|
Record |
Links |
|
Author |
Gomes, N.O.; Mendonça, C.D.; Machado, S.A.S.; Oliveira, O.N., Jr.; Raymundo-Pereira, P.A. |
|
|
Title |
Flexible and integrated dual carbon sensor for multiplexed detection of nonylphenol and paroxetine in tap water samples |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Microchimica Acta |
Abbreviated Journal |
Microchim Acta |
|
|
Volume |
188 |
Issue |
10 |
Pages |
359 |
|
|
Keywords |
A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab) |
|
|
Abstract |
Multiplex detection of emerging pollutants is essential to improve quality control of water treatment plants, which requires portable systems capable of real-time monitoring. In this paper we describe a flexible, dual electrochemical sensing device that detects nonylphenol and paroxetine in tap water samples. The platform contains two voltammetric sensors, with different working electrodes that were either pretreated or functionalized. Each working electrode was judiciously tailored to cover the concentration range of interest for nonylphenol and paroxetine, and square wave voltammetry was used for detection. An electrochemical pretreatment with sulfuric acid on the printed electrode enabled a selective detection of nonylphenol in 1.0-10 x 10(-6) mol L-1 range with a limit of detection of 8.0 x 10(-7) mol L-1. Paroxetine was detected in the same range with a limit of detection of 6.7 x 10(-7) mol L-1 using the printed electrode coated with a layer of carbon spherical shells. Simultaneous detection of the two analytes was achieved in tap water samples within 1 min, with no fouling and no interference effects. The long-term monitoring capability of the dual sensor was demonstrated in phosphate buffer for 45 days. This performance is statistically equivalent to that of high-performance liquid chromatography (HPLC) for water analysis. The dual-sensor platform is generic and may be extended to other water pollutants and clinical biomarkers in real-time monitoring of the environment and health conditions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000702722700001 |
Publication Date |
2021-10-01 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0026-3672; 1436-5073 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.58 |
Times cited |
|
Open Access |
Not_Open_Access |
|
|
Notes |
|
Approved |
Most recent IF: 4.58 |
|
|
Call Number |
UA @ admin @ c:irua:182649 |
Serial |
7973 |
|
Permanent link to this record |