscapes and the action of HIs. These
results could be corroborated in experiments with light force
fields.
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