toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Liang, Q.; Yang, D.; Xia, F.; Bai, H.; Peng, H.; Yu, R.; Yan, Y.; He, D.; Cao, S.; Van Tendeloo, G.; Li, G.; Zhang, Q.; Tang, X.; Wu, J. pdf  doi
openurl 
  Title Phase-transformation-induced giant deformation in thermoelectric Ag₂Se semiconductor Type A1 Journal article
  Year 2021 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume Issue Pages 2106938  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In most semiconducting metal chalcogenides, a large deformation is usually accompanied by a phase transformation, while the deformation mechanism remains largely unexplored. Herein, a phase-transformation-induced deformation in Ag2Se is investigated by in situ transmission electron microscopy, and a new ordered high-temperature phase (named as alpha '-Ag2Se) is identified. The Se-Se bonds are folded when the Ag+-ion vacancies are ordered and become stretched when these vacancies are disordered. Such a stretch/fold of the Se-Se bonds enables a fast and large deformation occurring during the phase transition. Meanwhile, the different Se-Se bonding states in alpha-, alpha '-, beta-Ag2Se phases lead to the formation of a large number of nanoslabs and the high concentration of dislocations at the interface, which flexibly accommodate the strain caused by the phase transformation. This study reveals the atomic mechanism of the deformation in Ag2Se inorganic semiconductors during the phase transition, which also provides inspiration for understanding the phase transition process in other functional materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000695142800001 Publication Date 2021-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:181527 Serial 6879  
Permanent link to this record
 

 
Author Penders, A.; Konstantinovic, M.J.; Van Renterghem, W.; Bosch, R.W.; Schryvers, D. url  doi
openurl 
  Title TEM investigation of SCC crack tips in high Si stainless steel tapered specimens Type A1 Journal article
  Year 2021 Publication Corrosion Engineering Science And Technology Abbreviated Journal Corros Eng Sci Techn  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The stress corrosion cracking (SCC) mechanism is investigated in high Si duplex stainless steel in a simulated PWR environment based on TEM analysis of FIB-extracted SCC crack tips. The microstructural investigation in the near vicinity of SCC crack tips illustrates a strain-rate dependence in SCC mechanisms. Detailed analysis of the crack tip morphology, that includes crack tip oxidation and surrounding deformation field, indicates the existence of an interplay between corrosion- and deformation-driven failure as a function of the strain rate. Slow strain-rate crack tips exhibit a narrow cleavage failure which can be linked to the film-induced failure mechanism, while rounded shaped crack tips for faster strain rates could be related to the strain-induced failure. As a result, two nominal strain-rate-dependent failure regimes dominated either by corrosion or deformation-driven cracking mechanisms can be distinguished.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000695956400001 Publication Date 2021-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-422x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.879 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 0.879  
  Call Number UA @ admin @ c:irua:181533 Serial 6892  
Permanent link to this record
 

 
Author Cunha, S.M.; de Costa, D.R.; Pereira Jr, J.M.; Costa Filho, R.N.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Band-gap formation and morphing in alpha-T-3 superlattices Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 104 Issue 11 Pages 115409  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrons in alpha-T-3 lattices behave as condensed-matter analogies of integer-spin Dirac fermions. The three atoms making up the unit cell bestow the energy spectrum with an additional energy band that is completely flat, providing unique electronic properties. The interatomic hopping term, alpha, is known to strongly affect the electronic spectrum of the two-dimensional (2D) lattice, allowing it to continuously morph from graphenelike responses to the behavior of fermions in a dice lattice. For pristine lattice structures the energy bands are gapless, but small deviations in the atomic equivalence of the three sublattices will introduce gaps in the spectrum. It is unknown how these affect transport and electronic properties such as the energy spectrum of superlattice minibands. Here we investigate the dependency of these properties on the parameter a accounting for different symmetry-breaking terms, and we show how it affects band-gap formation. Furthermore, we find that superlattices can force band gaps to close and shift in energy. Our results demonstrate that alpha-T-3 superlattices provide a versatile material for 2D band-gap engineering purposes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000696091600003 Publication Date 2021-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:181544 Serial 6972  
Permanent link to this record
 

 
Author Salzmann, B.B.V.; Vliem, J.F.; Maaskant, D.N.; Post, L.C.; Li, C.; Bals, S.; Vanmaekelbergh, D. url  doi
openurl 
  Title From CdSe nanoplatelets to quantum rings by thermochemical edge reconfiguration Type A1 Journal article
  Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 33 Issue 17 Pages 6853-6859  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The variation in the shape of colloidal semiconductor nanocrystals (NCs) remains intriguing. This interest goes beyond crystallography as the shape of the NC determines its energy levels and optoelectronic properties. While thermodynamic arguments point to a few or just a single shape(s), terminated by the most stable crystal facets, a remarkable variation in NC shape has been reported for many different compounds. For instance, for the well-studied case of CdSe, close-to-spherical quantum dots, rods, two-dimensional nanoplatelets, and quantum rings have been reported. Here, we report how two-dimensional CdSe nanoplatelets reshape into quantum rings. We monitor the reshaping in real time by combining atomically resolved structural characterization with optical absorption and photoluminescence spectroscopy. We observe that CdSe units leave the vertical sides of the edges and recrystallize on the top and bottom edges of the nanoplatelets, resulting in a thickening of the rims. The formation of a central hole, rendering the shape into a ring, only occurs at a more elevated temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000696553600024 Publication Date 2021-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 7 Open Access OpenAccess  
  Notes Hans Meeldijk is kindly acknowledged for helping with electron microscopy at Utrecht University. B.B.V.S. and D.V. acknowledge the Dutch NWO for financial support via the TOP-ECHO grant no. 715.016.002. D.V. acknowledges financial support from the European ERC Council, ERC Advanced grant 692691 “First Step”. D.V. and L.C.P. acknowledge the Dutch NWO for financial support via the TOP-ECHO grant nr. 718.015.002. S.B acknowledges financial support from the European ERC Council, ERC Consolidator grant 815128. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 731019 (EUSMI). Realnano; sygmaSB Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:181550 Serial 6839  
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Cordeiro, R.M.; Bogaerts, A. pdf  url
doi  openurl
  Title Unraveling the permeation of reactive species across nitrated membranes by computer simulations Type A1 Journal Article;Reactive oxygen and nitrogen species
  Year 2021 Publication Computers In Biology And Medicine Abbreviated Journal Comput Biol Med  
  Volume 136 Issue Pages 104768  
  Keywords A1 Journal Article;Reactive oxygen and nitrogen species; Nitro-oxidative stress; Molecular dynamics simulations; Nitrated membranes; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Reactive oxygen and nitrogen species (RONS) are involved in many biochemical processes, including nitrooxidative stress that causes cancer cell death, observed in cancer therapies such as photodynamic therapy and cold atmospheric plasma. However, their mechanisms of action and selectivity still remain elusive due to the complexity of biological cells. For example, it is not well known how RONS generated by cancer therapies permeate the cell membrane to cause nitro-oxidative damage. There are many studies dedicated to the perme­ation of RONS across native and oxidized membranes, but not across nitrated membranes, another lipid product also generated during nitro-oxidative stress. Herein, we performed molecular dynamics (MD) simulations to calculate the free energy barrier of RONS permeation across nitrated membranes. Our results show that hy­drophilic RONS, such as hydroperoxyl radical (HO2) and peroxynitrous acid (ONOOH), have relatively low barriers compared to hydrogen peroxide (H2O2) and hydroxyl radical (HO), and are more prone to permeate the membrane than for the native or peroxidized membranes, and similar to aldehyde-oxidized membranes. Hy­drophobic RONS like molecular oxygen (O2), nitrogen dioxide (NO2) and nitric oxide (NO) even have insignif­icant barriers for permeation. Compared to native and peroxidized membranes, nitrated membranes are more permeable, suggesting that we must not only consider oxidized membranes during nitro-oxidative stress, but also nitrated membranes, and their role in cancer therapies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000696938800003 Publication Date 2021-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4825 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.836 Times cited Open Access OpenAccess  
  Notes We thank University of Antwerp and Coordination of Superior Level Staff Improvement (CAPES, Brazil) for the scholarship granted and for providing the computational resources needed for completion of this work. M. Yusupov acknowledges the Flanders Research Foundation (grant 1200219N) for financial support. Approved Most recent IF: 1.836  
  Call Number PLASMANT @ plasmant @c:irua:181082 Serial 6807  
Permanent link to this record
 

 
Author Renero-Lecuna, C.; Herrero, A.; Jimenez de Aberasturi, D.; Martínez-Flórez, M.; Valiente, R.; Mychinko, M.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Nd3+-Doped Lanthanum Oxychloride Nanocrystals as Nanothermometers Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 36 Pages 19887-19896  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The development of optical nanothermometers operating in the near-infrared (NIR) is of high relevance toward temperature measurements in biological systems. We propose herein the use of Nd3+-doped lanthanum oxychloride nanocrystals as an efficient system with intense photoluminescence under NIR irradiation in the first biological transparency window and emission in the second biological window with excellent emission stability over time under 808 nm excitation, regardless of Nd3+ concentration, which can be considered as a particular strength of our system. Additionally, surface passivation through overgrowth of an inert LaOCl shell around optically active LaOCl/Nd3+ cores was found to further enhance the photoluminescence intensity and also the lifetime of the 1066 nm, 4F3/2 to 4I11/2 transition, without affecting its (ratiometric) sensitivity toward temperature changes. As required for biological applications, we show that the obtained (initially hydrophobic) nanocrystals can be readily transferred into aqueous solvents with high, long-term stability, through either ligand exchange or encapsulation with an amphiphilic polymer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000697335100031 Publication Date 2021-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 9 Open Access OpenAccess  
  Notes The authors thank the financial support of the European Research Council (ERC-AdG-2017 787510, ERC-CoG-2019 815128) and of the European Commission (EUSMI, Grant 731019). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency−Grant MDM-2017−0720. Realnano; sygmaSB Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @c:irua:181671 Serial 6831  
Permanent link to this record
 

 
Author Sozen, Y.; Yagmurcukardes, M.; Sahin, H. doi  openurl
  Title Vibrational and optical identification of GeO₂ and GeO single layers : a first-principles study Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 37 Pages 21307-21315  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In the present work, the identification of two hexagonal phases of germanium oxides (namely GeO2 and GeO) through the vibrational and optical properties is reported using density functional theory calculations. While structural optimizations show that single-layer GeO2 and GeO crystallize in 1T and buckled phases, phonon band dispersions reveal the dynamical stability of each structure. First-order off-resonant Raman spectral predictions demonstrate that each free-standing single-layer possesses characteristic peaks that are representative for the identification of the germanium oxide phase. On the other hand, electronic band dispersion analysis shows the insulating and large-gap semiconducting nature of single-layer GeO2 and GeO, respectively. Moreover, optical absorption, reflectance, and transmittance spectra obtained by means of G(0)W(0)-BSE calculations reveal the existence of tightly bound excitons in each phase, displaying strong optical absorption. Furthermore, the excitonic gaps are found to be at deep UV and visible portions of the spectrum, for GeO2 and GeO crystals, with energies of 6.24 and 3.10 eV, respectively. In addition, at the prominent excitonic resonances, single-layers display high reflectivity with a zero transmittance, which is another indication of the strong light-matter interaction inside the crystal medium.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000697364300001 Publication Date 2021-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:181571 Serial 7044  
Permanent link to this record
 

 
Author Kerckhof, F.-M.; Sakarika, M.; Van Giel, M.; Muys, M.; Vermeir, P.; De Vrieze, J.; Vlaeminck, S.E.; Rabaey, K.; Boon, N. url  doi
openurl 
  Title From biogas and hydrogen to microbial protein through co-cultivation of methane and hydrogen oxidizing bacteria Type A1 Journal article
  Year 2021 Publication Frontiers in Bioengineering and Biotechnology Abbreviated Journal  
  Volume 9 Issue Pages 733753  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Increasing efforts are directed towards the development of sustainable alternative protein sources among which microbial protein (MP) is one of the most promising. Especially when waste streams are used as substrates, the case for MP could become environmentally favorable. The risks of using organic waste streams for MP production–the presence of pathogens or toxicants–can be mitigated by their anaerobic digestion and subsequent aerobic assimilation of the (filter-sterilized) biogas. Even though methane and hydrogen oxidizing bacteria (MOB and HOB) have been intensively studied for MP production, the potential benefits of their co-cultivation remain elusive. Here, we isolated a diverse group of novel HOB (that were capable of autotrophic metabolism), and co-cultured them with a defined set of MOB, which could be grown on a mixture of biogas and H2/O2. The combination of MOB and HOB, apart from the CH4 and CO2 contained in biogas, can also enable the valorization of the CO2 that results from the oxidation of methane by the MOB. Different MOB and HOB combinations were grown in serum vials to identify the best-performing ones. We observed synergistic effects on growth for several combinations, and in all combinations a co-culture consisting out of both HOB and MOB could be maintained during five days of cultivation. Relative to the axenic growth, five out of the ten co-cultures exhibited 1.1–3.8 times higher protein concentration and two combinations presented 2.4–6.1 times higher essential amino acid content. The MP produced in this study generally contained lower amounts of the essential amino acids histidine, lysine and threonine, compared to tofu and fishmeal. The most promising combination in terms of protein concentration and essential amino acid profile was Methyloparacoccus murrelli LMG 27482 with Cupriavidus necator LMG 1201. Microbial protein from M. murrelli and C. necator requires 27–67% less quantity than chicken, whole egg and tofu, while it only requires 15% more quantity than the amino acid-dense soybean to cover the needs of an average adult. In conclusion, while limitations still exist, the co-cultivation of MOB and HOB creates an alternative route for MP production leveraging safe and sustainably-produced gaseous substrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000697897900001 Publication Date 2021-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-4185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180591 Serial 7985  
Permanent link to this record
 

 
Author Wang, F.; Wang, C.; Chaves, A.; Song, C.; Zhang, G.; Huang, S.; Lei, Y.; Xing, Q.; Mu, L.; Xie, Y.; Yan, H. doi  openurl
  Title Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 12 Issue 1 Pages 5628  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Hyperbolic polaritons exhibit large photonic density of states and can be collimated in certain propagation directions. The majority of hyperbolic polaritons are sustained in man-made metamaterials. However, natural-occurring hyperbolic materials also exist. Particularly, natural in-plane hyperbolic polaritons in layered materials have been demonstrated in MoO3 and WTe2, which are based on phonon and plasmon resonances respectively. Here, by determining the anisotropic optical conductivity (dielectric function) through optical spectroscopy, we predict that monolayer black phosphorus naturally hosts hyperbolic exciton-polaritons due to the pronounced in-plane anisotropy and strong exciton resonances. We simultaneously observe a strong and sharp ground state exciton peak and weaker excited states in high quality monolayer samples in the reflection spectrum, which enables us to determine the exciton binding energy of similar to 452 meV. Our work provides another appealing platform for the in-plane natural hyperbolic polaritons, which is based on excitons rather than phonons or plasmons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000698984500003 Publication Date 2021-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:191688 Serial 8404  
Permanent link to this record
 

 
Author Barbiellini, B.; Kuriplach, J.; Saniz, R. url  doi
openurl 
  Title Study of rechargeable batteries using advanced spectroscopic and computational techniques Type Editorial
  Year 2021 Publication Condensed Matter Abbreviated Journal  
  Volume 6 Issue 3 Pages 26  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract Improving the efficiency and longevity of energy storage systems based on Li- and Na-ion rechargeable batteries presents a major challenge. The main problems are essentially capacity loss and limited cyclability. These effects are due to a hierarchy of factors spanning various length and time scales, interconnected in a complex manner. As a consequence, and in spite of several decades of research, a proper understanding of the ageing process has remained somewhat elusive. In recent years, however, combinations of advanced spectroscopy techniques and first-principles simulations have been applied with success to tackle this problem. In this Special Issue, we are pleased to present a selection of articles that, by precisely applying these methods, unravel key aspects of the reduction-oxidation reaction and intercalation processes. Furthermore, the approaches presented provide improvements to standard diagnostic and characterisation techniques, enabling the detection of possible Li-ion flow bottlenecks causing the degradation of capacity and cyclability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000699368400001 Publication Date 2021-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2410-3896 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181630 Serial 6890  
Permanent link to this record
 

 
Author Van Winckel, T.; Cools, J.; Vlaeminck, S.E.; Joos, P.; Van Meenen, E.; Borregán-Ochando, E.; Van Den Steen, K.; Geerts, R.; Vandermoere, F.; Blust, R. pdf  url
doi  openurl
  Title Towards harmonization of water quality management : a comparison of chemical drinking water and surface water quality standards around the globe Type A1 Journal article
  Year 2021 Publication Journal Of Environmental Management Abbreviated Journal J Environ Manage  
  Volume 298 Issue Pages 113447-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change  
  Abstract Water quality standards (WQS) set the legal definition for safe and desirable water. WQS impose regulatory concentration limits to act as a jurisdiction-specific legislative risk-management tool. Despite its importance in shaping a universal definition of safe, clean water, little information exists with respect to (dis)similarity of chemical WQS worldwide. Therefore, this paper compares chemical WQS for drinking and surface water matrices in eight jurisdictions representing a global geographic distribution: Australia, Brazil, Canada, China, the European Union, the region of Flanders in Belgium, the United States of America, and South Africa. The World Health Organization's list is used as a reference for drinking water standards. Sørensen–Dice indices (SDI) showed little qualitative similarity in the compounds that are regulated in drinking water (median SDI = 40%) and surface water (median SDI = 33%), indicating that the heterogeneity within a matrix is substantial at the level of the standard. Quantitative similarity for matching standards was higher than the qualitative per Kendall correlation (median = 0.73 and 0.58 for drinking water and surface water respectively), yet variance observed within standards remained inexplicably high for organic compounds. Variations in WQS were more pronounced for organic compounds. Most differences cannot be easily explained from a toxicological or risk-based point-of-view. Historical development, ease of measurement, and (toxicological) knowledge gaps on the risk of a vast number of organic compounds are theorized to be the drivers. Therefore, this study argues for a more tailored, risk-based approach in which standards incorporated into water safety plans are dynamically set for compounds that are persistent and could pose a risk for human health and/or aquatic ecosystems. Global variations in WQS should therefore not necessarily be avoided but rather globally harmonized with enough flexibility to ensure a global, up-to-date definition of safe and desirable water everywhere.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000700577400005 Publication Date 2021-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.01 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.01  
  Call Number UA @ admin @ c:irua:180765 Serial 8681  
Permanent link to this record
 

 
Author Peeters, M.; Compernolle, T.; Van Passel, S. pdf  doi
openurl 
  Title Leasing out unused meeting room capacity to reduce future office space needs : a case study of The Hague, Netherlands Type A1 Journal article
  Year 2021 Publication Journal of building engineering Abbreviated Journal  
  Volume 44 Issue Pages 102953  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Economics; Engineering Management (ENM)  
  Abstract Meeting rooms are reserved 30% of working hours but only used for 20% of that time. By implementing a strategy where the available capacity is leased to the wider market rather than just the building users, there is a positive impact on the economic, environmental, and social factors of the building and its surroundings. This study uses the building 'The Globe' in The Hague as a case study, and then projects the results to the entire city. In case of The Globe, implementing a lease out strategy achieves a reduction of 36% of the annual rent of the meeting rooms to the building's tenant. The owner benefits from a revenue increase of 12.5%, with the same operational expenses (except the reservation system), leading to a proportional higher valuation of the building. Annual energy consumption may be lowered by 6.2%. This study contributes to the literature by considering the total benefits that could be obtained by more efficient use of office space that is currently underused. The application of technology generates added value for economic, environmental, and social factors. These factors are important in real estate as they (among others) have a direct link to the Environmental, Social and Governance (ESG) analysis that investors make before proceeding with an investment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000701698300003 Publication Date 2021-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-7102 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182469 Serial 6936  
Permanent link to this record
 

 
Author Parrilla, M.; Joosten, F.; De Wael, K. pdf  url
doi  openurl
  Title Enhanced electrochemical detection of illicit drugs in oral fluid by the use of surfactant-mediated solution Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 348 Issue Pages 130659  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drug consumption is a worldwide worrying phenomenon that troubles modern society. For this reason, law enforcement agencies (LEAs) are placing tremendous efforts into tackling the spreading of such substances among our community. New sensing technologies can facilitate the LEAs duties by providing portable and affordable analytical devices. Herein, we present for the first time a sensitive and low-cost electrochemical method, i.e. square-wave adsorptive stripping voltammetry on carbon screen-printed electrodes (SPE), for the detection of five illicit drugs (i.e. cocaine, heroin, 3,4-methylenedioxymethamphetamine, 4-chloro-alpha-pyrrolidinovalerophenone, and ketamine) in oral fluid by the aid of a surfactant. Particularly, the surfactant is adsorbed at the carbon electrode’s surface and yields the adsorption of illicit drug molecules, allowing for an enhanced electrochemical signal in comparison to surfactant-free media. First, the surfactant-mediated behavior is deeply explored at the SPE by cyclic voltammetry, electrochemical impedance spectroscopy, and Fourier-transform infrared spectroscopy. Subsequently, the electrochemical behavior of the five illicit drugs is studied and optimized to render optimal analytical performance. Accordingly, the analytical system exhibited a wide linear concentration range from 1 to 30 µM with sub-micromolar limits of detection and high sensitivity. This performance is similar to other reported electrochemical sensors, but with the advantage of using an unmodified SPE, thus avoiding costly and complex functionalization of the SPE. Finally, the methodology was evaluated in diluted oral fluid samples spiked with illicit drugs. Overall, this work describes a simple, rapid, portable, and sensitive method for the detection of illicit drugs aiming to provide oral fluid testing opportunities to LEAs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000701915600005 Publication Date 2021-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:181307 Serial 7912  
Permanent link to this record
 

 
Author Chen, Q.; Guo, A.-M.; Liu, J.; Peeters, F.M.; Sun, Q.-F. url  doi
openurl 
  Title Topological phase transitions and Majorana zero modes in DNA double helix coupled to s-wave superconductors Type A1 Journal article
  Year 2021 Publication New Journal Of Physics Abbreviated Journal New J Phys  
  Volume 23 Issue 9 Pages 093047  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Topological properties of a double-stranded DNA (dsDNA) proximity-coupled by an s-wave superconductor are investigated, in which the energy spectra and the differential conductance are calculated within the framework of tight-binding approximation. Our results indicate that this dsDNA-superconductor system hosts Majorana zero modes (MZMs) when the Zeeman field is perpendicular to the helix axis, whereas no MZM could be observed when the Zeeman field is parallel to the helix axis, in sharp contrast to previous studies on nanowires including single-stranded DNA. In particular, two topological phase transitions could take place in the dsDNA-superconductor system by changing the Zeeman field, one from a topological trivial phase to a topological nontrivial phase with one pair of MZMs in small Zeeman field regime, and the other from a phase with one pair of MZMs to a phase with two pairs of MZMs by further increasing the Zeeman field. In the presence of a gate field normal to the helix axis, the topological nontrivial phase with two pairs of MZMs can transform into the phase with one pair of MZMs. The topological phase with one pair of MZMs is more stable and robust against Anderson disorder.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000702122000001 Publication Date 2021-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 4 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.786  
  Call Number UA @ admin @ c:irua:182597 Serial 7033  
Permanent link to this record
 

 
Author Gomes, N.O.; Mendonça, C.D.; Machado, S.A.S.; Oliveira, O.N., Jr.; Raymundo-Pereira, P.A. pdf  doi
openurl 
  Title Flexible and integrated dual carbon sensor for multiplexed detection of nonylphenol and paroxetine in tap water samples Type A1 Journal article
  Year 2021 Publication Microchimica Acta Abbreviated Journal Microchim Acta  
  Volume 188 Issue 10 Pages 359  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Multiplex detection of emerging pollutants is essential to improve quality control of water treatment plants, which requires portable systems capable of real-time monitoring. In this paper we describe a flexible, dual electrochemical sensing device that detects nonylphenol and paroxetine in tap water samples. The platform contains two voltammetric sensors, with different working electrodes that were either pretreated or functionalized. Each working electrode was judiciously tailored to cover the concentration range of interest for nonylphenol and paroxetine, and square wave voltammetry was used for detection. An electrochemical pretreatment with sulfuric acid on the printed electrode enabled a selective detection of nonylphenol in 1.0-10 x 10(-6) mol L-1 range with a limit of detection of 8.0 x 10(-7) mol L-1. Paroxetine was detected in the same range with a limit of detection of 6.7 x 10(-7) mol L-1 using the printed electrode coated with a layer of carbon spherical shells. Simultaneous detection of the two analytes was achieved in tap water samples within 1 min, with no fouling and no interference effects. The long-term monitoring capability of the dual sensor was demonstrated in phosphate buffer for 45 days. This performance is statistically equivalent to that of high-performance liquid chromatography (HPLC) for water analysis. The dual-sensor platform is generic and may be extended to other water pollutants and clinical biomarkers in real-time monitoring of the environment and health conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000702722700001 Publication Date 2021-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-3672; 1436-5073 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.58 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.58  
  Call Number UA @ admin @ c:irua:182649 Serial 7973  
Permanent link to this record
 

 
Author Dong, H.M.; Tao, Z.H.; Duan, Y.F.; Li, L.L.; Huang, F.; Peeters, F.M. url  doi
openurl 
  Title Substrate dependent terahertz magneto-optical properties of monolayer WS2 Type A1 Journal article
  Year 2021 Publication Optics Letters Abbreviated Journal Opt Lett  
  Volume 46 Issue 19 Pages 4892-4895  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Terahertz (THz) magneto-optical (MO) properties of monolayer (ML) tungsten disulfide (WS2), placed on different substrates and subjected to external magnetic fields, are studied using THz time-domain spectroscopy (TDS). We find that the THz MO conductivity exhibits a nearly linear response in a weak magnetic field, while a distinctly nonlinear/oscillating behavior is found in strong magnetic fields owing to strong substrate-induced random impurity scattering and interactions. The THz MO response of ML WS2 depends sensitively on the choice of the substrates, which we trace back to electronic localization and the impact of the substrates on the Landau level (LL) spectrum. Our results provide an in-depth understanding of the THz MO properties of ML WS2/substrate systems, especially the effect of substrates, which can be utilized to realize atomically thin THz MO nano-devices. (C) 2021 Optical Society of America  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000702746400048 Publication Date 2021-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-9592 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.416 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.416  
  Call Number UA @ admin @ c:irua:182526 Serial 7023  
Permanent link to this record
 

 
Author Admasu, W.F.; Van Passel, S.; Nyssen, J.; Minale, A.S.; Tsegaye, E.A. pdf  doi
openurl 
  Title Eliciting farmers' preferences and willingness to pay for land use attributes in Northwest Ethiopia : a discrete choice experiment study Type A1 Journal article
  Year 2021 Publication Land Use Policy Abbreviated Journal Land Use Policy  
  Volume 109 Issue Pages  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract This study investigates farmers' preferences and willingness to pay for cropland attributes in Bahir Dar, north-west Ethiopia. A choice experiment is used to elicit farmers' preferences between different land use attributes, including a monetary attribute. The study was conducted in the croplands that are threatened by land expro-priation for urban expansion. A survey was undertaken with 144 farmers in four rural kebeles surrounding the city (Addis Alem, Weramit, Wereb and Zenzelima). In the survey, respondents were provided with hypothetical land purchasing decisions, with three alternatives (i.e., two hypothetical parcels and an opt-out option). A choice experiment was undertaken to measure farmers' interest in different types of croplands, which varies with respect to irrigability, number of trees per ha, soil erosion resistance and water holding capacity of the cropland. Estimation of two mixed logit models was carried out. The estimation results show that, although the farmers did not show strong preferences for each attribute of the cropland, many farmers in the area showed interest in the proposed alternative croplands. Farmers show more interest for the land that is irrigable, gentle slope and with medium water holding capacity. The results also indicate that farmers assign highest marginal willingness to pay (MWTP) (79.01 ETB per square meter) for irrigated land, followed by medium water holding capacity with MWTP of 52.13 ETB per square meter. We believe that the results of this study would help land use policy and decision makers in the study area to consider the various attributes of cropland in land use planning, including land expropriation programs, which assures the sustainability of ecosystem services.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000702844000009 Publication Date 2021-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-8377 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.089 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.089  
  Call Number UA @ admin @ c:irua:182489 Serial 6921  
Permanent link to this record
 

 
Author Herzog, M.J.; Gauquelin, N.; Esken, D.; Verbeeck, J.; Janek, J. url  doi
openurl 
  Title Increased Performance Improvement of Lithium-Ion Batteries by Dry Powder Coating of High-Nickel NMC with Nanostructured Fumed Ternary Lithium Metal Oxides Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.  
  Volume 4 Issue 9 Pages 8832-8848  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Dry powder coating is an effective approach to protect the surfaces of layered cathode active materials (CAMs) in lithium-ion batteries. Previous investigations indicate an incorporation of lithium ions in fumed Al2O3, ZrO2, and TiO2 coatings on LiNi0.7Mn0.15Co0.15O2 during cycling, improving the cycling performance. Here, this coating approach is transferred for the first time to fumed ternary LiAlO2, Li4Zr3O8, and Li4Ti5O12 and directly compared with their lithium-free equivalents. All materials could be processed equally and their nanostructured small aggregates accumulate on the CAM surfaces to quite homogeneous coating layers with a certain porosity. The LiNixMnyCozO2 (NMC) coated with lithium-containing materials shows an enhanced improvement in overall capacity, capacity retention, rate performance, and polarization behavior during cycling, compared to their lithium-free analogues. The highest rate performance was achieved with the fumed ZrO2 coating, while the best long-term cycling stability with the highest absolute capacity was obtained for the fumed LiAlO2-coated NMC. The optimal coating agent for NMC to achieve a balanced system is fumed Li4Ti5O12, providing a good compromise between high rate capability and good capacity retention. The coating agents prevent CAM particle cracking and degradation in the order LiAlO2 ≈ Al2O3 > Li4Ti5O12 > Li4Zr3O8 > ZrO2 > TiO2. A schematic model for the protection and electrochemical performance enhancement of high-nickel NMC with fumed metal oxide coatings is sketched. It becomes apparent that physical and chemical characteristics of the coating significantly influence the performance of NMC. A high degree of coating-layer porosity is favorable for the rate capability, while a high coverage of the surface, especially in vulnerable grain boundaries, enhances the long-term cycling stability and improves the cracking behavior of NMCs. While zirconium-containing coatings possess the best chemical properties for high rate performances, aluminum-containing coatings feature a superior chemical nature to protect high-nickel NMCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000703338600018 Publication Date 2021-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 15 Open Access OpenAccess  
  Notes For his support in scanning electron microscopy analysis, the authors thank Erik Peldszus. N. G. and J. V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and from the Flemish Research Fund (FWO) project G0F1320N. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:183949 Serial 6823  
Permanent link to this record
 

 
Author Choukroun, D.; Pacquets, L.; Li, C.; Hoekx, S.; Arnouts, S.; Baert, K.; Hauffman, T.; Bals, S.; Breugelmans, T. pdf  url
doi  openurl
  Title Mapping composition–selectivity relationships of supported sub-10 nm Cu–Ag nanocrystals for high-rate CO₂ electroreduction Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 15 Issue 9 Pages 14858-14872  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Colloidal Cu–Ag nanocrystals measuring less than 10 nm across are promising candidates for integration in hybrid CO2 reduction reaction (CO2RR) interfaces, especially in the context of tandem catalysis and selective multicarbon (C2–C3) product formation. In this work, we vary the synthetic-ligand/copper molar ratio from 0.1 to 1.0 and the silver/copper atomic ratio from 0 to 0.7 and study the variations in the nanocrystals’ size distribution, morphology and reactivity at rates of ≥100 mA cm–2 in a gas-fed recycle electrolyzer operating under neutral to mildly basic conditions (0.1–1.0 M KHCO3). High-resolution electron microscopy and spectroscopy are used in order to characterize the morphology of sub-10 nm Cu–Ag nanodimers and core–shells and to elucidate trends in Ag coverage and surface composition. It is shown that Cu–Ag nanocrystals can be densely dispersed onto a carbon black support without the need for immediate ligand removal or binder addition, which considerably facilitates their application. Although CO2RR product distribution remains an intricate function of time, (kinetic) overpotential and processing conditions, we nevertheless conclude that the ratio of oxygenates to hydrocarbons (which depends primarily on the initial dispersion of the nanocrystals and their composition) rises 3-fold at moderate Ag atom % relative to Cu NCs-based electrodes. Finally, the merits of this particular Cu–Ag/C system and the recycling reactor employed are utilized to obtain maximum C2–C3 partial current densities of 92–140 mA cm–2 at −1.15 VRHE and liquid product concentrations in excess of 0.05 wt % in 1 M KHCO3 after short electrolysis periods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000703553600082 Publication Date 2021-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 25 Open Access OpenAccess  
  Notes D.C. acknowledges Thomas Kenis for configuring the analytical instrumentation (HPLC/GC-FID/ICP-MS), Hannelore Andries for assistance with ICP-MS measurements, and Dr. Saeid Pourbabak and Dr. Tine Derez for assistance with Cu sputtering. L.P. was supported by Research Foundation of Flanders (FWO 1S56920N). S.B. acknowledges financial support from ERC Consolidator grant number 815128 REALNANO. S.B. and T.B. acknowledge financial support from the university research fund (BOF-GOA-PS ID no. 33928).; sygmaSB Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:180305 Serial 6844  
Permanent link to this record
 

 
Author Scolfaro, D.; Finamor, M.; Trinchao, L.O.; Rosa, B.L.T.; Chaves, A.; Santos, P., V.; Iikawa, F.; Couto, O.D.D., Jr. url  doi
openurl 
  Title Acoustically driven stark effect in transition metal dichalcogenide monolayers Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 15 Issue 9 Pages 15371-15380  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The Stark effect is one of the most efficient mechanisms to manipulate many-body states in nanostructured systems. In mono- and few-layer transition metal dichalcogenides, it has been successfully induced by optical and electric field means. Here, we tune the optical emission energies and dissociate excitonic states in MoSe2 monolayers employing the 220 MHz in-plane piezoelectric field carried by surface acoustic waves. We transfer the monolayers to high dielectric constant piezoelectric substrates, where the neutral exciton binding energy is reduced, allowing us to efficiently quench (above 90%) and red-shift the excitonic optical emissions. A model for the acoustically induced Stark effect yields neutral exciton and trion in-plane polarizabilities of 530 and 630 x 10(-5) meV/(kV/cm)(2), respectively, which are considerably larger than those reported for monolayers encapsulated in hexagonal boron nitride. Large in-plane polarizabilities are an attractive ingredient to manipulate and modulate multiexciton interactions in two-dimensional semiconductor nanostructures for optoelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000703553600129 Publication Date 2021-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:182545 Serial 7415  
Permanent link to this record
 

 
Author Wang, Q.; Lin, S.; Liu, X.; Xu, W.; Xiao, Y.; Liang, C.; Ding, L.; Peeters, F.M. pdf  url
doi  openurl
  Title Photoluminescence and electronic transition behaviors of single-stranded DNA Type A1 Journal article
  Year 2021 Publication Physical Review E Abbreviated Journal Phys Rev E  
  Volume 104 Issue 3 Pages 034412  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Due to the potential application of DNA for biophysics and optoelectronics, the electronic energy states and transitions of this genetic material have attracted a great deal of attention recently. However, the fluorescence and corresponding physical process of DNA under optical excitation with photon energies below ultraviolet are still not fully clear. In this work, we experimentally investigate the photoluminescence (PL) properties of single-stranded DNA (ssDNA) samples under near-ultraviolet (NUV) and visible excitations (270 similar to 440 nm). Based on the dependence of the PL peak wavelength (lem) upon the excitation wavelength (lex), the PL behaviors of ssDNA can be approximately classified into two categories. In the relatively short excitation wavelength regime, lem is nearly constant due to exciton-like transitions associated with delocalized excitonic states and excimer states. In the relatively long excitation wavelength range, a linear relation of lem = Alex + B with A 0 or A < 0 can be observed, which comes from electronic transitions related to coupled vibrational-electronic levels. Moreover, the transition channels in different excitation wavelength regimes and the effects of strand length and base type can be analyzed on the basis of these results. These important findings not only can give a general description of the electronic energy states and transitional behaviors of ssDNA samples under NUV and visible excitations, but also can be the basis for the application of DNA in nanoelectronics and optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000703562300002 Publication Date 2021-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0053 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.366 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.366  
  Call Number UA @ admin @ c:irua:182517 Serial 7009  
Permanent link to this record
 

 
Author Chernozem, R., V; Romanyuk, K.N.; Grubova, I.; Chernozem, P., V.; Surmeneva, M.A.; Mukhortova, Y.R.; Wilhelm, M.; Ludwig, T.; Mathur, S.; Kholkin, A.L.; Neyts, E.; Parakhonskiy, B.; Skirtach, A.G.; Surmenev, R.A. pdf  doi
openurl 
  Title Enhanced piezoresponse and surface electric potential of hybrid biodegradable polyhydroxybutyrate scaffolds functionalized with reduced graphene oxide for tissue engineering Type A1 Journal article
  Year 2021 Publication Nano Energy Abbreviated Journal Nano Energy  
  Volume 89 Issue B Pages 106473  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Piezoelectricity is considered to be one of the key functionalities in biomaterials to boost bone tissue regeneration, however, integrating biocompatibility, biodegradability and 3D structure with pronounced piezoresponse remains a material challenge. Herein, novel hybrid biocompatible 3D scaffolds based on biodegradable poly(3-hydroxybutyrate) (PHB) and reduced graphene oxide (rGO) flakes have been developed. Nanoscale insights revealed a more homogenous distribution and superior surface potential values of PHB fibers (33 +/- 29 mV) with increasing rGO content up to 1.0 wt% (314 +/- 31 mV). The maximum effective piezoresponse was detected at 0.7 wt% rGO content, demonstrating 2.5 and 1.7 times higher out-of-plane and in-plane values, respectively, than that for pure PHB fibers. The rGO addition led to enhanced zigzag chain formation between paired lamellae in PHB fibers. In contrast, a further increase in rGO content reduced the alpha-crystal size and prevented zigzag chain conformation. A corresponding model explaining structural and molecular changes caused by rGO addition in electrospun PHB fibers is proposed. In addition, finite element analysis revealed a negligible vertical piezoresponse compared to lateral piezoresponse in uniaxially oriented PHB fibers based on alpha-phase (P2(1)2(1)2(1) space group). Thus, the present study demonstrates promising results for the development of biodegradable hybrid 3D scaffolds with an enhanced piezoresponse for various tissue engineering applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000703592700002 Publication Date 2021-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.343 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 12.343  
  Call Number UA @ admin @ c:irua:182579 Serial 7914  
Permanent link to this record
 

 
Author van Duijn, F.; Osca, J.; Sorée, B. url  doi
openurl 
  Title Skyrmion elongation, duplication, and rotation by spin-transfer torque under spatially varying spin current Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 104 Issue 9 Pages 094426  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of the spatially varying spin current on a skyrmion is numerically investigated. It is shown that an inhomogeneous current density induces an elongation of the skyrmion. This elongation can be controlled using current pulses of different strength and duration. Long current pulses lead to a splitting that forms two replicas of the initial skyrmion while for short pulses the elongated skyrmion relaxes back to its initial circular state through rotation in the MHz-GHz frequency range. The frequency is dependent on the strength of the damping coefficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000704236000002 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:182467 Serial 7018  
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Lobato, I.; Van Aert, S. pdf  url
doi  openurl
  Title Modelling ADF STEM images using elliptical Gaussian peaks and its effects on the quantification of structure parameters in the presence of sample tilt Type A1 Journal article
  Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume Issue Pages 113391  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A small sample tilt away from a main zone axis orientation results in an elongation of the atomic columns in ADF STEM images. An often posed research question is therefore whether the ADF STEM image intensities of tilted nanomaterials should be quantified using a parametric imaging model consisting of elliptical rather than the currently used symmetrical peaks. To this purpose, simulated ADF STEM images corresponding to different amounts of sample tilt are studied using a parametric imaging model that consists of superimposed 2D elliptical Gaussian peaks on the one hand and symmetrical Gaussian peaks on the other hand. We investigate the quantification of structural parameters such as atomic column positions and scattering cross sections using both parametric imaging models. In this manner, we quantitatively study what can be gained from this elliptical model for quantitative ADF STEM, despite the increased parameter space and computational effort. Although a qualitative improvement can be achieved, no significant quantitative improvement in the estimated structure parameters is achieved by the elliptical model as compared to the symmetrical model. The decrease in scattering cross sections with increasing sample tilt is even identical for both types of parametric imaging models. This impedes direct comparison with zone axis image simulations. Nonetheless, we demonstrate how reliable atom-counting can still be achieved in the presence of small sample tilt.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000704334200001 Publication Date 2021-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited Open Access OpenAccess  
  Notes This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N, G.0267.18N, and EOS 30489208. S.V.A. acknowledges TOP BOF funding from the University of Antwerp.; esteem3JRA; esteem3reported Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:181462 Serial 6810  
Permanent link to this record
 

 
Author Man, L.F.; Xu, W.; Xiao, Y.M.; Wen, H.; Ding, L.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Terahertz magneto-optical properties of graphene hydrodynamic electron liquid Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 104 Issue 12 Pages 125420  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The discovery of the hydrodynamic electron liquid (HEL) in graphene [D. Bandurin et al., Science 351, 1055 (2016) and J. Crossno et al., Science 351, 1058 (2016)] has marked the birth of the solid-state HEL which can be probed near room temperature in a table-top setup. Here we examine the terahertz (THz) magneto-optical (MO) properties of a graphene HEL. Considering the case where the magnetic length l(B) = root h/eB is comparable to the mean-free path l(ee) for electron-electron interaction in graphene, the MO conductivities are obtained by taking a momentum balance equation approach on the basis of the Boltzmann equation. We find that when l(B) similar to l(ee), the viscous effect in a HEL can weaken significantly the THz MO effects such as cyclotron resonance and Faraday rotation. The upper hybrid and cyclotron resonance magnetoplasmon modes omega(+/-) are also obtained through the RPA dielectric function. The magnetoplasmons of graphene HEL at large wave-vector regime are affected by the viscous effect, and results in red-shifts of the magnetoplasmon frequencies. We predict that the viscosity in graphene HEL can affect strongly the magneto-optical and magnetoplasmonic properties, which can be verified experimentally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000704419300004 Publication Date 2021-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:182518 Serial 7029  
Permanent link to this record
 

 
Author Zhao, H.; Li, C.-F.; Hu, Z.-Y.; Liu, J.; Li, Y.; Hu, J.; Van Tendeloo, G.; Chen, L.-H.; Su, B.-L. pdf  doi
openurl 
  Title Size effect of bifunctional gold in hierarchical titanium oxide-gold-cadmium sulfide with slow photon effect for unprecedented visible-light hydrogen production Type A1 Journal article
  Year 2021 Publication Journal Of Colloid And Interface Science Abbreviated Journal J Colloid Interf Sci  
  Volume 604 Issue Pages 131-139  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Gold nanoparticles (Au NPs) with surface plasmonic resonance (SPR) effect and excellent internal electron transfer ability have widely been combined with semiconductors for photocatalysis. However, the in-depth effects of Au NPs in multicomponent photocatalysts have not been completely understood. Herein, ternary titanium oxide-gold-cadmium sulfide (TiO2-Au-CdS, TAC) photocatalysts, based on hierarchical TiO2 inverse opal photonic crystal structure with different Au NPs sizes have been designed to reveal the SPR effect and internal electron transfer of Au NPs in the presence of slow photon effect. It appears that the SPR effect and internal electron transfer ability of Au NPs, depending on their sizes, play a synergistic effect on the photocatalytic enhancement. The ternary TAC-10 photocatalyst with – 10 nm Au NPs demonstrates an unprecedented hydrogen evolution rate of 47.6 mmolh-1g 1 under visible-light, demonstrating- 48% enhancement comparing to the sample without slow photon effect. In particular, a 9.83% apparent quantum yield under 450 nm monochromatic light is achieved for TAC-10. A model is proposed and finite-difference time-domain (FDTD) simulations reveal the size influence of Au NPs in ternary TAC photocatalysts. This work suggests that the rational design of bifunctional Au NPs coupling with slow photon effect could largely promote hydrogen production from visible-light driven water splitting. (c) 2021 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000704428600004 Publication Date 2021-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.233 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.233  
  Call Number UA @ admin @ c:irua:182531 Serial 6886  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Xie, Y.; Van Beeck, W.; Zhu, W.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Oxygen control and stressor treatments for complete and long-term suppression of nitrite-oxidizing bacteria in biofilm-based partial nitritation/anammox Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 342 Issue Pages 125996  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Mainstream nitrogen removal by partial nitritation/anammox (PN/A) can realize energy and cost savings for sewage treatment. Selective suppression of nitrite oxidizing bacteria (NOB) remains a key bottleneck for PN/A implementation. A rotating biological contactor was studied with an overhead cover and controlled air/N2 inflow to regulate oxygen availability at 20 °C. Biofilm exposure to dissolved oxygen concentrations < 0.51 ± 0.04 mg O2 L-1 when submerged in the water and < 1.41 ± 0.31 mg O2 L-1 when emerged in the headspace (estimated), resulted in complete and long-term NOB suppression with a low relative nitrate production ratio of 10 ± 4%. Additionally, weekly biofilm stressor treatments with free ammonia (FA) (29 ± 1 mg NH3-N L-1 for 3 h) could improve the NOB suppression while free nitrous acid treatments had insufficient effect. This study demonstrated the potential of managing NOB suppression in biofilm-based systems by oxygen control and recurrent FA exposure, opening opportunities for resource efficient nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000704455300005 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:181301 Serial 8355  
Permanent link to this record
 

 
Author van Thiel, T. c.; Brzezicki, W.; Autieri, C.; Hortensius, J. r.; Afanasiev, D.; Gauquelin, N.; Jannis, D.; Janssen, N.; Groenendijk, D. j.; Fatermans, J.; Van Aert, S.; Verbeeck, J.; Cuoco, M.; Caviglia, A. d. url  doi
openurl 
  Title Coupling Charge and Topological Reconstructions at Polar Oxide Interfaces Type A1 Journal article
  Year 2021 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 127 Issue 12 Pages 127202  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion symmetry across the heterointerfaces. A notable example is the interface between polar and nonpolar materials, where valence discontinuities lead to otherwise inaccessible charge and spin states. This approach paved the way for the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wave functions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO3, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and

LaAlO3, a polar wide-band-gap insulator. Transmission electron microscopy reveals an atomically sharp LaO/RuO2/SrO interface configuration, leading to excess charge being pinned near the LaAlO3/SrRuO3 interface. We demonstrate through magneto-optical characterization, theoretical calculations and transport measurements that the real-space charge reconstruction drives a reorganization of the topological charges in the band structure, thereby modifying the momentum-space Berry curvature in SrRuO3. Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000704665000010 Publication Date 2021-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 17 Open Access OpenAccess  
  Notes The authors thank E. Lesne, M. Lee, H. Barakov, M. Matthiesen and U. Filippozzi for discussions. The authors are grateful to E.J.S. van Thiel for producing the illustration in Fig. 4a. This work was supported by the European Research Council under the European Unions Horizon 2020 programme/ERC Grant agreements No. [677458], [770887] and No. [731473] (Quantox of QuantERA ERA-NET Cofund in Quantum Technologies) and by the Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience (NanoFront) and VIDI program. The authors acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. [823717] – ESTEEM3. N. G., J. V., and S. V. A. acknowledge funding from the University of Antwerp through the Concerted Research Actions (GOA) project Solarpaint and the TOP project. C. A. and W. B. are supported by the Foundation for Polish Science through the International Research Agendas program co-financed by the European Union within the Smart Growth Operational Programme. C. A. acknowledges access to the computing facilities of the Interdisciplinary Center of Modeling at the University of Warsaw, Grant No. G73-23 and G75-10. W.B. acknowledges support from the Narodowe Centrum Nauk (NCN, National Science Centre, Poland) Project No. 2019/34/E/ST3/00404'; esteem3TA; esteem3reported Approved Most recent IF: 8.462  
  Call Number EMAT @ emat @c:irua:182595 Serial 6824  
Permanent link to this record
 

 
Author Gonzalez-Quiroga, A.; Shtern, V.; Perreault, P.; Vandewalle, L.; Marin, G.B.; Van Geem, K.M. pdf  doi
openurl 
  Title Intensifying mass and heat transfer using a high-g stator-rotor vortex chamber Type A1 Journal article
  Year 2021 Publication Chemical Engineering And Processing Abbreviated Journal Chem Eng Process  
  Volume 169 Issue Pages 108638-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Vortex reactors take advantage of the synergy between enhanced heat and mass transfer rates and multifunctional phenomena at different temporal and spatial scales. Proof-of-concept experiments with our novel and innovative STAtor-Rotor VOrtex Chamber (STARVOC) confirm its advantageous features for the sustainable production of chemicals and fuels. STARVOC is a high-g contactor that uses carrier flow (gas or liquid) tangential injection to drive a rotor attached to low-friction bearings. The vortex chamber inside the rotor contains a secondary phase or phases, such as a solids bed, a liquid layer, or a suspension. Carrier fluid passes through the perforated rotor wall and contacts a densely and uniformly distributed secondary phase with enhanced slip velocities. Experiments focused on pressure profiles, rotor angular velocity, and solids azimuthal velocity. With air as the carrier fluid and different solid particle beds as the secondary phase, STARVOC reached bed azimuthal velocities up to four-fold compared to those reached in Gas-Solid Vortex Units with fully static geometry. These results show its potential to improve interfacial heat and mass transfer rates and take advantage of flow energy and angular momentum. Due to its process intensification capabilities, STARVOC is a promising alternative for the state-of-the-art chemical industry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000704946900008 Publication Date 2021-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0255-2701 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.234 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.234  
  Call Number UA @ admin @ c:irua:181062 Serial 8111  
Permanent link to this record
 

 
Author Engelmann, Y.; van ’t Veer, K.; Gorbanev, Y.; Neyts, E.C.; Schneider, W.F.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma Catalysis for Ammonia Synthesis: A Microkinetic Modeling Study on the Contributions of Eley–Rideal Reactions Type A1 Journal Article;Plasma catalysis
  Year 2021 Publication Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng  
  Volume 9 Issue 39 Pages 13151-13163  
  Keywords A1 Journal Article;Plasma catalysis; Eley−Rideal reactions; Volcano plots; Vibrational excitation; Radical reactions; Dielectric barrier discharge; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma catalysis is an emerging new technology for the electrification and downscaling of NH3 synthesis. Increasing attention is being paid to the optimization of plasma catalysis with respect to the plasma conditions, the catalyst material, and their mutual interaction. In this work we use microkinetic models to study how the total conversion process is impacted by the combination of different plasma conditions and transition metal catalysts. We study how plasma-generated radicals and vibrationally excited N2 (present in a dielectric barrier discharge plasma) interact with the catalyst and impact the NH3 turnover frequencies (TOFs). Both filamentary and uniform plasmas are studied, based on plasma chemistry models that provided plasma phase speciation and vibrational distribution functions. The Langmuir−Hinshelwood reaction rate coefficients (i.e., adsorption reactions and subsequent reactions among adsorbates) are determined using conventional scaling relations. An additional set of Eley−Rideal reactions (i.e., direct reactions of plasma radicals with adsorbates) was added and a sensitivity analysis on the assumed reaction rate coefficients was performed. We first show the impact of different vibrational distribution functions on the catalytic dissociation of N2 and subsequent production of NH3, and we gradually include more radical reactions, to illustrate the contribution of these species and their corresponding reaction pathways. Analysis over a large range of catalysts indicates that different transition metals (metals such as Rh, Ni, Pt, and Pd) optimize the NH3TOFs depending on the population of the vibrational levels of N2. At higher concentrations of plasma-generated radicals, the NH3 TOFs become less dependent on the catalyst material, due to radical adsorptions on the more noble catalysts and Eley−Rideal reactions on the less noble catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000705367800004 Publication Date 2021-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.951 Times cited Open Access OpenAccess  
  Notes Basic Energy Sciences, DE-SC0021107 ; Vlaamse regering, HBC.2019.0108 ; H2020 European Research Council, 810182 ; Methusalem project – University of Antwerp; Excellence of science FWO-FNRS, GoF9618n ; TOP-BOF – University of Antwerp; DOCPRO3 – University of Antwerp; We acknowledge the financial support from the DOC-PRO3, the TOP-BOF, and the Methusalem project of the University of Antwerp, as well as from the European Research Council (ERC) (grant agreement No, 810182−SCOPE ERC Synergy project), under the European Union’s Horizon 2020 research and innovation programme, the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108), and the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). Calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), 13162 Approved Most recent IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:182482 Serial 6811  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: