toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Delabie, A.; Sioncke, S.; Rip, J.; Van Elshocht, S.; Pourtois, G.; Mueller, M.; Beckhoff, B.; Pierloot, K. doi  openurl
  Title Reaction mechanisms for atomic layer deposition of aluminum oxide on semiconductor substrates Type A1 Journal article
  Year (down) 2012 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume 30 Issue 1 Pages 01a127-01a127,10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, we have studied the TMA/H(2)O (TMA Al(CH(3))(3)) atomic layer deposition (ALD) of Al(2)O(3) on hydroxyl (OH) and thiol (SH) terminated semiconductor substrates. Total reflection x-ray fluorescence reveals a complex growth-per-cycle evolution during the early ALD reaction cycles. OH and SH terminated surfaces demonstrate growth inhibition from the second reaction cycle on. Theoretical calculations, based on density functional theory, are performed on cluster models to investigate the first TMA/H(2)O reaction cycle. Based on the theoretical results, we discuss possible mechanisms for the growth inhibition from the second reaction cycle on. In addition, our calculations show that AlCH(3) groups are hydrolyzed by a H(2)O molecule adsorbed on a neighboring Al atom, independent of the type of backbonds (Si-O, Ge-O, or Ge-S) of AlCH(3). The coordination of Al remains four-fold after the first TMA/H(2)O reaction cycle. (C) 2012 American Vacuum Society. [DOI: 10.1116/1.3664090]  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000298992800027 Publication Date 2011-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 41 Open Access  
  Notes Approved Most recent IF: 1.374; 2012 IF: 1.432  
  Call Number UA @ lucian @ c:irua:96253 Serial 2818  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: