toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Tsirlin, A.A.; Abakumov, A.M.; Ritter, C.; Henry, P.F.; Janson, O.; Rosner, H. url  doi
openurl 
  Title Short-range order of Br and three-dimensional magnetism in (CuBr)LaNb2O7 Type A1 Journal article
  Year (down) 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 21 Pages 214427  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present a comprehensive study of the crystal structure, magnetic structure, and microscopic magnetic model of (CuBr)LaNb2O7, the Br analog of the spin-gap quantum magnet (CuCl) LaNb2O7. Despite similar crystal structures and spin lattices, the magnetic behavior and even peculiarities of the atomic arrangement in the Cl and Br compounds are very different. The high- resolution x-ray and neutron data reveal a split position of Br atoms in (CuBr) LaNb2O7. This splitting originates from two possible configurations developed by [CuBr] zigzag ribbons. While the Br atoms are locally ordered in the ab plane, their arrangement along the c direction remains partially disordered. The predominant and energetically more favorable configuration features an additional doubling of the c lattice parameter that was not observed in (CuCl) LaNb2O7. (CuBr) LaNb2O7 undergoes long-range antiferromagnetic ordering at T-N = 32 K, which is nearly 70% of the leading exchange coupling J4 similar or equal to 48 K. The Br compound does not show any experimental signatures of low-dimensional magnetism because the underlying spin lattice is three-dimensional. The coupling along the c direction is comparable to the couplings in the ab plane, even though the shortest Cu-Cu distance along c (11.69 angstrom) is three times larger than nearest-neighbor distances in the ab plane (3.55 angstrom). The stripe antiferromagnetic long-range order featuring columns of parallel spins in the ab plane and antiparallel spins along c is verified experimentally and confirmed by the microscopic analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305557600002 Publication Date 2012-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:100289 Serial 2998  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: