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Abstract8

A three-dimensional (3D) chemical characterization of nanomaterials can be obtained using tomography9

based on high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM)10

or energy dispersive X-ray spectroscopy (EDS) STEM. These two complementary techniques have both11

advantages and disadvantages. The Z-contrast images have good image quality but lack robustness in the12

compositional analysis, while the elemental maps give more element-specific information, but at a low13

signal-to-noise ratio and a longer exposure time. Our aim is to combine these two types of complementary14

information in one single tomographic reconstruction process. Therefore, an imaging model is proposed15

combining both HAADF-STEM and EDS-STEM. Based on this model, the elemental distributions can16

be reconstructed using both types of information simultaneously during the reconstruction process. The17

performance of the new technique is evaluated using simulated data and real experimental data. The18

results demonstrate that combining two imaging modalities leads to tomographic reconstructions with19

suppressed noise and enhanced contrast.20

1. Introduction21

Electron tomography (ET) is nowadays commonly used in materials science to characterize the22

three-dimensional (3D) structure and composition of nanomaterials starting from a tilt series of two-23

dimensional (2D) projection images [1]. Typically, the projection images for ET in materials science24

are obtained using high angle annular dark-field (HAADF) scanning transmission electron microscopy25

(STEM) [2, 3]. Images acquired using HAADF-STEM are called Z-contrast images because the pro-26

jected intensity is related to the average atomic number that is integrated along the projection direction27

[2, 4]. Consequently, the chemical composition can be characterized in 3D. However, when investigating28

heteronanostructures with small differences in Z, spectroscopic techniques are required to investigate the29

3D distributions of the different chemical elements.30

31

Previously, both energy dispersive X-ray spectroscopy (EDS) [5, 6, 7, 8] and electron energy loss spec-32

troscopy (EELS) [9, 10, 11] have been used in combination with tomographic reconstruction techniques.33

Both techniques require similar computational steps to produce element-specific images (elemental maps)34

that give the 2D projections of a chemical element, which also satisfy the projection requirement for to-35
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mography under certain circumstances [8, 10]. In this study, we only focus on EDS-STEM tomography.36

37

HAADF-STEM tomography and EDS-STEM tomography are highly complementary techniques that38

each have advantages and disadvantages. The major advantage of HAADF-STEM tomography in com-39

parison to EDS-STEM tomography is that it yields reconstructions with a relatively high signal to noise40

ratio (SNR). However, the reconstructed image intensities contain only aggregate information of all ele-41

ments, while the EDS-STEM technique yields element-specific reconstructions. So far, HAADF-STEM42

has been combined with EDS-STEM in ET in terms of tilt series alignment [12], density estimation [13]43

or thickness estimation [14]. It is highly desirable to develop reconstruction techniques that can exploit44

the favorable properties of these complementary techniques simultaneously. The concept of ”multimodal45

imaging” has been introduced in the field of medical imaging, where the data from several imaging46

modalities such as PET, SPECT, CT and MRI are combined in a single joint reconstruction procedure47

[15].48

49

In this paper, we introduce the multi-modal imaging concept to ET, by proposing a novel HAADF-50

EDS bimodal tomographic (HEBT) reconstruction technique that simultaneously reconstructs from pro-51

jection images acquired by two complementary imaging modalities. In this method, chemical elements52

are linked in the reconstruction process but separated in the final output. The aim of our algorithm is53

to keep the element-specific feature of elemental maps while preserving the high SNR of Z-contrast images.54

55

Section 2 will begin with discussing the mathematical models of HAADF-STEM tomography and56

EDS-STEM tomography. A new approach to link the models will be proposed and the HAADF-EDS57

bimodal tomographic reconstruction technique will be explained. In Section 3 and 4, we will investigate58

the performance of the new technique using both simulated and experimental data. In Section 5, the59

advantages and the outlook of HEBT will be discussed.60

61

2. Projection Models and the Reconstruction Method62

2.1. HAADF-STEM and EDS-STEM imaging models63

Suppose there are k chemical elements in a specimen, we have k volumetric objects as the unknowns64

to be reconstructed, so the distribution of each chemical element is represented by a voxel image. Images65

formed by HAADF-STEM and EDS-STEM are related to the density distributions of these chemical66

elements.67

68

For HAADF-STEM projection images, it is known that the intensity is proportional to the number69

of electrons scattered at high angles. For a single atom, the number of these electrons is proportional to70

the scattering cross section which depends on its atomic number [16, 17, 18]. For thin-film specimens in71

which multiple scattering and absorption is negligible, the number of scattered electrons ph equals the72

sum of scattering cross sections of all the atoms probed by the electron beam:73
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ph =

k∑
e=1

σ(e)N (e) =

k∑
e=1

σ(e)

∫
ρ(e)(t)dt

M (e)
, (1)

where e = 1, 2, . . . k are the indices denoting the type of chemical element, σ(e) is the scattering cross74

section, N (e) is the number of atoms, ρ(e)(t) is the mass-thickness and M (e) is the atomic weight. By75

defining the HAADF-STEM response factor z(e) =
σ(e)

M (e)
, the image grayscale is concisely expressed as76

the weighted sum of mass-thickness of all atoms:77

ph =

k∑
e=1

z(e)
∫
ρ(e)(t)dt. (2)

78

79

For the sake of numerical computation, the volume to be reconstructed is often discretized into80

N equally-spaced voxels. Thus, the density distribution of chemical element e is written as a vector81

ρ(e) ∈ RN , e = 1, 2, . . . k. The Z-contrast images used as tomographic reconstruction inputs are taken82

at different tilt angles, where every pixel specifically corresponds to a beam position and a tilted angle83

of the specimen. In total there are M pixels for all the tilted images. The grayscale on the ith pixel is84

now written as an entry phi in ph ∈ RM . Now the continuous line integral in Eq. 2 is replaced by the85

discrete ray-sum as:86

phi =

k∑
e=1

z(e)
N∑
j=1

wijρ
(e)
j , (3)

where the factor wij is determined by the area intersected between the ith ray integral and the jth voxel87

(see Chapter 7.1 in [19]). Note that in the conventional HAADF-STEM tomography where the recon-88

struction models are defined by phi =
∑N
j=1 wijxj , the reconstructed quantity is actually

∑k
e=1 z

(e)ρ
(e)
j ,89

which describes the distribution of the weighted sum of densities.90

91

Unlike in HAADF-STEM tomography where projection images contain information about all atom92

types simultaneously, in EDS-STEM tomography each chemical element has its own series of tilted93

element-specific images, which depicts the projection of the chemical element and are usually called94

elemental maps (see more in [20, 21] and chapter 4 in [22]). Their grayscales correspond to the photon95

counts of the characteristic X-ray of a chemical element. Under the thin-film approximation in which96

X-ray absorption and fluorescence is negligible, the characteristic X-rays counts p(e) for the eth chemical97

element is proportional to the mass-thickness of this chemical element probed by the electron beam98

(discussed in [23, 22]), which we define here as:99

p(e) = ζ(e)
∫
ρ(e)(t)dt, (4)

where ζ(e) is the EDS-STEM response factor that characterizes how many characteristic X-ray counts100

are collected for a unit amount of the chemical element. Using the same notations as Eq. 3, the line101

integral relationship can be written in a discrete form as:102
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p
(e)
i = ζ(e)

N∑
j=1

wijρ
(e)
j . (5)

Based on the model, each chemical element can be characterized independently. Please note that in103

EDS-STEM tomography as in [5, 6, 7], the reconstructed quantity is the weighted density distribution104

ζ(e)ρ
(e)
j .105

106

2.2. Linking HAADF-STEM and EDS-STEM107

An obvious and internal connection between the two types of imaging techniques is that their pro-108

jection images are both related to density distributions. However, the relations to density are based109

on different response factors (z(e) and ζ(e)) which are difficult to estimate. To estimate these factors,110

special pure-element specimens need to be prepared and measured with extra labor and cost. Moreover,111

estimated factors are often not reusable since their values vary for different experimental set-ups.112

113

Instead, we estimate the ratio of response factors r(e) = z(e)/ζ(e), which we refer to here as the114

response ratio factors, to link the two types of images. They can be estimated based on the assumption115

that both types of images are linearly related to the projection of density distribution. To be more116

specific, if we replace the
∑N
j=1 wijρ

(e)
j by

p
(e)
i

ζ(e)
(according to Eq. 5) in Eq. 3, we have:117

phi =

k∑
e=1

r(e)p
(e)
i , (6)

where there are k unknowns r(e). For M pixels in the HAADF-STEM and EDS-STEM images, there is118

an overdetermined system of M linear equations for the k unknowns. By solving this system of linear119

equations (e.g. using the linear least squares method), we can estimate the response ratio factors. This120

can be done using only the tomographic projection images and without measuring extra specimens, and121

is the first step to incorporate HAADF-STEM and EDS-STEM in a simultaneous reconstruction process.122

123

2.3. HAADF-EDS bimodal tomographic reconstruction124

By making the substitution x
(e)
j = z(e)ρ

(e)
j , the HAADF-STEM model of Eq. 3 and the EDS-STEM

model of Eq. 5 can be rewritten as:

phi =

k∑
e=1

N∑
j=1

wijx
(e)
j , (7)

r(e)p
(e)
i =

N∑
j=1

wijx
(e)
j . (8)

In a full system of equations, containing an equation for each measured value in each projection125

image, the above equations are written as ph =
∑k
e=1 Wx(e) and r(e)p(e) = Wx(e). We see that both126

systems now have the same unknowns, the images x(e) for all chemical elements. The unknowns x(e)
127

have the same unit as the intensities reconstructed from HAADF-STEM projections, but they can also128
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be transformed into the quantitative distributions of the individual elements for each voxel when EDS129

response factors (ζ factors) are provided.130

131

To obtain reconstructions that are maximally consistent with both HAADF-STEM and EDS-STEM132

data, we should minimize the following residuals for EDS-STEM and HAADF-STEM simultaneously:133

x∗ = argmin
x=(x(1)T ...x(e)T ...x(k)T )T

α2 ‖ ph −
k∑
e=1

Wx(e) ‖22 +(1− α)2
k∑
e=1

‖ r(e)p(e) −Wx(e) ‖22, (9)

where 0 < α < 1 is introduced here to balance between the HAADF-STEM and EDS-STEM terms. The134

square terms are weighted by α2 so that α corresponds to the image intensity. This weighting factor135

determines the weight of the HAADF-STEM term in the reconstruction process and should be chosen136

depending on the noise level of the elemental maps. In principle, α can be arbitrarily chosen between 0137

and 1. However, in practice, if α is too small, the influence from the HAADF-STEM data will be hardly138

observable. Our empirical studies show that a number between 0.7 and 0.9 yields consistent results that139

balance the influences of the two modalities for our experimental data. In Section 3, we will discuss more140

about how the weighting factor influences reconstruction results.141

142

The minimization problem in Eq. (9) can be formulated as a least squares problem:143

x∗ = argmin
x

‖ pa −Wax ‖22, (10)

where144

pa =



(1− α)r(1)p(1)

...

(1− α)r(e)p(e)

...

(1− α)r(k)p(k)

αph


,Wa =



(1− α)W . . . ∅ . . . ∅
...

. . .
...

. . .
...

∅ . . . (1− α)W . . . ∅
...

. . .
...

. . .
...

∅ . . . ∅ . . . (1− α)W

αW . . . αW . . . αW


and x =



x(1)

...

x(e)

...

x(k)


.

(11)

This least square problem can be solved using an iterative algorithm. In this paper, the widely used145

simultaneous iterative reconstruction technique (SIRT) [24] is adopted in the experiments. To incorpo-146

rate the physical constraint that the elemental composition should not have negative values, we apply147

a non-negativity constraint to SIRT by thresholding negative values in every iteration. We refer to the148

complete method as HAADF-EDS bimodal tomography (HEBT).149

150

The SIRT algorithm is more robust to noisy data than the common Weighted Backprojection al-151

gorithm, as it computes a weighted least-squares solution, which effectively averages the noise over all152

projection angles, assuming that the noise follows a normal distribution. We point out that there are153
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tomography reconstruction algorithms that are even more robust with respect to noisy data: (i) statisti-154

cal reconstruction algorithms that model the statistical distribution of the noise and (ii) algorithms that155

incorporate prior knowledge such as discreteness or smoothness of the image. As the noise in the EDS156

data is Poisson distributed, but the noise in the resulting elemental maps follows a different distribution157

that is difficult to model in detail, we consider the Gaussian model to be a solid choice.158

159

3. Experiment Design and Data160

We design three experiments for different purposes. In the first experiment, the HEBT algorithm is161

applied to reconstruct 2D images from simulation data. In this simulation experiment, the stability of162

the HEBT reconstruction technique as a function of the response ratio factors can be investigated.163

164

In the second experiment, we investigated cubic Au-Ag nanoparticles using HEBT. As the two com-165

positions (Au and Ag) are well separated in the particle and have a substantial difference in atomic166

number, the 3D distribution of the different chemical elements can be investigated using HAADF-STEM167

tomography and does not require EDS. Here, this HAADF-STEM reconstruction can be used as ground168

truth to compare the quality of the HEBT reconstructions in comparison to conventional EDS recon-169

structions.170

171

The key advantage of HEBT with respect to conventional HAADF-STEM reconstruction only be-172

comes clear if the HAADF-STEM reconstruction does not allow for straightforward segmentation of the173

elements, either because the difference in Z-contrast between the elements is low, or because the elements174

are mixed at a sub-voxel resolution. In such cases, HEBT can potentially reconstruct the individual 3D175

elemental volumes (not possible by HAADF-STEM), while achieving a more faithful reconstruction at176

lower noise level compared to conventional EDS reconstructions. This advantage is illustrated by the177

results of the third experiment, applying the HEBT algorithm to another nanoparticle in which an alloy178

of Au and Ag is present.179

180

3.1. Phantom Simulation181

The first experiment is based on a 2D phantom image shown in Figure 1, which was created to re-182

semble a slice of the non-alloyed Au-Ag nanoparticle (see Figure 3). Figure 1 (a) and (b) are the Au and183

Ag phantom objects with homogeneous density. Figure 1 (c) is a Z-contrast phantom image of Au and184

Ag phantoms weighted by HAADF-STEM response factors that are assumed to be z(Au) = 791.5 kg/m2
185

and z(Ag) = 471.5 kg/m2 [16]. To simulate projection images, tilt series of projections were computed186

using the ASTRA toolbox [25]. The projection geometry has 512 pixels and 31 tilt angles from −75o to187

75o with a step size of 5o.188

189

The HAADF-STEM sinogram (Figure 1 (f)), which is assumed to be low-noise, is simply assigned as190

the tilt series of the Z-contrast phantom. For EDS-STEM, two sinograms (Figure 1 (d) and (e)) were191
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generated by applying Poisson noise to the tilt series of Au and Ag phantom objects. The EDS-STEM192

mapping process was simulated in a way that the X-ray count on each pixel is rendered as a random193

integer generated from the Poisson distribution. Based on the EDS-STEM models, the mean parameters194

of the Poisson distributions were assigned as the tilt series multiplied by the response factors. The195

response factors were selected as ζ(Au) = 1.88× 10−2 kg/m2 and ζ(Ag) = 2.4× 10−2 kg/m2 so that the196

mean expected numbers of X-ray counts approximate the mean X-ray counts in the elemental maps of197

the first sample (Figure 3 (b) and (c)). A filtering operation using an 8-pixel 1D Gaussian filter was198

applied to the EDS-STEM sinograms as an easy implementation of noise smoothing [26, 8]. The intensity199

of the HAADF-STEM sinogram is at a much larger order of magnitude than the EDS-STEM sinograms.200

  

 

 

 

a b c 

d 

e 

f 

Figure 1: (a) The Au phantom object, (b) the Ag phantom object and (c) the Au-Ag Z-contrast phantom image. (d) The
Au EDS-STEM sinogram, (e) the Ag EDS-STEM sinogram and (f) the HAADF-STEM sinogram.

3.2. Au-Ag Nanoparticles201

For the real-world experiments, tilt series of projection images were acquired using the same proce-202

dures for both Au-Ag samples. First, the sample was mounted on the tomographic holder placed in an203

electron microscope (Tecnai Osiris, FEI company) equipped with four silicon drift detectors (SuperX sys-204

tem, FEI company). During the tilt series, the sample was tilted from −75o to 75o with a tilt increment205

of 5o for the first sample. At each tilt, a Z-contrast image was first recorded by the HAADF detector.206

The sample was then scanned with an acquisition time of 300 seconds to record X-rays spectrum images207

over 2048 energy channels. In order to reduce the shadowing effect of SDD detectors, the detectors on208

one side to which X-rays were blocked were turned off, while the other two detectors on the other side209

were turned on [27]. A tilt series of the second sample was acquired using almost the same procedures210

except that the sample was tilted over 29 steps from −70o to 70o.211

212

The raw data were then processed before being used as tomographic reconstruction input data. For213

HAADF-STEM, the tilt series of Z-contrast projection images were aligned using the cross-correlation214

method. The intensity damping has also been corrected by linearizing the nonlinear intensity-thickness215

relation [28]. For EDS-STEM, the spectrum images were denoised using principal component analysis216
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(PCA) decomposition/reconstruction [13, 29]. The high peaks near 8.040 keV and 8.904 keV come from217

Cu in the holder, which will overwhelm and dominate the other components in PCA if they are included.218

To avoid this, we only took out the energy channels near the Au and Ag peaks for PCA decomposition219

(Figure 2 (b)) (the characteristic peaks are Mα = 2.15 keV, Mβ = 2.20 keV and Lα = 9.70 keV for220

Au, and Lα = 2.98 keV and Lβ = 3.19 keV for Ag). After PCA decomposition, we examined every221

component and selected the first 15 components for PCA reconstruction and abandoned the remaining222

components as noise. Next, the denoised spectrum images near characteristic channels were extracted223

and summed up to the elemental maps (Figure 2 (b)).224

225

Note that since the X-ray counts are very low for such a high resolution, even after PCA denoising226

the elemental maps remain very noisy. Therefore, we applied an averaging image filter with a 12 ×12227

pixel Gaussian kernel (rotational-symmetric) to the elemental maps. Finally, the elemental maps were228

again aligned to match the Z-contrast images using the cross-correlation method. For each sample, the229

data processing steps resulted in three tilt series of projection images for each sample: two tilt series of230

elemental maps and one tilt series of Z-contrast images (see examples in Figure 3).231

232
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Before After 
a 

b 

Figure 2: (a) Spectrum of the Au-Ag nanoparticle before PCA denoising. On the top-right corner show the Au elemental
maps before and after PCA denoising. The yellow boxes indicates where the intensities of the spectrum were extracted.
(b) Zoom-in to the spectrum (black) and the denoised spectrum (green). The colored regions indicated at which channels
the denoised spectrum images were extracted to elemental maps.

9



             

    

a b c 

e f 
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g h 

Figure 3: The upper and bottom rows corresponds to the Au-Ag nanoparticle at tilt angle θ = −75o and the alloyed Au-Ag
nanoparticle at tilt angle θ = 30o respectively. (a) and (e) are Au elemental maps. (b) and (f) are Ag elemental maps. (c)
and (g) are Z-contrast projection images. (d) and (f) are the sum of elemental maps weighted by the estimated response
ratio factors . The image sizes are 300 × 300 pixels.

4. Experimental Results233

In addition to the HEBT reconstructions, we also computed HAADF-STEM tomographic reconstruc-234

tions from Z-contrast projection images and EDS-STEM tomographic reconstructions from elemental235

maps. All the reconstructions were computed using the SIRT algorithm with non-negativity constraints236

unless indicated otherwise. The number of iterations is chosen to be large enough to assure convergence237

of HEBT as well as not too large to avoid over-fitting the least square problem. The weighting factor α238

was chosen as 0.7 unless indicated, which we found to be a good value in our experiments that balances239

the influence of the EDS-STEM and HAADF-STEM data. The response ratio factors used in HEBT240

were estimated by fitting the linear models of Eq. 6 using the non-zero pixels in the tomographic input241

data using the NNLS (Non-negative least squares) algorithm (see chapter 23, page 161, in [30]).242

243

We can assess the image quality of reconstructions with reference images in the first two cases. For244

the simulation, we can compare reconstructions with the phantom images; for the non-alloy Au-Ag245

nanoparticle, we use the segmentations acquired from the Z-contrast reconstructions as the ground-truth246

references. Here we use three types of image quality metrics. (i) Structural similarity index (SSIM, [31])247

computes structural similarity between images, which aligns with image quality perceived by human eyes.248

Since image intensities are different for HAADF-STEM and EDS-STEM, we exclude the luminance and249

contrast terms for SSIM, and only compute the structure term. (ii) Mean-squared error (MSE) simply250

computes the difference between reference images (x) and reconstructions (y) which were scaled by scal-251

ing factors that give minimal MSE. The computation is formulated as: MSE(x,y) = minc ‖ x− cy ‖22,252

where c is the scaling factor. (iii) The difference in pixels (DP) is computed as the l1 norm of the dif-253

ference between two binary images. The reference images are already binary, while reconstructions for254

elements have continuous intensity. Given the knowledge that elements have homogeneous density, we255

binarize the reconstructions with thresholds, which are chosen as the ones giving minimal DP. Mathe-256

matically this can be written as DP (x,y) = minb ‖ x−Bb(y) ‖, where Bb(y) means binarizing an image257
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with the threshold b.258

259

4.1. Phantom objects260

Estimating the response ratio factors is the first step of HEBT. The response ratio factors for Au261

and Ag were estimated to be rest = [3.27 × 104, 1.68 × 104] , while the ground truths are rgt =262

[3.66 × 104, 1.43 × 104] based on the given response factors. The goodness of how the data matches263

the linear model is indicated by the coefficient of determination R2 = 0.91, which can be interpreted as264

91% of the data can be explained by the linear model.265

266

The simulation study aims at studying the stability of HEBT when errors are present in the esti-267

mated response ratio factors. Here, the estimated response ratio factors differ from the ground-truth268

by −10.66% and 17.48% respectively. Thus, reconstructions were made by HEBT with estimated and269

ground-truth response ratio factors respectively (Figure 4). Both were computed with weighting factor270

α = 0.7 and for 200 iterations. First of all, intuitively we see both results show less noise and sharper271

contrast compared to EDS-STEM tomographic reconstructions. Secondly, the deviation of response ratio272

factors only results in slightly different distributions of noise between elemental reconstructions. We can273

observe that ’streaks’ are more suppressed in Figure 4 (a) than (b) since rAu is overestimated compared274

to the true values. On the other hand, Figure 4 (d) looks noisier than (e) because rAg is underestimated.275

From the image quality metrics, HEBT with rest produces nearly the same image quality as HEBT with276

rgt. One noticeable result is that although HEBT with rgt outperforms HEBT with rest in terms of277

SSIM and DP, for MSE the result with rest is better. This can be explained as that noise has been taken278

into account when estimating the response ratio factors, consequently yielding better statistical fitting279

for reconstructions. In conclusion, the HEBT algorithm output shows good stability w.r.t. errors in the280

estimation of the response ratios.281

282

Table 1: Image quality metrics of reconstructions.

Methods HEBT with rest HEBT with rgt EDS-STEM

SSIM Au 0.9923 0.9917 0.9437
SSIM Ag 0.9837 0.9835 0.8739
MSE Au 0.0260 0.0260 0.0801
MSE Ag 0.0449 0.0469 0.0740
DP Au 1664 1940 6936
DP Ag 4915 4762 7318
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a b c 

d e f 

Figure 4: (a), (b), (c) are reconstructions of Au distribution, (d) (e), (f) are reconstructions of Ag. The left and middle
columns are HEBT reconstructions respectively with estimated response ratio factors rest and with ground-truth response
ratio factors rgt; the right column is reconstructions from only EDS-STEM elemental maps.

4.2. Non-alloy Au-Ag nanoparticle283

The first sample that is experimentally investigated is an Ag nanoparticle with a diameter of approx-284

imately 110 nm with an embedded Au octahedron. Examples of Z-contrast images and elemental maps285

are given in Figure 3, indicating that Ag and Au are well separated.286

287

The response ratio factors r(Au) and r(Ag) were estimated from all the non-zero pixels using the288

NNLS algorithm. The fitting results are r = [5.31 × 104, 8.64 × 104] with a coefficient of determination289

R2 = 0.95. The example of Figure 3 (d) shows that the sum of elemental maps weighted by r closely290

but not perfectly matches the HAADF-STEM projection image due to noise. After the estimation, the291

reconstructions were computed slice by slice in a volume of 300 × 300 × 300 voxels by solving the least292

square problem of Eq. 9.293

294

Figure 5 shows the 2D reconstruction images at different slices. Compared to EDS-STEM recon-295

structions, HEBT reconstructions demonstrate smoother intensity distributions, suppressed noise levels296

and clearer boundaries. Especially for the Ag reconstructions, morphological analysis becomes easier as297

exterior boundaries show a sharper contrast to the background after being regularized by the HAADF-298

STEM term. The HAADF term also regularizes intensities of noise to concentrate within the particle299

and not spread across the background. For example, in the HEBT reconstructions for Au, we can see300

noise forming a ’shadow’ of the entire particle on the background. Fortunately, the ’shadow’ noise is301

rather weak and can be removed by thresholding or smoothing.302

303

The HAADF-STEM reconstructions have clear boundaries between Au and Ag in this case. There-304

fore, we can easily segment the two particles, and use the segmentation as the ground truth for recon-305
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Figure 5: 2D reconstruction images at slice number 80, 150 and 220 corresponding to the up, middle and bottom rows
respectively. The left two columns are the distributions of Au reconstructed by conventional EDS tomography and by
HEBT respectively. The middle two columns are the distributions of Ag. The right column shows the reconstructions from
Z-contrast projection images.
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struction quality assessment. In Figure 6, the HAADF-STEM reconstruction was segmented into two306

parts by manually recognizing the boundaries in every slice using the FEI Amira 6.0 software, which307

are considered as the ground truths of compositional distributions. Meanwhile, we also demonstrate the308

3D volume rendering of EDS-STEM reconstructions and HAADF reconstructions for comparison. The309

image quality metrics were computed in 3D and listed in Table 2. The metrics show that the image qual-310

ity of HEBT reconstructions is intrinsically enhanced in comparison to conventional EDS reconstructions.311

312

   

a b c 

100 nm 

Figure 6: 3D volume rendering of Au (yellow, interior) and Ag (blue, exterior) distributions reconstructed using (a)
EDS-STEM tomography and (b) HEBT. (c) is the 3D volume rendering of Au and Ag segmented from HAADF-STEM
reconstructions (ground-truth).

Table 2: Image quality metrics.

Methods EDS-STEM HEBT

SSIM Au 0.9661 0.9680
SSIM Ag 0.9024 0.9097
MSE Au 0.0093 0.0069
MSE Ag 0.0368 0.0229
DP Au 233805 134861
DP Ag 1213822 674403

Based on the ground truth from the segmented HAADF-STEM reconstructions, the influence of two313

parameters for HEBT can be investigated: the weighting factor α and the number of iterations. Here,314

we sampled the weighting factor from 0.01 to 0.99 for HEBT reconstructions with different numbers315

of iterations for one slice. Figure 7 plots the MSE indices at each weighting factor. It first indicates316

a decrease of MSE as α grows, as the noise is increasingly suppressed by the HAADF-STEM term.317

When α gets close to 1, MSE starts to increase rapidly after reaching a minimum. To understand this318

phenomenon, we plot the reconstructions at α = 0.7 for 50/100/500 iterations. It shows that for 50319

iterations, Ag appears in the reconstruction of Au (Figure 8 (b)). The explanation is that a too large α320

makes minimizing residuals for EDS-STEM terms become very inefficient due to their small weights. If321

the residuals of EDS-STEM terms remain large while the residual of HAADF-STEM has already been322

minimized, backprojection from HAADF-STEM projection images will show up in the reconstructions.323

In such a case, we can see appearance from the other compositions. The appearance can be reduced by324

14



increasing the number of iterations. In this case, Ag disappears in the Au reconstruction as the number325

of iterations grows. On the other hand, if the number of iterations is chosen very large, this may lead326

to over-fitting of the least-square problem, which results in the presence of noise in reconstructions. The327

over-fitting also explains why – for small weighting factors – the MSE metric decreases as the number of328

iterations increases (see Figure 7). In a word, the weighting factor influences the noise suppression and329

the convergence of least square problem; to guarantee convergence for large weighting factors, a large330

number of iterations should be adopted. From Figure 7, we conclude that α = 0.7 and 100 iterations are331

close-to-optimal settings for this example.332

333

Figure 7: Mean-squared errors for Au and Ag reconstructions under different iterations. The reconstructions are sampled
for weighting factors from 0.01 to 0.99.
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Figure 8: 2D reconstruction images at slice number 150. The upper row is for Au, and the bottom row is for Ag. (a) and
(e) are the reference images for computing SSIM, which are segmented from the HAADF-STEM reconstruction. (b)/(f),
(c)/(g) and (d)/(h) are respectively HEBT reconstructions with weighting factor α = 0.7 under 50, 100, 500 iterations.

To investigate whether HEBT leads to improved ability to spatially resolve the chemical composition334

of nanomaterials in comparison to separate EDS-STEM reconstructions, we have conducted two addi-335

tional validation experiments. In the first experiment, a binary mask is created from the HAADF-STEM336

reconstruction, which is then enforced during each iteration step of the SIRT reconstruction from ele-337

mental maps. For the second experiments, a binary mask is created based on the Z-contrast projection338

images which are subsequently applied to the elemental maps prior to tomographic reconstruction. The339

results of these experiments are shown in Figures 9 (a) to (d). It can be seen that the results are quali-340

tatively similar to the reconstructions without the masks in the sense that the chemical composition is341

no better spatially localized than in the unmasked case. This can be contrasted to Figure 5, where the342

better localization is visible, clearly demonstrating the advantage of our HEBT reconstruction technique.343

  

  

 

(a) (d) (c) (b) 

(e) (h) (g) (f) Figure 9: (a) and (b) are distributions of Au and Ag in the non-alloy nanoparticle reconstructed from elemental maps.
During the reconstruction process, reconstruction volumes were masked by the binarized HAADF-STEM reconstruction.
(c) and (d) are distributions of Au and Ag in the non-alloy nanoparticle reconstructed from elemental maps that have been
masked by binarized Z-contrast images.

4.3. Alloyed Au-Ag nanoparticle344

In this case, we demonstrate the application of HEBT on data for which 3D compositional analysis345

is difficult for both EDS-STEM tomography and HAADF-STEM tomography. The sample is an Au-Ag346

alloy nanoparticle with a diameter about 30 nm. As suggested by the Z-contrast images in Figure 3 (d),347
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segmentation cannot be made based on HAADF-STEM reconstructions since no clear boundary exists348

between the two compositions. Although elemental distributions can be reconstructed from elemental349

maps, the elemental maps are very noisy (Figure 3 (e) and (f)) and lead to strong noise in the EDS-STEM350

tomographic reconstruction results.351

352

The HEBT reconstructions were computed using α = 0.7 for 200 iterations. The response ratio fac-353

tors were estimated to be r = [5.63× 104, 6.52× 104] with a coefficient of determination R2 = 0.79. The354

values for the same elements differ from the first experimental case. This is likely due to an intensity355

rescaling that was applied when storing the HAADF-STEM data. As our response ratio factors are356

automatically scaled, this does not affect the final results.357

358

Compared with EDS-STEM tomography, HEBT gives more interpretable results with less noise and359

stronger contrast to the background as shown in the 2D slices of Figure 10. Here, since we no longer360

have ground-truth images, we cannot compute image quality metrics. Figure 11 shows that the HEBT361

reconstructions provide more information in 3D on the concentration of the different elements compared362

to the EDS-STEM reconstructions. The elemental distributions with reduced noise indicate that the Au363

is more concentrated in the exterior than Ag.364
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Figure 10: 2D reconstruction images at slice number 80, 150 and 220 corresponding to the up, middle and bottom rows
respectively. The left two columns are the distributions of Au reconstructed by conventional EDS tomography and by
HEBT respectively. The middle two columns are the distributions of Ag. The right column shows the reconstructions from
Z-contrast projection images.
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Figure 11: 3D volume rendering of Au (yellow) and Ag (blue) distributions reconstructed using (a) EDS-STEM tomography
and (b) HEBT. (c) The 3D volume rendering of the HAADF-STEM reconstruction.
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5. Conclusion365

In this study, we have developed HAADF-EDS bimodal tomography for the 3D characterization of the366

chemical composition at the nanometer scale. This technique first links elemental maps with Z-contrast367

images that are recorded simultaneously in STEM mode and contain complementary information. The368

linking is made by estimating response ratio factors that give the linear relation of two types of images369

and by scaling their intensities to the same unit. Simultaneously from two types of projection images,370

3D elemental distributions are reconstructed. The reconstruction process results in a simultaneous min-371

imization of the projection errors of both EDS-STEM and HAADF-STEM and is carried out using an372

iterative method such as SIRT.373

374

HEBT has first been tested on a phantom object that is based on hetero-nanoparticles. We specifically375

demonstrated that HEBT is robust w.r.t. errors in the response ratio factor estimation. Subsequently,376

we used HEBT to reconstruct the 3D elemental distributions of two different nanoparticles. To inves-377

tigate the image quality enhancement of HEBT, we first reconstructed an Au-Ag nanoparticle where378

the different elements could be distinguished based on Z-contrast. Taking the Z-contrast reconstruction379

results as the ground truth, we see that reconstructions computed by HEBT are improved in comparison380

to EDS-STEM tomographic reconstructions in terms of image quality. In this case, we also demonstrated381

that HEBT with a large weighting factor requires a large number of iterations to converge and separate382

between elements. In the second experimental case, Ag and Au are alloyed, and thus it is impossible to383

investigate the 3D distributions of the chemical elements based on HAADF-STEM tomography. Using384

the HEBT techniques, we are able to investigate the spatial distribution of Ag and Au inside the particle.385

The interpretation of the final result is more straightforward in comparison to conventional EDS-STEM386

tomography, for which the results contain more noise.387

388

The HEBT algorithm is based on the assumption that both HAADF-STEM projection images and389

EDS-STEM elemental maps can be modeled as perfect linear projections of the structure. In practice,390

this assumption is not completely valid as nonlinear phenomena such as X-ray absorption and electron391

channelling may break the projection requirement [8, 13]. In addition, the EDS noise follows a Poisson392

distribution, while the least squares problem in Eq. 9 is based on the assumption that the noise follows393

a Gaussian distribution. Our purpose here is to demonstrate the feasibility of HEBT, while recognizing394

these sources of inaccuracy. In future work, we plan to incorporate more sophisticated models for self-395

absorption (similar to [13]) and elemental map extraction (similar to [29]), as well as to adopt advanced396

denoising reconstruction algorithm based on the Poisson noise model such as the EM method (see Chap-397

ter 5 in [32]).398

399

Conventionally, quantitative analysis based on EDS-STEM measurements suffer from the high noise400

level in these measurements. By combining EDS and HAADF, especially by imposing the 3D infor-401

mation obtained by HAADF, the improvement in the reconstructions (compared to pure EDS-STEM402

reconstruction) will lead to more reliable quantification, provided that the corresponding zeta factors are403
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known. This application also requires an accurate estimation of the response ratio factors. Therefore,404

we are developing a new estimation method which is based on the Poisson noise model rather than the405

Gaussian noise model.406

407

In conclusion, the newly developed HEBT technique is a promising technique to analyze chemical408

compositions of nanomaterials in 3D. By exploiting more complete information from two complementary409

types of images, it can characterize the elemental distribution even when it is not straightforward using410

HAADF-STEM and EDS-STEM tomography. This advantage means that the 3D characterization of411

chemical composition can be pushed to materials with smaller dimensions and more complex composi-412

tions.413

414
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