toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Chen, Q.; Guo, A.-M.; Liu, J.; Peeters, F.M.; Sun, Q.-F. url  doi
openurl 
  Title Topological phase transitions and Majorana zero modes in DNA double helix coupled to s-wave superconductors Type A1 Journal article
  Year (down) 2021 Publication New Journal Of Physics Abbreviated Journal New J Phys  
  Volume 23 Issue 9 Pages 093047  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Topological properties of a double-stranded DNA (dsDNA) proximity-coupled by an s-wave superconductor are investigated, in which the energy spectra and the differential conductance are calculated within the framework of tight-binding approximation. Our results indicate that this dsDNA-superconductor system hosts Majorana zero modes (MZMs) when the Zeeman field is perpendicular to the helix axis, whereas no MZM could be observed when the Zeeman field is parallel to the helix axis, in sharp contrast to previous studies on nanowires including single-stranded DNA. In particular, two topological phase transitions could take place in the dsDNA-superconductor system by changing the Zeeman field, one from a topological trivial phase to a topological nontrivial phase with one pair of MZMs in small Zeeman field regime, and the other from a phase with one pair of MZMs to a phase with two pairs of MZMs by further increasing the Zeeman field. In the presence of a gate field normal to the helix axis, the topological nontrivial phase with two pairs of MZMs can transform into the phase with one pair of MZMs. The topological phase with one pair of MZMs is more stable and robust against Anderson disorder.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000702122000001 Publication Date 2021-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 4 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.786  
  Call Number UA @ admin @ c:irua:182597 Serial 7033  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: