toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cooper, D.; Denneulin, T.; Bernier, N.; Béché, A.; Rouvière, J.-L. url  doi
openurl 
  Title Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope Type (up) A1 Journal article
  Year 2016 Publication Micron Abbreviated Journal Micron  
  Volume 80 Issue 80 Pages 145-165  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The last few years have seen a great deal of progress in the development of transmission electron microscopy based techniques for strain mapping. New techniques have appeared such as dark field electron holography and nanobeam diffraction and better known ones such as geometrical phase analysis have been improved by using aberration corrected ultra-stable modern electron microscopes. In this paper we apply dark field electron holography, the geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images, nanobeam diffraction and precession diffraction, all performed at the state-of-the-art to five different types of semiconductor samples. These include a simple calibration structure comprising 10-nm-thick SiGe layers to benchmark the techniques. A SiGe recessed source and drain device has been examined in order to test their capabilities on 2D structures. Devices that have been strained using a nitride stressor have been examined to test the sensitivity of the different techniques when applied to systems containing low values of deformation. To test the techniques on modern semiconductors, an electrically tested device grown on a SOI wafer has been examined. Finally a GaN/AlN superlattice was tested in order to assess the different methods of measuring deformation on specimens that do not have a perfect crystalline structure. The different deformation mapping techniques have been compared to one another and the strengths and weaknesses of each are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000366770100018 Publication Date 2015-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 50 Open Access  
  Notes Approved Most recent IF: 1.98  
  Call Number UA @ lucian @ c:irua:136446 Serial 4401  
Permanent link to this record
 

 
Author Sena, R.P.; Hadermann, J.; Chin, C.-M.; Hunter, E.C.; Battle, P.D. url  doi
openurl 
  Title Structural chemistry and magnetic properties of the perovskite SrLa2Ni2TeO9 Type (up) A1 Journal article
  Year 2016 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 243 Issue 243 Pages 304-311  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of SrLa2Ni2TeO9 has been synthesized using a standard ceramic method and characterized by neutron diffraction, magnetometry and electron microscopy. The compound adopts a monoclinic, perovskite-like structure with space group P2(1)/n in and unit cell parameters a=5.6008(1), b = 5.5872(1), c=7.9018(2) angstrom, p=90.021(6)degrees at room temperature. The two crystallographically-distinct B sites are occupied by Ni2+ and Te6+ in ratios of 83:17 and 50:50. Both ac and dc magnetometry suggest that the compound is a spin glass below 35 K but the neutron diffraction data show that some regions of the sample are antiferromagnetic. Electron microscopy revealed twinning on a nanoscale and local variations in composition. These defects are thought to be responsible for the presence of two distinct types of antiferromagnetic ordering. (C) 2016 The Authors. Published by Elsevier Inc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000384874100041 Publication Date 2016-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 6 Open Access  
  Notes Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:137232 Serial 4403  
Permanent link to this record
 

 
Author Kurttepeli, M.; Locus, R.; Verboekend, D.; de Clippel, F.; Breynaert, E.; Martens, J.; Sels, B.; Bals, S. pdf  url
doi  openurl
  Title Synthesis of aluminum-containing hierarchical mesoporous materials with columnar mesopore ordering by evaporation induced self assembly Type (up) A1 Journal article
  Year 2016 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 234 Issue 234 Pages 186-195  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The incorporation of aluminum into the silica columns of hierarchical mesoporous materials (HMMs) was studied. The HMMs were synthesized by a combination of hard and soft templating methods, forming mesoporous SBA-15-type silica columns inside the pores of anodic aluminum oxide membranes via evaporation induced self-assembly (EISA). By adding Al-isopropoxide to the EISA-mixture a full tetrahedral incorporation of Al and thus the creation of acid sites was achieved, which was proved by nuclear magnetic resonance spectroscopy. Electron microscopy showed that the use of Al-isopropoxide as an Al source for the HMMs led to a change in the mesopore ordering of silica material from circular hexagonal (donut-like) to columnar hexagonal and a 37% increase in specific surface (BET surface). These results were confirmed by a combination of nitrogen physisorption and small-angle X-ray scattering experiments and can be attributed to a swelling of the P123 micelles with isopropanol. The columnar mesopore ordering of silica is advantageous towards the pore accessibility and therefore preferential for many possible applications including catalysis and adsorption on the acid tetrahedral Al-sites. (C) 2016 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000383291400020 Publication Date 2016-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 5 Open Access OpenAccess  
  Notes ; The Belgian government (Belgian Science Policy Office, Belspo) is acknowledged for financing the Interuniversity Attraction Poles (IAP-PAI). S. B. acknowledges the financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). D. V. acknowledges the Flanders Research Foundation (FWO). ; ecas_Sara Approved Most recent IF: 3.615  
  Call Number UA @ lucian @ c:irua:137108 Serial 4404  
Permanent link to this record
 

 
Author Zalfani, M.; Hu, Z.-Y.; Yu, W.-B.; Mahdouani, M.; Bourguiga, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Djoued, Y.; Su, B.-L. pdf  url
doi  openurl
  Title BiVo4/3DOM TiO2 nanocomposites : effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants Type (up) A1 Journal article
  Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 205 Issue 205 Pages 121-132  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A series of BiVO4/3DOM TiO2 nanocomposites have been synthesized and their photocatalytic activity was investigated under visible light irradiation using the RhB dye as model pollutant molecule in an aqueous solution. The effect of the amount of BiVO4 as visible light sensitizer on the photocatalytic activity of BiVO4/3DOM TiO2 nanocomposites was highlighted. The heterostructured composite system leads to much higher photocatalytic efficiencies than bare 3DOM TiO2 and BiVO4 nanoparticles. As the proportion of BiVO4 in BiVO4/3DOM TiO2 nanocomposites increases from 0.04 to 0.6, the photocatalytic performance of the BiVO4/3DOM TiO2 nanocomposites increases and then decreases after reaching a maximum at 0.2. This improvement in photocatalytic perfomance is related to 1) the interfacial electron transfer efficiency between the coupled materials, 2) the 3DOM TiO2 inverse opal structure with interconnected pores providing an easy mass transfer of the reactant molecules and high accessibility to the active sites and large surface area and 3) the effect of light sensitizer of BiVO4. Intensive studies on structural, textural, optical and surface properties reveal that the electronic interactions between BiVO4 and TiO2 lead to an improved charge separation of the coupled BiVO4/TiO2 system. The photogenerated charge carrier densities increase with increasing the BiVO4 content, which acts as visible light sensitizer to the TiO2 and is responsible for the enhancement in the rate of photocatalytic degradation. However, the photocatalytic activity is reduced when the BiVO4 amount is much higher than that of 3DOM TiO2. Two reasons could account for this behavior. First, with increasing BiVO4 content, the photogenerated electron/hole pairs are accumulated at the surface of the BiVO4 nanoparticles and the recombination rate increases as shown by the PL results. Second, decreasing the amount of 3DOM TiO2 in the nanocomposite decreases the surface area as shown by the BET results. Moreover, the poor adsorptive properties of the BiVO4 photocatalyst also affect the photocatalytic performance, in particular at higher BiVO4 content. The present work demonstrates that BiVO4/3DOM TiO2 is a very promising heterojunction system for visible light photocatalytic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000393931000013 Publication Date 2016-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 52 Open Access OpenAccess  
  Notes ; This work was realized with the financial support of Chinese Ministry of Education in a framework of the Changjiang Scholar Innovative Research Team Program (IRT_15R52). B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents” and a Clare Hall Life Member, University of Cambridge. Y. Li acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is also supported by PhD Programs Foundation (20120143120019) of Chinese Ministry of Education, the Wuhan Youth Chenguang Program of Science and Technology (2013070104010003), Hubei Provincial Natural Science Foundation (2014CFB160, 2015CFB516), the National Science Foundation for Young Scholars of China (No. 51502225) and Self-determined and Innovative Research Funds of the SKLWUT (2015-ZD-7). MZ thanks the scholarship support from the Laboratory of Inorganic Materials Chemistry ay the University of Namur. Z. Y. Hu and G. Van Tendeloo acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). This research used resources of the Electron Microscopy Service located at the University of Namur. This Service is member of the “Plateforme Technologique Morphologie – Imagerie”. The XPS analyses were made in the LISE, Department of Physics of University of Namur thanks to Dr. P. Louette. XRD measurements, UV-vis and photoluminescent spectroscopic analyses and N<INF>2</ INF> adsorption-desorption measurements were made with the facility of the “Plateforme Technologique Physico-Chimique”. ; Approved Most recent IF: 9.446  
  Call Number UA @ lucian @ c:irua:138601 Serial 4405  
Permanent link to this record
 

 
Author Van Havenbergh, K.; Turner, S.; Marx, N.; Van Tendeloo, G. pdf  doi
openurl 
  Title The mechanical behavior during (de)lithiation of coated silicon nanoparticles as anode material for lithium-ion batteries studied by InSitu transmission electron microscopy Type (up) A1 Journal article
  Year 2016 Publication Energy technology Abbreviated Journal Energy Technol-Ger  
  Volume 4 Issue 4 Pages 1005-1012  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract One approach to cope with the continuous irreversible capacity loss in Si-based electrodes, attributed to lithiation-induced volume changes and the formation of a solid-electrolyte interface (SEI), is by coating silicon nanoparticles. A coating can improve the conductivity of the electrode, form a chemical shield against the electrolyte, or provide mechanical confinement to reduce the volume increase. The influence of such a coating on the mechanical behavior of silicon nanoparticles during Li insertion and Li extraction was investigated by insitu transmission electron microscopy. The type of coating was shown to influence the size of the unreacted core that remains after reaction of silicon with lithium. Furthermore, two mechanisms to relieve the stress generated during volume expansion are reported: the initiation of cracks and the formation of nanovoids. Both result in a full reaction of the silicon nanoparticles, whereas with the formation of cracks, additional surface area is created, on which an SEI can be formed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000382549500012 Publication Date 2016-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-4296; 2194-4288 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.789 Times cited 6 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:137167 Serial 4406  
Permanent link to this record
 

 
Author Balasubramaniam, Y.; Pobedinskas, P.; Janssens, S.D.; Sakr, G.; Jomard, F.; Turner, S.; Lu, Y.G.; Dexters, W.; Soltani, A.; Verbeeck, J.; Barjon, J.; Nesládek, M.; Haenen, K.; doi  openurl
  Title Thick homoepitaxial (110)-oriented phosphorus-doped n-type diamond Type (up) A1 Journal article
  Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 109 Issue 109 Pages 062105  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The fabrication of n-type diamond is essential for the realization of electronic components for extreme environments. We report on the growth of a 66 mu m thick homoepitaxial phosphorus-doped diamond on a (110)-oriented diamond substrate, grown at a very high deposition rate of 33 mu m h(-1). A pristine diamond lattice is observed by high resolution transmission electron microscopy, which indicates the growth of high quality diamond. About 2.9 x 10(16) cm(-3) phosphorus atoms are electrically active as substitutional donors, which is 60% of all incorporated dopant atoms. These results indicate that P-doped (110)-oriented diamond films deposited at high growth rates are promising candidates for future use in high-power electronic applications. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000383183600025 Publication Date 2016-08-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 20 Open Access  
  Notes This work was financially supported by the EU through the FP7 Collaborative Project “DIAMANT,” the “H2020 Research and Innovation Action Project” “GreenDiamond” (No. 640947), and the Research Foundation-Flanders (FWO) (Nos. G.0C02.15N and VS.024.16N). J.V. acknowledges funding from the “Geconcentreerde Onderzoekacties” (GOA) project “Solarpaint” of the University of Antwerp. The TEM instrument was partly funded by the Hercules fund from the Flemish Government. We particularly thank Dr. J. E. Butler (Naval Research Laboratory, USA) for the sample preparation by laser slicing for TEM analysis, Dr. J. Pernot (Universite Grenoble Alpes/CNRS-Institut Neel, France) for helpful discussions, Ms. C. Vilar (Universite de Versailles St. Quentin en Yvelines, France) for technical help on SEM-CL experiments, and Dr. S. S. Nicley (Hasselt University, Belgium) for improving the language of the text. P.P. and S.T. are Postdoctoral Fellows of the Research Foundation-Flanders (FWO). Approved Most recent IF: 3.411  
  Call Number UA @ lucian @ c:irua:137160 Serial 4407  
Permanent link to this record
 

 
Author Cui, J.; Faria, M.; Bjornmalm, M.; Ju, Y.; Suma, T.; Gunawan, S.T.; Richardson, J.J.; Heidar, H.; Bals, S.; Crampin, E.J.; Caruso, F. pdf  doi
openurl 
  Title A framework to account for sedimentation and diffusion in particle-cell interactions Type (up) A1 Journal article
  Year 2016 Publication Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir  
  Volume 32 Issue 32 Pages 12394-12402  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In vitro experiments provide a solid basis for understanding the interactions between particles and biological systems. An important confounding variable for these studies is the difference between the amount of particles administered and that which reaches the surface of cells. Here, we engineer a hydrogel-based nanoparticle system and combine in situ characterization techniques, 3D-printed cell cultures, and computational modeling to evaluate and study particle cell interactions of advanced particle systems. The framework presented demonstrates how sedimentation and diffusion can explain differences in particle cell association, and provides a means to account for these effects. Finally, using in silico modeling, we predict the proportion of particles that reaches the cell surface using common experimental conditions for a wide range of inorganic and organic micro- and nanoparticles. This work can assist in the understanding and control of sedimentation and diffusion when investigating cellular interactions of engineered particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000389117600017 Publication Date 2016-07-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0743-7463 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.833 Times cited 40 Open Access Not_Open_Access  
  Notes ; This work was supported by the Australian Research Council (ARC) under the Australian Laureate Fellowship scheme (F.C., FL120100030), the Australian Government through an Australian Postgraduate Award (M.B.), and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology (Project Number CE140100036). This work was performed in part at the Materials Characterization and Fabrication Platform (MCFP) at the University of Melbourne and the Victorian Node of the Australian National Fabrication Facility (ANFF). ; Approved Most recent IF: 3.833  
  Call Number UA @ lucian @ c:irua:139210 Serial 4438  
Permanent link to this record
 

 
Author Zanaga, D.; Altantzis, T.; Sanctorum, J.; Freitag, B.; Bals, S. pdf  url
doi  openurl
  Title An alternative approach for \zeta-factor measurement using pure element nanoparticles Type (up) A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 164 Issue Pages 11-16  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is very challenging to measure the chemical composition of hetero nanostructures in a reliable and quantitative manner. Here, we propose a novel and straightforward approach that can be used to quantify energy dispersive X-ray spectra acquired in a transmission electron microscope. Our method is based on a combination of electron tomography and the so-called zeta-factor technique. We will demonstrate the reliability of our approach as well as its applicability by investigating Au-Ag and Au-Pt hetero nanostructures. Given its simplicity, we expect that the method could become a new standard in the field of chemical characterization using electron microscopy. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000373526200002 Publication Date 2016-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 19 Open Access OpenAccess  
  Notes ; The authors acknowledge financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS) and the European Union under the FP7 (Integrated Infrastructure Initiative N. 312483 – ESTEEM2). ; ecas_Sara Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:133259 Serial 4439  
Permanent link to this record
 

 
Author Li, M.-R.; Deng, Z.; Lapidus, S.H.; Stephens, P.W.; Segre, C.U.; Croft, M.; Sena, R.P.; Hadermann, J.; Walker, D.; Greenblatt, M. pdf  doi
openurl 
  Title Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9: in Search of Jahn-Teller Distorted Cr(II) Oxide Type (up) A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue 55 Pages 10135-10142  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A novel 6H-type hexagonal perovskite Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9 was prepared at high pressure (6 GPa) and temperature (1773 K). Both transmission electron microscopy and synchrotron powder X-ray diffraction data demonstrate that Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9 crystallizes in P6(3)/mmc with face-shared (Cr0.97(1)Te0.03(1))O-6 octahedral pairs interconnected with TeO6 octahedra via corner-sharing. Structure analysis shows a mixed Cr2+/Cr3+ valence state with similar to 10% Cr2+. The existence of Cr2+ in Ba-3(Cr0.10(1)2+Cr0.87(1)3+Te0.036+)(2)TeO9 is further evidenced by X-ray absorption near-edge spectroscopy. Magnetic properties measurements show a paramagnetic response down to 4 K and a small glassy-state curvature at low temperature. In this work, the octahedral Cr2+O6 component is stabilized in an oxide material for the first time; the expected Jahn-Teller distortion of high-spin (d(4)) Cr2+ is not found, which is attributed to the small proportion of Cr2+ (similar to 10%) and the face-sharing arrangement of CrO6 octahedral pairs, which structurally disfavor axial distortion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000385785700026 Publication Date 2016-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 2 Open Access  
  Notes Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:140313 Serial 4440  
Permanent link to this record
 

 
Author Eleftheriadis, G.K.; Filippousi, M.; Tsachouridou, V.; Darda, M.-A.; Sygellou, L.; Kontopoulou, I.; Bouropoulos, N.; Steriotis, T.; Charalambopoulou, G.; Vizirianakis, I.S.; Van Tendeloo, G.; Fatouros, D.G. pdf  url
doi  openurl
  Title Evaluation of mesoporous carbon aerogels as carriers of the non-steroidal anti-inflammatory drug ibuprofen Type (up) A1 Journal article
  Year 2016 Publication International journal of pharmaceutics Abbreviated Journal Int J Pharmaceut  
  Volume 515 Issue 515 Pages 262-270  
  Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)  
  Abstract Towards the development of novel drug carriers for oral delivery of poorly soluble drugs mesoporous aerogel carbons (CAs), namely CA10 and CA20 with different pore sizes (10 and 20 nm, respectively), were evaluated. The non-steroidal anti-inflammatory lipophilic compound ibuprofen was incorporated via passive loading. The drug loaded carbon aerogels were systemically investigated by means of High-Resolution Transmission Electron Microscopy (HR-TEM), Nitrogen physisorption studies, X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), X-ray photon electron spectroscopy (XPS) and zeta-potential studies. In vitro release studies were performed in simulated intestinal fluids reflecting both fasted (FaSSIF) and fed (FeSSIF) state conditions. Cytotoxicity studies were conducted with human intestinal cells (Caco-2). Drug was in an amorphous state in the pores of the carbon carrier as shown from the physicochemical characterization studies. The results showed marked differences in the release profiles for ibuprofen from the two aerogels in the media tested whereas in vitro toxicity profiles appear to be compatible with potential therapeutic applications at low concentrations. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000389150700024 Publication Date 2016-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-5173 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.649 Times cited 7 Open Access  
  Notes Approved Most recent IF: 3.649  
  Call Number UA @ lucian @ c:irua:140231 Serial 4441  
Permanent link to this record
 

 
Author Folens, K.; Leus, K.; Nicomel, N.R.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Du Laing, G.; Van Der Voort, P. pdf  doi
openurl 
  Title Fe3O4@MIL-101-A selective and regenerable adsorbent for the removal of as species from water Type (up) A1 Journal article
  Year 2016 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume 2016 Issue 2016 Pages 4395-4401  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The chromium-based metal organic framework MIL-101(Cr) served as a host for the in situ synthesis of Fe3O4 nano particles. This hybrid nanomaterial was tested as an adsorbent for arsenite and arsenate species in groundwater and surface water and showed excellent affinity towards As-III and As-V species. The adsorption capacities of 121.5 and 80.0 mg g(-1) for arsenite and arsenate species, respectively, are unprecedented. The presence of Ca2+, Mg2+, and phosphate ions and natural organic matter does not affect the removal efficiency or the selectivity. The structural integrity of the hybrid nanomaterial was maintained during the adsorption process and even after desorption through phosphate elution. Additionally, no significant leaching of Cr or Fe species was observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000386166900019 Publication Date 2016-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited 27 Open Access  
  Notes Approved Most recent IF: 2.444  
  Call Number UA @ lucian @ c:irua:139220 Serial 4442  
Permanent link to this record
 

 
Author Janssens, K.; van der Snickt, G.; Vanmeert, F.; Legrand, S.; Nuyts, G.; Alfeld, M.; Monico, L.; Anaf, W.; de Nolf, W.; Vermeulen, M.; Verbeeck, J.; De Wael, K. pdf  doi
openurl 
  Title Non-invasive and non-destructive examination of artistic pigments, paints, and paintings by means of X-Ray methods Type (up) A1 Journal article
  Year 2016 Publication Topics in Current Chemistry Abbreviated Journal Topics Curr Chem  
  Volume 374 Issue 374 Pages 81  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Recent studies are concisely reviewed, in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples, and/or entire paintings from the seventeenth to the early twentieth century painters. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging, as well as with the combined use of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Microscopic XRF is a variant of the method that is well suited to visualize the elemental distribution of key elements, mostly metals, present in paint multi-layers, on the length scale from 1 to 100 μm inside micro-samples taken from paintings. In the context of the characterization of artists pigments subjected to natural degradation, the use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS and μ-XRD have proven themselves to be very suitable for such studies. Their use is often combined with microscopic Fourier transform infra-red spectroscopy and/or Raman microscopy since these methods deliver complementary information of high molecular specificity at more or less the same length scale as the X-ray microprobe techniques. Since microscopic investigation of a relatively limited number of minute paint samples, taken from a given work of art, may not yield representative information about the entire artefact, several methods for macroscopic, non-invasive imaging have recently been developed. Those based on XRF scanning and full-field hyperspectral imaging appear very promising; some recent published results are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Springer international publishing ag Place of Publication Cham Editor  
  Language Wos 000391178900006 Publication Date 2016-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2365-0869;2364-8961; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.033 Times cited 50 Open Access  
  Notes ; ; Approved Most recent IF: 4.033  
  Call Number UA @ lucian @ c:irua:139930UA @ admin @ c:irua:139930 Serial 4443  
Permanent link to this record
 

 
Author Verduyckt, J.; Van Hoof, M.; De Schouwer, F.; Wolberg, M.; Kurttepeli, M.; Eloy, P.; Gaigneaux, E.M.; Bals, S.; Kirschhock, C.E.A.; De Vos, D.E. url  doi
openurl 
  Title PdPb-catalyzed decarboxylation of proline to pyrrolidine : highly selective formation of a biobased amine in water Type (up) A1 Journal article
  Year 2016 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 6 Issue 6 Pages 7303-7310  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Amino acids have huge potential as platform chemicals in the biobased industry. Pd-catalyzed decarboxylation is a very promising route for the valorization of these natural compounds derived from protein waste or fermentation. We report that the highly abundant and nonessential amino acid L-proline is very reactive in the Pd-catalyzed decarboxylation. Full conversions are obtained with Pd/C and different Pd/MeOx catalysts; this allowed the identification of the different side reactions and the mapping of the reaction network. Due to the high reactivity of pyrrolidine, the selectivity for pyrrolidine was initially low. By carefully modifying Pd/ZrO2 with Pb in a controlled manner-via two incipient wetness impregnation steps-the selectivity increased remarkably. Finally, a thorough investigation of the reaction parameters resulted in an increased activity of this modified catalyst and an even further enhanced selectivity under a low H-2 pressure of 4 bar at 235 degrees C in water. This results in a very selective and sustainable production route for the highly interesting pyrrolidine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387306100005 Publication Date 2016-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited 27 Open Access OpenAccess  
  Notes ; J.V. and F.D.S. thank Fonds Wetenschappelijk Onderzoek (FWO) and Agency for Innovation by Science and Technology (IWT) for doctoral fellowships. D.D.V. acknowledges IWT and FWO for research project funding. D.D.V. and C.E.A.K. acknowledge the Flemish government for long-term structural funding through Methusalem. D.D.V. and S.B. acknowledge Belspo (IAP-PAI 7/05) for financial support. S.B. is grateful for funding by the European Research Council (ERC starting grant no. 335078-COLOURATOMS). The authors also thank the Department of Chemistry, University of Cologne, Germany for use of their XRD equipment. Finally, the assistance of Karel Duerinckx, Werner Wouters, Walter Vermandel, Ivo Stassen, Dries Jonckheere, Sabina Accardo and Bart Bueken with 11-1 NMR, pressure reactors, CO chemisorption, N<INF>2</INF> physisorption, SEM, gas phase FTIR and high-throughput XRD, respectively, is very much appreciated. ; ecas_Sara Approved Most recent IF: 10.614  
  Call Number UA @ lucian @ c:irua:139171 Serial 4445  
Permanent link to this record
 

 
Author Grzelczak, M.; Sanchez-Iglesias, A.; Heidari, H.; Bals, S.; Pastoriza-Santos, I.; Perez-Juste, J.; Liz-Marzan, L.M. url  doi
openurl 
  Title Silver Ions Direct Twin-Plane Formation during the Overgrowth of Single-Crystal Gold Nanoparticles Type (up) A1 Journal article
  Year 2016 Publication ACS Omega Abbreviated Journal  
  Volume 1 Issue 1 Pages 177-181  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is commonly agreed that the crystalline structure of seeds dictates the crystallinity of final nanoparticles in a seeded-growth process. Although the formation of monocrystalline particles does require the use of single-crystal seeds, twin planes may stem from either single-or polycrystalline seeds. However, experimental control over twin-plane formation remains difficult to achieve synthetically. Here, we show that a careful interplay between kinetics and selective surface passivation offers a unique handle over the emergence of twin planes (in decahedra and triangles) during the growth over single-crystalline gold nanoparticles of quasi-spherical shape. Twinning can be suppressed under conditions of slow kinetics in the presence of silver ions, yielding single-crystalline particles with high-index facets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000391203300002 Publication Date 2016-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-1343;2470-1343; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 18 Open Access OpenAccess  
  Notes ; This work was supported by the Spanish Ministerio de Economia y Competitividad MINECO (grants: MAT2013-46101-R, MAT2013-49375-EXP, MAT2013-45168-R). Financial support is acknowledged by the European Research Council (ERC Advanced Grant # 267867, PLASMAQUO; ERC Starting Grant #335078-COLOURATOM). ; ecas_Sara Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:140398 Serial 4446  
Permanent link to this record
 

 
Author Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. pdf  doi
openurl 
  Title Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations Type (up) A1 Journal article
  Year 2016 Publication Dental materials Abbreviated Journal Dent Mater  
  Volume 32 Issue 12 Pages E327-E337  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Objective. The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y2O3 content and La2O3 doping on the translucency. Methods. Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n = 6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n = 10), single edge V-notched beam (SEVNB) fracture toughness (n = 8) and Vickers hardness (n = 10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n = 3) after accelerated hydrothermal aging in steam at 134 degrees C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (alpha = 0.05). Results. Lowering the alumina content below 0.25 wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5 mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2 mol% La2O3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La2O3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. Significance. Three different approaches were compared to improve the translucency of 3YTZP ceramics. (C) 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000389516400003 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0109-5641 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.07 Times cited 47 Open Access  
  Notes Approved Most recent IF: 4.07  
  Call Number UA @ lucian @ c:irua:140246 Serial 4447  
Permanent link to this record
 

 
Author Bez, R.; Zehani, K.; Batuk, M.; Van Tendeloo, G.; Mliki, N.; Bessais, L. doi  openurl
  Title Structure and magnetic properties of Sm(Fe,Si)(9)C/alpha-Fe nanocomposite magnets Type (up) A1 Journal article
  Year 2017 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 695 Issue 695 Pages 810-817  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract SmFe8.75 Si-0.25 C/alpha-Fe nanocomposites have been successfully synthesized using high energy milling, followed by annealing at 750 degrees C. The crystal structure of these compounds was characterized by the Rietveld method using powder X-ray diffraction data. By increasing the concentration of Sm, we observed a decrease in the amount of alpha-Fe phase. The morphology of the samples was determined by scanning and transmission electron microscopy. The average grain size is about 20 nm. The magnetic properties were investigated at room temperature and at 10 K. A ferromagnetic behavior was observed in all samples at both temperatures. An increase of the soft magnetic phase alpha-Fe induced an increase in the magnetization and a decrease in coercivity. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000391817600098 Publication Date 2016-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work is main supported by the CNRS and the “Ministere de l'Enseignement Superieur, de la Recherche Scientifique” (LR99ES17) (Tunisia), PHC-Utique (Project 11/G 1301) and PHC-Maghreb (Project 15MAG07). The authors acknowledge the French SIE doctoral school of the University Paris Est for its support. ; Approved Most recent IF: 3.133  
  Call Number UA @ lucian @ c:irua:140380 Serial 4448  
Permanent link to this record
 

 
Author Ryabova, A.S.; Bonnefont, A.; Zagrebin, P.; Poux, T.; Sena, R.P.; Hadermann, J.; Abakumov, A.M.; Kerangueven, G.; Istomin, S.Y.; Antipov, E.V.; Tsirlina, G.A.; Savinova, E.R. doi  openurl
  Title Study of hydrogen peroxide reactions on manganese oxides as a tool to decode the oxygen reduction reaction mechanism Type (up) A1 Journal article
  Year 2016 Publication ChemElectroChem Abbreviated Journal Chemelectrochem  
  Volume 3 Issue 3 Pages 1667-1677  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hydrogen peroxide has been detected as a reaction intermediate in the electrochemical oxygen reduction reaction (ORR) on transition-metal oxides and other electrode materials. In this work, we studied the electrocatalytic and catalytic reactions of hydrogen peroxide on a set of Mn oxides, Mn2O3, MnOOH, LaMnO3, MnO2, and Mn3O4, that adopt different crystal structures to shed light on the mechanism of the ORR on these materials. We then combined experiment with kinetic modeling with the objective to correlate the differences in the ORR activity to the kinetics of the elementary reaction steps, and we uncovered the importance of structural and compositional factors in the catalytic activity of the Mn oxides. We concluded that the exceptional activity of Mn2O3 in the ORR is due to its high catalytic activity both in the reduction of oxygen to hydrogen peroxide and in the decomposition of the latter, and furthermore, we proposed a tentative link between crystal structure and reactivity.  
  Address  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Place of publication unknown Editor  
  Language Wos 000388377200019 Publication Date 2016-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.136 Times cited 20 Open Access  
  Notes Approved Most recent IF: 4.136  
  Call Number UA @ lucian @ c:irua:139202 Serial 4449  
Permanent link to this record
 

 
Author D'Olieslaeger, L.; Pfannmöller, M.; Fron, E.; Cardinaletti, I.; Van der Auweraer, M.; Van Tendeloo, G.; Bals, S.; Maes, W.; Vanderzande, D.; Manca, J.; Ethirajan, A. pdf  url
doi  openurl
  Title Tuning of PCDTBT : PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells Type (up) A1 Journal article
  Year 2017 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 159 Issue 159 Pages 179-188  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We report the controlled preparation of water processable nanoparticles (NPs) employing the push-pull polymer PCDTBT and the fullerene acceptor PC71BM in order to enable solar cell processing using eco-friendly solvent (i.e. water). The presented method provides the possibility to separate the formation of the active layer blend and the deposition of the active layer into two different processes. For the first time, the benefits of aqueous processability for the high-potential class of push-pull polymers, generally requiring high boiling solvents, are made accessible. With our method we demonstrate excellent control over the blend stoichiometry and efficient mixing. Furthermore, we provide visualization of the nano morphology of the different NPs to obtain structural information down to similar to 2 nm resolution using advanced analytical electron microscopy. The imaging directly reveals very small compositional demixing in the PCDTBT:PC71BM blend NPs, in the size range of about <5 nm, indicating fine mixing at the molecular level. The suitability of the proposed methodology and materials towards the aspects of eco-friendly processing of organic solar cells is demonstrated through a processing of lab scale NPs solar cell prototypes reaching a power conversion efficiency of 1.9%. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000388053600021 Publication Date 2016-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 32 Open Access OpenAccess  
  Notes ; This work was supported by BOF funding of Hasselt University, the Interreg project Organext, and the IAP 7/05 project FS2 (Functional Supramolecular Systems), granted by the Science Policy Office of the Belgian Federal Government (BELSPO). A.E. is a post-doctoral fellow of the Flanders Research Foundation (FWO). M.P. gratefully acknowledges the SIM NanoForce program for financial support. S.B. further acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors are thankful for technical support by J. Smits, T. Vangerven, and J. Baccus. ; ecas_sara Approved Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:139157UA @ admin @ c:irua:139157 Serial 4450  
Permanent link to this record
 

 
Author Rahemi, V.; Sarmadian, N.; Anaf, W.; Janssens, K.; Lamoen, D.; Partoens, B.; De Wael, K. pdf  url
doi  openurl
  Title Unique opto-electronic structure and photo reduction properties of sulfur doped lead chromates explaining their instability in paintings Type (up) A1 Journal article
  Year 2017 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 89 Issue 89 Pages 3326-3334  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Chrome yellow refers to a group of synthetic inorganic pigments that became popular as an artists material from the second quarter of the 19th century. The color of the pigment, in which the chromate ion acts as a chromophore, is related to its chemical composition (PbCr1-xSxO4, with 0≤x≤0.8) and crystalline structure (monoclinic/orthorhombic). Their shades range from the yellow-orange to the paler yellow tones with increasing sulfate amount. These pigments show remarkable signs of degradation after limited time periods. Pure PbCrO4 (crocoite in its natural form) has a deep yellow color and is relatively stable, while the co-precipitate with lead sulfate (PbCr1-xSxO4) has a paler shade and seems to degrade faster. This degradation is assumed to be related to the reduction of Cr(VI) to Cr(III). We show that on increasing the sulfur(S)-content in chrome yellow, the band gap increases. Typically, when increasing the band gap, one might assume that a decrease in photo activity is the result. However, the photo activity relative to the Cr content, and thus Cr reduction, of sulfur-rich PbCr1-xSxO4 is found to be much higher compared to the sulfur-poor or non-doped lead chromates. This discrepancy can be explained by the evolution of the crystal and electronic structure as function of the sulfur content: first-principles density functional theory calculations show that both the absorption coefficient and reflection coefficients of the lead chromates change as a result of the sulfate doping in such a way that the generation of electron-hole pairs under illumination relative to the total Cr content increases. These changes in the material properties explain why paler shade yellow colors of this pigment are more prone to discoloration. The electronic structure calculations also demonstrate that lead chromate and its co-precipitates are p-type semiconductors, which explains the observed reduction reaction. As understanding this phenomenon is valuable in the field of cultural heritage, this study is the first joint action of photo-electrochemical measurements and first-principles calculations to approve the higher tendency of sulfur-rich lead chromates to darken.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000397478300015 Publication Date 2017-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 7 Open Access OpenAccess  
  Notes ; The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government, department EWI. The BOF-GOA action SOLARPAINT of the University of Antwerp Research Council is acknowledged for financial support. W.A. acknowledges support from BELSPO project S2-ART. Dr. L. Monico and Dr. C. Miliani (ISTM, Perugia) are gratefully acknowledged for helpful discussions and for providing some of the initial batches of the materials studied. ; Approved Most recent IF: 6.32  
  Call Number UA @ lucian @ c:irua:140886 Serial 4451  
Permanent link to this record
 

 
Author Kuno, Y.; Tassel, C.; Fujita, K.; Batuk, D.; Abakumov, A.M.; Shitara, K.; Kuwabara, A.; Moriwake, H.; Watabe, D.; Ritter, C.; Brown, C.M.; Yamamoto, T.; Takeiri, F.; Abe, R.; Kobayashi, Y.; Tanaka, K.; Kageyama, H. pdf  doi
openurl 
  Title ZnTaO2N: Stabilized High-Temperature LiNbO3-type Structure Type (up) A1 Journal article
  Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 15950-15955  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract By using a high-pressure reaction, we prepared a new oxynitride ZnTaO2N that crystallizes in a centrosymmetric (R (3) over barc) high-temperature LiNbO3-type structure (HTLN-type). The stabilization of the HTLN-type structure down to low temperatures (at least 20 K) makes it possible to investigate not only the stability of this phase, but also the phase transition to a noncentrosymmetric (R3c) LiNbO3-type structure (LN-type) which is yet to be clarified. Synchrotron and neutron diffraction studies in combination with transmission electron microscopy show that Zn is located at a disordered 12c site instead of 6a, implying an order disorder mechanism of the phase transition. It is found that the dosed d-shell of Zn2+, as well as the high-valent Ta5+ ion, is responsible for the stabilization of the HTLN-type structure, affording a novel quasitriangular ZnO2N coordination. Interestingly, only 3% Zn substitution for MnTaO2N induces a phase transition from LN- to HTLN-type structure, implying the proximity in energy between the two structural types, which is supported by the first-principles calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000389962800032 Publication Date 2016-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 13 Open Access  
  Notes Approved Most recent IF: 13.858  
  Call Number UA @ lucian @ c:irua:140298 Serial 4452  
Permanent link to this record
 

 
Author Blommaerts, N.; Asapu, R.; Claes, N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Gas phase photocatalytic spiral reactor for fast and efficient pollutant degradation Type (up) A1 Journal article
  Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 316 Issue 316 Pages 850-856  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photocatalytic reactors for the degradation of gaseous organic pollutants often suffer from major limitations such as small reaction area, sub-optimal irradiation conditions and thus limited reaction rate. In this work, an alternative solution is presented that involves a glass tube coated on the inside with (silvermodified) TiO2 and spiraled around a UVA lamp. First, the spiral reactor is coated from the inside with TiO2 using an experimentally verified procedure that is optimized toward UV light transmission. This procedure is kept as simple as possible and involves a single casting step of a 1 wt% suspension of TiO2 in ethanol through the spiral. This results in a coated tube that absorbs nearly all incident UV light under the experimental conditions used. The optimized coated spiral reactor is then benchmarked to a conventional annular photoreactor of the same outer dimensions and total catalyst loading over a broad range of experimental conditions. Although residence time distribution experiments indicate slightly longer dwelling of molecules in the spiral reactor, no significant difference in by-passing of gas between the spiral reactor and the annular reactor can be claimed. Acetaldehyde degradation efficiency of 100% is obtained with the spiral reactor for a residence time as low as 60 s, whereas the annular reactor could not achieve full degradation even at 1000 s residence time. In a final case study, addition of long-term stable silver nanoparticles, protected by an ultra-thin polymer shell applied via the layer-by-layer (LbL) method, to the spiral reactor coating is shown to double the degradation efficiency and provides an interesting strategy to cope with higher pollutant concentrations without changing the overall dimensions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398985200089 Publication Date 2017-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 30 Open Access OpenAccess  
  Notes N.B. wishes to thank the University of Antwerp – Belgium for financial support. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078- COLOURATOM). S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 6.216  
  Call Number EMAT @ emat @ c:irua:140925UA @ admin @ c:irua:140925 Serial 4481  
Permanent link to this record
 

 
Author Zhong, Z.; Goris, B.; Schoenmakers, R.; Bals, S.; Batenburg, K.J. pdf  url
doi  openurl
  Title A bimodal tomographic reconstruction technique combining EDS-STEM and HAADF-STEM Type (up) A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 174 Issue 174 Pages 35-45  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A three-dimensional (3D) chemical characterization of nanomaterials can be obtained using tomography based on high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) or energy dispersive X-ray spectroscopy (EDS) STEM. These two complementary techniques have both advantages and disadvantages. The Z-contrast images have good image quality but lack robustness in the compositional analysis, while the elemental maps give more element-specific information, but at a low signal-to-noise ratio and a longer exposure time. Our aim is to combine these two types of complementary information in one single tomographic reconstruction process. Therefore, an imaging model is proposed combining both HAADF-STEM

and EDS-STEM. Based on this model, the elemental distributions can be reconstructed using both types of information simultaneously during the reconstruction process. The performance of the new technique is evaluated using simulated data and real experimental data. The results demonstrate that combining two imaging modalities leads to tomographic reconstructions with suppressed noise and enhanced contrast.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403342200005 Publication Date 2016-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 26 Open Access OpenAccess  
  Notes This research is supported by the Dutch Technology Foundation STW (http://www.stw.nl/), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs, Agriculture and Innovation under project number 13314. It is also supported by the Flemish research foundation (FWO Vlaanderen) by project funding (G038116N) and a postdoctoral research grant to B.G. Funding from the European Research Council (Starting Grant No. COLOURATOMS 335078) is acknowledged by S.B. The authors would like to thank Dr. Bernd Rieger and Dr. Richard Aveyard for useful discussions, and Prof. Dr. Luis M. Liz-Marzan for providing the investigated samples. We also acknowledge COST Action MP1207 for networking support. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ c:irua:141719UA @ admin @ c:irua:141719 Serial 4484  
Permanent link to this record
 

 
Author Zhuge, X.; Jinnai, H.; Dunin-Borkowski, R.E.; Migunov, V.; Bals, S.; Cool, P.; Bons, A.-J.; Batenburg, K.J. pdf  url
doi  openurl
  Title Automated discrete electron tomography – Towards routine high-fidelity reconstruction of nanomaterials Type (up) A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 175 Issue 175 Pages 87-96  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and non-repeatability. In this paper, we present the application of a new

iterative reconstruction technique, named TVR-DART, for discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging modes. By further reducing the available tilt range and number of projections, we show that the

proposed technique can still produce consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403342500008 Publication Date 2017-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 22 Open Access OpenAccess  
  Notes This work has been supported in part by the Stichting voor de Technische Wetenschappen (STW) through a personal grant (Veni,13610), and was in part by ExxonMobil Chemical Europe Inc. The authors further acknowledge financial support from the University of Antwerp through BOF GOA funding. S.B. acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). R.D.B. is grateful for funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013)/ ERC grant agreement number 320832. Thomas Altantzis is gratefully acknowledged for acquiring the Anatase nanosheets dataset. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ c:irua:141218UA @ admin @ c:irua:141218 Serial 4485  
Permanent link to this record
 

 
Author Benetti, G.; Cavaliere, E.; Canteri, A.; Landini, G.; Rossolini, G.M.; Pallecchi, L.; Chiodi, M.; Van Bael, M.J.; Winckelmans, N.; Bals, S.; Gavioli, L. pdf  url
doi  openurl
  Title Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles Type (up) A1 Journal article
  Year 2017 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 5 Issue 5 Pages 036105  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Ultrathin coatings based on bi-elemental nanoparticles (NPs) are very promising to limit the surface-related spread of bacterial pathogens, particularly in nosocomial environments. However, tailoring the synthesis, composition, adhesion to substrate, and antimicrobial spectrum of the coating is an open challenge. Herein, we report on a radically new nanostructured coating, obtained by a one-step gas-phase deposition technique, and composed of bi-elemental Janus type Ag/Ti NPs. The NPs are characterized by a cluster-in-cluster mixing phase with metallic Ag nano-crystals embedded in amorphous TiO2 and present a promising antimicrobial activity including also multidrug resistant strains. We demonstrate the flexibility of the method to tune the embedded Ag nano-crystals dimension, the total relative composition of the coating, and the substrate type, opening the possibility of tailoring the dimension, composition, antimicrobial spectrum, and other physical/chemical properties of such multi-elemental systems. This work is expected to significantly spread the range of applications of NPs coatings, not only as an effective tool in the prevention of healthcare-associated infections but also in other technologically relevant fields like sensors or nano-/micro joining.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398951000014 Publication Date 2017-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 21 Open Access OpenAccess  
  Notes We thank Urs Gfeller for the XRF measurements, Francesco Banfi for valuable discussions on the manuscript and Giulio Viano for his valuable support in the microbiological analysis. The authors acknowledge the financial support of Universita Cattolica del Sacro Cuore through D.2.2 and D.3.1 grants and from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). REFERENCES Approved Most recent IF: 4.335  
  Call Number EMAT @ emat @ c:irua:141723UA @ admin @ c:irua:141723 Serial 4479  
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Karakulina, O.M.; Batuk, M.; Cabioc’h, T.; Hadermann, J.; Delville, R.; Lambrinou, K.; Vleugels, J. pdf  url
doi  openurl
  Title Synthesis of MAX Phases in the Zr-Ti-Al-C System Type (up) A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 56 Issue 56 Pages 3489-3498  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This study reports on the synthesis and characterization of MAX phases in the (Zr,Ti)n+1AlCn system. The MAX phases were synthesized by reactive hot pressing and pressureless sintering in the 1350–1700 °C temperature range. The produced ceramics contained large fractions of 211 and 312 (n = 1, 2) MAX phases, while strong evidence of a 413 (n = 3) stacking was found. Moreover, (Zr,Ti)C, ZrAl2, ZrAl3, and Zr2Al3 were present as secondary phases. In general, the lattice parameters of the hexagonal 211 and 312 phases followed Vegard’s law over the complete Zr-Ti solid solution range, but the 312 phase showed a non-negligible deviation from Vegard’s law around the (Zr0.33,Ti0.67)3Al1.2C1.6 stoichiometry. High-resolution scanning transmission electron microscopy combined with X-ray diffraction demonstrated ordering of the Zr and Ti atoms in the 312 phase, whereby Zr atoms occupied preferentially the central position in the close-packed M6X octahedral layers. The same ordering was also observed in 413 stackings present within the 312 phase. The decomposition of the secondary (Zr,Ti)C phase was attributed to the miscibility gap in the ZrC-TiC system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397171100045 Publication Date 2017-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 26 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G.0431.10N.F ; Agentschap voor Innovatie door Wetenschap en Technologie, 131081 ; European Atomic Energy Community, 604862 ; SCK-CEN Academy for Nuclear Science and Technology; Hercules Foundation, Project/Award no: AKUL/1319 Project/Award no: ZW09-09 ; Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @ c:irua:141794 Serial 4491  
Permanent link to this record
 

 
Author van der Stam, W.; Geuchies, J.J.; Altantzis, T.; van den Bos, K.H.W.; Meeldijk, J.D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; de Mello Donega, C. pdf  url
doi  openurl
  Title Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3Perovskite Nanocrystals through Cation Exchange Type (up) A1 Journal article
  Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 139 Pages 4087-4097  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal CsPbX3 (X = Br, Cl, and I) perovskite nanocrystals (NCs) have emerged as promising phosphors and solar cell materials due to their remarkable optoelectronic properties. These properties can be tailored by not only controlling the size and shape of the NCs but also postsynthetic composition tuning through topotactic

anion exchange. In contrast, property control by cation exchange is still underdeveloped for colloidal CsPbX3 NCs. Here, we present a method that allows partial cation exchange in colloidal CsPbBr3 NCs, whereby Pb2+ is exchanged for several isovalent cations, resulting in doped CsPb1−xMxBr3 NCs (M= Sn2+, Cd2+, and Zn2+; 0 < x ≤ 0.1), with preservation of the original NC shape. The size of the parent NCs is also preserved in the product NCs, apart from a small (few

%) contraction of the unit cells upon incorporation of the guest cations. The partial Pb2+ for M2+ exchange leads to a blue-shift of the optical spectra, while maintaining the high photoluminescence quantum yields (>50%), sharp absorption features, and narrow emission of the parent CsPbBr3 NCs. The blue-shift in the optical spectra is attributed to the lattice contraction that accompanies the Pb2+ for M2+ cation exchange and is observed to scale linearly with the lattice contraction. This work opens up new possibilities to engineer the properties of halide perovskite NCs, which to date are demonstrated to be the only known

system where cation and anion exchange reactions can be sequentially combined while preserving the original NC shape, resulting in compositionally diverse perovskite NCs.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397477700027 Publication Date 2017-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 535 Open Access OpenAccess  
  Notes W.v.d.S. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under grant number ECHO.712.012.001. J.J.G. and D.V. acknowledge financial support from the Debye Graduate program. S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). K.H.W.v.d.B., S.B., S.V.A. and T.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0368.15N, G.0369.15N), a Ph.D. grant to K.H.W.v.d.B, and a postdoctoral research grant to T.A. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:141754UA @ admin @ c:irua:141754 Serial 4482  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Tyablikov, O.A.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Crystal Structure, Defects, Magnetic and Dielectric Properties of the Layered Bi3n+1Ti7Fe3n-3,O9n+11 Perovskite-Anatase lntergrowths Type (up) A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 56 Issue 56 Pages 931-942  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Bi3n+1Ti7Fe3n-3,O9n+11 materials are built of (001)(p) plane parallel perovskite blocks with a thickness of n (Ti,Fe)O-6 octahedra, separated by periodic translational interfaces. The interfaces are based on anatase-like chains of edge -sharing (Ti,Fe)O-6 octahedra. Together with the octahedra of the perovskite blocks, they create S-shaped tunnels stabilized by lone pair Bi3+ cations. In this work, the structure of the n = 4-6 Bi3n+1Ti7Fe3n-3,O9n+11 homologues is analyzed in detail using advanced transmission electron microscopy, powder X-ray diffraction, and Mossbauer spectroscopy. The connectivity of the anatase-like chains to the perovskite blocks results in,a 3ap periodicity along the interfaces, so that they can be located either on top of each other or with shifts of +/- a(p) along [100](p). The ordered arrangement of the interfaces gives rise to orthorhombic Immm and monoclinic A2/m polymorphs with the unit cell parameters a = 3a(p), b = b(p), c = 2(n + 1)c(p) and a = 3a(p), b = b(p), c = 2(n + 1)c(p) – a(p), respectively. While the n = 3 compound is orthorhombic, the monoclinic modification is more favorable in higher homologues. The Bi3n+1Ti7Fe3n-3,O9n+11 structures demonstrate intricate patterns of atomic displacements in the perovskite blocks, which are supported by the stereochemical activity of the Bi3+ cations. These patterns are coupled to the cationic coordination of the oxygen atoms in the (Ti,Fe)O-2 layers at the border of the perovskite blocks. The coupling is strong in the 1/ = 3, 4 homologues, but gradually reduces with the increasing thickness of the perovskite blocks, so that, in the n = 6 compound, the dominant mode of atomic displacements is aligned along the interface planes. The displacements in the adjacent perovskite blocks tend to order antiparallel, resulting in an overall antipolar structure. The Bi3n+1Ti7Fe3n-3,O9n+11 materials demonstrate an unusual diversity of structure defects. The n = 4-6 homologues are robust antiferromagnets below T-N = 135, 220, and 295 K, respectively. They show a high dielectric constant that weakly increases with temperature and is relatively insensitive to the Ti/Fe ratio.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000392262400029 Publication Date 2016-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access  
  Notes ; The work was supported by the Russian Science Foundation (grant 14-13-00680). ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:141471 Serial 4495  
Permanent link to this record
 

 
Author Béché, A.; Rouvière, J.L.; Barnes, J.P.; Cooper, D. doi  openurl
  Title Dark field electron holography for strain measurement Type (up) A1 Journal article
  Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 111 Issue 3 Pages 227-238  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000288638200007 Publication Date 2010-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 31 Open Access  
  Notes Approved Most recent IF: 2.843; 2011 IF: 2.471  
  Call Number UA @ lucian @ c:irua:136368 Serial 4496  
Permanent link to this record
 

 
Author Jalabert, D.; Pelloux-Gervais, D.; Béché, A.; Hartmann, J.M.; Gergaud, P.; Rouvière, J.L.; Canut, B. doi  openurl
  Title Depth strain profile with sub-nm resolution in a thin silicon film using medium energy ion scattering Type (up) A1 Journal article
  Year 2012 Publication Physica Status Solidi A-Applications And Materials Science Abbreviated Journal Phys Status Solidi A  
  Volume 209 Issue 2 Pages 265-267  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The depth strain profile in silicon from the Si (001) substrate to the surface of a 2 nm thick Si/12 nm thick SiGe/bulk Si heterostructure has been determined by medium energy ion scattering (MEIS). It shows with sub-nanometer resolution and high strain sensitivity that the thin Si cap presents residual compressive strain caused by Ge diffusion coming from the fully strained SiGe layer underneath. The strain state of the SiGe buffer have been checked by X-ray diffraction (XRD) and nano-beam electron diffraction (NBED) measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303382700005 Publication Date 2011-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.775; 2012 IF: 1.469  
  Call Number UA @ lucian @ c:irua:136430 Serial 4497  
Permanent link to this record
 

 
Author Rozova, M.G.; Grigoriev, V.V.; Tyablikov, O.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Antipov, E.V.; Abakumov, A.M. pdf  doi
openurl 
  Title Doping of Bi4Fe5O13F with pentagonal Cairo lattice with Cr and Mn: Synthesis, structure and magnetic properties Type (up) A1 Journal article
  Year 2017 Publication Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 87 Issue 87 Pages 54-60  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The substitution of Cr3+ and Mn3+ for Fe3+ in the Bi4Fe6O13F oxyfluoride featuring the magnetically frustrated pentagonal Cairo lattice is reported. Bi4Fe4.1Cr0.9O13F and BiFe4.2Mn0.8O13F have been prepared using a solid state reaction in inert atmosphere. Their crystal structures were studied with transmission electron microscopy, powder X-ray diffraction and Fe-57 Mossbauer spectroscopy (S.G. P4(2)/mbc, a = 8.27836(2)angstrom, c = 18.00330(9) angstrom, R-F = 0.031 (Bi4Fe4.1Cr0.9O13F)), a= 8.29535(3)angstrom, c= 18.0060(1)angstrom, R-F = 0.027 (Bi4Fe4.1Cr0.9O13F)). The structures are formed by infinite rutile-like chains of the edge sharing BO6 octahedra (B transition metal cations) linked by the Fe2O7 groups of two corner-sharing tetrahedra. The"voids in thus formed framework are occupied by the Bi4F tetrahedra. The Fe-57 Mossbauer spectroscopy reveals that Cr3+ and Mn3+ replace Fe3+. exclusively at the octahedral positions. The Mn- and Cr-doped compounds demonstrate antiferromagnetic ordering below T-N =165 K and 120 K, respectively. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000392681800009 Publication Date 2016-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 1 Open Access Not_Open_Access  
  Notes ; The work has been supported by the Russian Science Foundation (grant 14-13-00680). ; Approved Most recent IF: 2.446  
  Call Number UA @ lucian @ c:irua:141535 Serial 4498  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: