toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bittencourt, C.; Hitchock, A.P.; Ke, X.; Van Tendeloo, G.; Ewels, C.P.; Guttmann, P. pdf  url
doi  openurl
  Title (down) X-ray absorption spectroscopy by full-field X-ray microscopy of a thin graphite flake: Imaging and electronic structure via the carbon K-edge Type A1 Journal article
  Year 2012 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 3 Issue Pages 345-350  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate that near-edge X-ray-absorption fine-structure spectra combined with full-field transmission X-ray microscopy can be used to study the electronic structure of graphite flakes consisting of a few graphene layers. The flake was produced by exfoliation using sodium cholate and then isolated by means of density-gradient ultracentrifugation. An image sequence around the carbon K-edge, analyzed by using reference spectra for the in-plane and out-of-plane regions of the sample, is used to map and spectrally characterize the flat and folded regions of the flake. Additional spectral features in both π and σ regions are observed, which may be related to the presence of topological defects. Doping by metal impurities that were present in the original exfoliated graphite is indicated by the presence of a pre-edge signal at 284.2 eV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303243400001 Publication Date 2012-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.127; 2012 IF: 2.374  
  Call Number UA @ lucian @ c:irua:97703 Serial 3924  
Permanent link to this record
 

 
Author Abakumov, M.A.; Nukolova, N.V.; Sokolsky-Papkov, M.; Shein, S.A.; Sandalova, T.O.; Vishwasrao, H.M.; Grinenko, N.F.; Gubsky, I.L.; Abakumov, A.M.; Kabanov, A.V.; Chekhonin, V.P.; pdf  url
doi  openurl
  Title (down) VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor Type A1 Journal article
  Year 2015 Publication Nanomedicine: nanotechnology, biology and medicine Abbreviated Journal Nanomed-Nanotechnol  
  Volume 11 Issue 11 Pages 825-833  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (MRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with D-eff of 53 +/- 9 nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5 mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma C6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. (C) 2015 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000354559600004 Publication Date 2015-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1549-9634; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.72 Times cited 62 Open Access  
  Notes Approved Most recent IF: 5.72; 2015 IF: 6.155  
  Call Number c:irua:126351 Serial 3838  
Permanent link to this record
 

 
Author Miranda, L.P.; da Costa, D.R.; Peeters, F.M.; Costa Filho, R.N. pdf  url
doi  openurl
  Title (down) Vacancy clustering effect on the electronic and transport properties of bilayer graphene nanoribbons Type A1 Journal article
  Year 2023 Publication Nanotechnology Abbreviated Journal  
  Volume 34 Issue 5 Pages 055706-55710  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Experimental realizations of two-dimensional materials are hardly free of structural defects such as e.g. vacancies, which, in turn, modify drastically its pristine physical defect-free properties. In this work, we explore effects due to point defect clustering on the electronic and transport properties of bilayer graphene nanoribbons, for AA and AB stacking and zigzag and armchair boundaries, by means of the tight-binding approach and scattering matrix formalism. Evident vacancy concentration signatures exhibiting a maximum amplitude and an universality regardless of the system size, stacking and boundary types, in the density of states around the zero-energy level are observed. Our results are explained via the coalescence analysis of the strong sizeable vacancy clustering effect in the system and the breaking of the inversion symmetry at high vacancy densities, demonstrating a similar density of states for two equivalent degrees of concentration disorder, below and above the maximum value.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000886630000001 Publication Date 2022-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.5; 2023 IF: 3.44  
  Call Number UA @ admin @ c:irua:192030 Serial 7350  
Permanent link to this record
 

 
Author Mehta, A.N.; Gauquelin, N.; Nord, M.; Orekhov, A.; Bender, H.; Cerbu, D.; Verbeeck, J.; Vandervorst, W. pdf  url
doi  openurl
  Title (down) Unravelling stacking order in epitaxial bilayer MX₂ using 4D-STEM with unsupervised learning Type A1 Journal article
  Year 2020 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 31 Issue 44 Pages 445702  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Following an extensive investigation of various monolayer transition metal dichalcogenides (MX2), research interest has expanded to include multilayer systems. In bilayer MX2, the stacking order strongly impacts the local band structure as it dictates the local confinement and symmetry. Determination of stacking order in multilayer MX(2)domains usually relies on prior knowledge of in-plane orientations of constituent layers. This is only feasible in case of growth resulting in well-defined triangular domains and not useful in-case of closed layers with hexagonal or irregularly shaped islands. Stacking order can be discerned in the reciprocal space by measuring changes in diffraction peak intensities. Advances in detector technology allow fast acquisition of high-quality four-dimensional datasets which can later be processed to extract useful information such as thickness, orientation, twist and strain. Here, we use 4D scanning transmission electron microscopy combined with multislice diffraction simulations to unravel stacking order in epitaxially grown bilayer MoS2. Machine learning based data segmentation is employed to obtain useful statistics on grain orientation of monolayer and stacking in bilayer MoS2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000561424400001 Publication Date 2020-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited 13 Open Access OpenAccess  
  Notes ; J.V. acknowledges funding from FLAG-ERA JTC2017 project 'Graph-Eye'. N.G. acknowledges funding from GOA project 'Solarpaint' of the University of Antwerp. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 823717-ESTEEM3. 4D STEM data was acquired on a hybrid pixel detector funded with a Hercules fund 'Direct electron detector for soft matter TEM' from the Flemish Government. M. N. acknowledges funding from a Marie Curie Fellowship agreement No 838001. We thank Dr Jiongjiong Mo and Dr Benjamin Groven for developing the CVD-MoS<INF>2</INF> growth on sapphire and providing the material used in this article. ; Approved Most recent IF: 3.5; 2020 IF: 3.44  
  Call Number UA @ admin @ c:irua:171119 Serial 6649  
Permanent link to this record
 

 
Author Talgorn, E.; Gao, Y.; Aerts, M.; Kunneman, L.T.; Schins, J.M.; Savenije, T.J.; van Huis, M.A.; van der Zant, H.S.J.; Houtepen, A.J.; Siebbeles, L.D.A. doi  openurl
  Title (down) Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids Type A1 Journal article
  Year 2011 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 6 Issue 11 Pages 733-739  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electronhole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296737300012 Publication Date 2011-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387;1748-3395; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 129 Open Access  
  Notes Approved Most recent IF: 38.986; 2011 IF: 27.270  
  Call Number UA @ lucian @ c:irua:93296 Serial 3813  
Permanent link to this record
 

 
Author Heyne, M.H.; de Marneffe, J.-F.; Delabie, A.; Caymax, M.; Neyts, E.C.; Radu, I.; Huyghebaert, C.; De Gendt, S. pdf  url
doi  openurl
  Title (down) Two-dimensional WS2 nanoribbon deposition by conversion of pre-patterned amorphous silicon Type A1 Journal article
  Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 28 Issue 28 Pages 04LT01  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a method for area selective deposition of 2D WS2 nanoribbons with tunable thickness on a dielectric substrate. The process is based on a complete conversion of a prepatterned, H-terminated Si layer to metallic W by WF6, followed by in situ sulfidation by H2S. The reaction process, performed at 450 degrees C, yields nanoribbons with lateral dimension down to 20 nm and with random basal plane orientation. The thickness of the nanoribbons is accurately controlled by the thickness of the pre-deposited Si layer. Upon rapid thermal annealing at 900 degrees C under inert gas, the WS2 basal planes align parallel to the substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000391445100001 Publication Date 2016-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 13 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:140382 Serial 4471  
Permanent link to this record
 

 
Author Bafekry, A.; Shahrokhi, M.; Shafique, A.; Jappor, H.R.; Shojaei, F.; Feghhi, S.A.H.; Ghergherehchi, M.; Gogova, D. pdf  url
doi  openurl
  Title (down) Two-dimensional carbon nitride C₆N nanosheet with egg-comb-like structure and electronic properties of a semimetal Type A1 Journal article
  Year 2021 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 32 Issue 21 Pages 215702  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract In this study, the structural, electronic and optical properties of theoretically predicted C6N monolayer structure are investigated by means of Density Functional Theory-based First-Principles Calculations. Phonon band dispersion calculations and molecular dynamics simulations reveal the dynamical and thermal stability of the C6N single-layer structure. We found out that the C6N monolayer has large negative in-plane Poisson's ratios along both X and Y direction and the both values are almost four times that of the famous-pentagraphene. The electronic structure shows that C6N monolayer is a semi-metal and has a Dirac-point in the BZ. The optical analysis using the random phase approximation method constructed over HSE06 illustrates that the first peak of absorption coefficient of the C6N monolayer along all polarizations is located in the IR range of spectrum, while the second absorption peak occurs in the visible range, which suggests its potential applications in optical and electronic devices. Interestingly, optically anisotropic character of this system is highly desirable for the design of polarization-sensitive photodetectors. Thermoelectric properties such as Seebeck coefficient, electrical conductivity, electronic thermal conductivity and power factor are investigated as a function of carrier doping at temperatures 300, 400, and 500 K. In general, we predict that the C6N monolayer could be a new platform for study of novel physical properties in two-dimensional semi-metal materials, which may provide new opportunities to realize high-speed low-dissipation devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000624531500001 Publication Date 2020-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.44  
  Call Number UA @ admin @ c:irua:176648 Serial 6740  
Permanent link to this record
 

 
Author Scuracchio, P.; Dobry, A.; Costamagna, S.; Peeters, F.M. pdf  doi
openurl 
  Title (down) Tuning the polarized quantum phonon transmission in graphene nanoribbons Type A1 Journal article
  Year 2015 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 26 Issue 26 Pages 305401  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We propose systems that allow a tuning of the phonon transmission function T(omega) in graphene nanoribbons by using C-13 isotope barriers, antidot structures, and distinct boundary conditions. Phonon modes are obtained by an interatomic fifth-nearest neighbor force-constant model (5NNFCM) and T(omega) is calculated using the non-equilibrium Green's function formalism. We show that by imposing partial fixed boundary conditions it is possible to restrict contributions of the in-plane phonon modes to T(omega) at low energy. On the contrary, the transmission functions of out-of-plane phonon modes can be diminished by proper antidot or isotope arrangements. In particular, we show that a periodic array of them leads to sharp dips in the transmission function at certain frequencies omega(nu) which can be pre-defined as desired by controlling their relative distance and size. With this, we demonstrated that by adequate engineering it is possible to govern the magnitude of the ballistic transmission functions T(omega) in graphene nanoribbons. We discuss the implications of these results in the design of controlled thermal transport at the nanoscale as well as in the enhancement of thermo-electric features of graphene-based materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000358675900010 Publication Date 2015-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 5 Open Access  
  Notes ; Discussions with C E Repetto, C R Stia and K H Michel are gratefully acknowledged. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and PIP 11220090100392 of CONICET (Argentina). We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. ; Approved Most recent IF: 3.44; 2015 IF: 3.821  
  Call Number c:irua:127186 Serial 3759  
Permanent link to this record
 

 
Author Jiang, Y.; Mao, J.; Moldovan, D.; Masir, M.R.; Li, G.; Watanabe, K.; Taniguchi, T.; Peeters, F.M.; Andrei, E.Y. doi  openurl
  Title (down) Tuning a circular p-n junction in graphene from quantum confinement to optical guiding Type A1 Journal article
  Year 2017 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 12 Issue 11 Pages 1045-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The photon-like propagation of the Dirac electrons in graphene, together with its record-high electronic mobility(1-3), can lead to applications based on ultrafast electronic response and low dissipation(4-6). However, the chiral nature of the charge carriers that is responsible for the high mobility also makes it difficult to control their motion and prevents electronic switching. Here, we show how to manipulate the charge carriers by using a circular p-n junction whose size can be continuously tuned from the nanometre to the micrometre scale(7,8). The junction size is controlled with a dual-gate device consisting of a planar back gate and a point-like top gate made by decorating a scanning tunnelling microscope tip with a gold nanowire. The nanometre-scale junction is defined by a deep potential well created by the tip-induced charge. It traps the Dirac electrons in quantum-confined states, which are the graphene equivalent of the atomic collapse states (ACSs) predicted to occur at supercritically charged nuclei(9-13). As the junction size increases, the transition to the optical regime is signalled by the emergence of whispering-gallery modes(14-16), similar to those observed at the perimeter of acoustic or optical resonators, and by the appearance of a Fabry-Perot interference pattern(17-20) for junctions close to a boundary.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414531800011 Publication Date 2017-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 65 Open Access  
  Notes ; The authors acknowledge funding provided by DOE-FG02-99ER45742 (STM/STS) and NSF DMR 1708158 (fabrication). Theoretical work was supported by ESF-EUROCORES-EuroGRAPHENE, FWO VI and the Methusalem program of the Flemish government. ; Approved Most recent IF: 38.986  
  Call Number UA @ lucian @ c:irua:147406 Serial 4902  
Permanent link to this record
 

 
Author Badalyan, S.M.; Peeters, F.M. doi  openurl
  Title (down) Transport of magnetic edge states in a quantum wire exposed to a non-homogeneous magnetic field Type A1 Journal article
  Year 2001 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 12 Issue Pages 570-576  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000173305300041 Publication Date 2002-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.44; 2001 IF: 1.621  
  Call Number UA @ lucian @ c:irua:37276 Serial 3727  
Permanent link to this record
 

 
Author Hu, S.; Gopinadhan, K.; Rakowski, A.; Neek-Amal, M.; Heine, T.; Grigorieva, I.V.; Haigh, S.J.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M. pdf  doi
openurl 
  Title (down) Transport of hydrogen isotopes through interlayer spacing in van der Waals crystals Type A1 Journal article
  Year 2018 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 13 Issue 6 Pages 468-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Atoms start behaving as waves rather than classical particles if confined in spaces commensurate with their de Broglie wavelength. At room temperature this length is only about one angstrom even for the lightest atom, hydrogen. This restricts quantum-confinement phenomena for atomic species to the realm of very low temperatures(1-5). Here, we show that van der Waals gaps between atomic planes of layered crystals provide angstrom-size channels that make quantum confinement of protons apparent even at room temperature. Our transport measurements show that thermal protons experience a notably higher barrier than deuterons when entering van der Waals gaps in hexagonal boron nitride and molybdenum disulfide. This is attributed to the difference in the de Broglie wavelengths of the isotopes. Once inside the crystals, transport of both isotopes can be described by classical diffusion, albeit with unexpectedly fast rates comparable to that of protons in water. The demonstrated angstrom-size channels can be exploited for further studies of atomistic quantum confinement and, if the technology can be scaled up, for sieving hydrogen isotopes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434715700015 Publication Date 2018-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 32 Open Access  
  Notes ; The authors acknowledge support from the Lloyd's Register Foundation, EPSRC – EP/N010345/1, the European Research Council ARTIMATTER project – ERC-2012-ADG and from Graphene Flagship. M.L.-H. acknowledges a Leverhulme Early Career Fellowship. ; Approved Most recent IF: 38.986  
  Call Number UA @ lucian @ c:irua:152014UA @ admin @ c:irua:152014 Serial 5046  
Permanent link to this record
 

 
Author Shah, N.A.; Li, L.L.; Mosallanejad, V.; Peeters, F.M.; Guo, G.-P. pdf  url
doi  openurl
  Title (down) Transport characteristics of multi-terminal pristine and defective phosphorene systems Type A1 Journal article
  Year 2019 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 30 Issue 45 Pages 455705  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Atomic vacancies and nanopores act as local scattering centers and modify the transport properties of charge carriers in phosphorene nanoribbons (PNRs). We investigate the influence of such atomic defects on the electronic transport of multi-terminal PNR. We use the non-equilibrium Green's function approach within the tight-binding framework to calculate the transmission coefficient and the conductance. Terminals induce band mixing resulting in oscillations in the conductance. In the presence of atomic vacancies and nanopores the conductance between non-axial terminals exhibit constructive scattering, which is in contrast to mono-axial two-terminal systems where the conductance exhibits destructive scattering. This can be understood from the spatial local density of states of the transport modes in the system. Our results provide fundamental insights into the electronic transport in PNR-based multi-terminal systems and into the ability of atomic defects and nanopores through tuning the transport properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000483049100001 Publication Date 2019-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 7 Open Access  
  Notes ; This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301700), the NNSFC (Grant No. 11625419), the Strategic Priority Research Program of the CAS (Grant Nos. XDB24030601 and XDB30000000), the Anhui initiative in Quantum information Technologies (Grants No. AHY080000), and the Flemish Science Foundation (FWO-Vl). This work was also supported by the Chinese Academy of Sciences and the World Academy of Science for the advancement of science in developing countries. ; Approved Most recent IF: 3.44  
  Call Number UA @ admin @ c:irua:162760 Serial 5429  
Permanent link to this record
 

 
Author Bittencourt, C.; Krüger, P.; Lagos, M.J.; Ke, X.; Van Tendeloo, G.; Ewels, C.; Umek, P.; Guttmann, P. pdf  url
doi  openurl
  Title (down) Towards atomic resolution in sodium titanate nanotubes using near-edge X-ray-absorption fine-structure spectromicroscopy combined with multichannel multiple-scattering calculations Type A1 Journal article
  Year 2012 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 3 Issue Pages 789-797  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Recent advances in near-edge X-ray-absorption fine-structure spectroscopy coupled with transmission X-ray microscopy (NEXAFS-TXM) allow large-area mapping investigations of individual nano-objects with spectral resolution up to E/Delta E = 104 and spatial resolution approaching 10 nm. While the state-of-the-art spatial resolution of X-ray microscopy is limited by nanostructuring process constrains of the objective zone plate, we show here that it is possible to overcome this through close coupling with high-level theoretical modelling. Taking the example of isolated bundles of hydrothermally prepared sodium titanate nanotubes ((Na,H)TiNTs) we are able to unravel the complex nanoscale structure from the NEXAFS-TXM data using multichannel multiple-scattering calculations, to the extent of being able to associate specific spectral features in the O K-edge and Ti L-edge with oxygen atoms in distinct sites within the lattice. These can even be distinguished from the contribution of different hydroxyl groups to the electronic structure of the (Na,H)TiNTs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000311482400001 Publication Date 2012-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.127; 2012 IF: 2.374  
  Call Number UA @ lucian @ c:irua:105140 Serial 3684  
Permanent link to this record
 

 
Author Malesevic, A.; Vitchev, R.; Schouteden, K.; Volodin, A.; Zhang, L.; Van Tendeloo, G.; Vanhulsel, A.; van Haesendonck, C. doi  openurl
  Title (down) Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition Type A1 Journal article
  Year 2008 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 19 Issue 30 Pages 305604,1-6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000256838400014 Publication Date 2008-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 309 Open Access  
  Notes Approved Most recent IF: 3.44; 2008 IF: 3.446  
  Call Number UA @ lucian @ c:irua:70224 Serial 3455  
Permanent link to this record
 

 
Author Mordvinova, N.; Emelin, P.; Vinokurov, A.; Dorofeev, S.; Abakumov, A.; Kuznetsova, T. url  doi
openurl 
  Title (down) Surface processes during purification of InP quantum dots Type A1 Journal article
  Year 2014 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 5 Issue Pages 1220-1225  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH)(3) during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of post-synthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000339912400002 Publication Date 2014-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.127; 2014 IF: 2.670  
  Call Number UA @ lucian @ c:irua:118748 Serial 3397  
Permanent link to this record
 

 
Author Margueritat, J.; Gonzalo, J.; Afonso, C.N.; Hörmann, U.; Van Tendeloo, G.; Mlayah, A.; Murray, D.B.; Saviot, L.; Zhou, Y.; Hong, M.H.; Luk'yanchuk, B.S. doi  openurl
  Title (down) Surface enhanced Raman scattering of silver sensitized cobalt nanoparticles in metaldielectric nanocomposites Type A1 Journal article
  Year 2008 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 19 Issue 37 Pages 375701,1-375701,4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the preparation of a new type of nanocomposite containing cobalt and silver nanoparticles organized in parallel layers with a well controlled separation. This arrangement allows the observation of an enhanced low-frequency Raman signal at the vibration frequency of cobalt nanoparticles excited through the surface plasmons of silver nanoparticles. Numerical simulations of the electric field confirm the emergence of hot spots when the separation between silver and cobalt nanoparticles is small enough.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000258385600018 Publication Date 2008-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.44; 2008 IF: 3.446  
  Call Number UA @ lucian @ c:irua:81873 Serial 3396  
Permanent link to this record
 

 
Author Jehanathan, N.; Lebedev, O.; Gélard, I.; Dubourdieu, C.; Van Tendeloo, G. pdf  doi
openurl 
  Title (down) Structure and defect characterization of multiferroic <tex>ReMnO$3 films and multilayers by TEM Type A1 Journal article
  Year 2010 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 21 Issue 7 Pages 075705,1-075705,11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial rare earth manganite thin films (ReMnO3; Re = Tb, Ho, Er, and Y) and multilayers were grown by liquid injection metal organic chemical vapor deposition (MOCVD) on YSZ(111) and the same systems were grown c-oriented on Pt(111) buffered Si substrates. They have been structurally investigated by electron diffraction (ED) and high resolution transmission electron microscopy (HRTEM). Nanodomains of secondary orientation are observed in the hexagonal YMnO3 films. They are related to a YSZ(111) and Pt(111) misorientation. The epitaxial film thickness has an influence on the defect formation. TbO2 and Er2O3 inclusions are observed in the TbMnO3 and ErMnO3 films respectively. The structure and orientation of these inclusions are correlated to the resembling symmetry and structure of film and substrate. The type of defect formed in the YMnO3/HoMnO3 and YMnO3/ErMnO3 multilayers is also influenced by the type of substrate they are grown on. In our work, atomic growth models for the interface between the film/substrate are proposed and verified by comparison with observed and computer simulated images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000273824500018 Publication Date 2010-01-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 15 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 3.44; 2010 IF: 3.652  
  Call Number UA @ lucian @ c:irua:80436 Serial 3274  
Permanent link to this record
 

 
Author Krsmanovic, R.; Lebedev, O.I.; Speghini, A.; Bettinelli, M.; Polizzi, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title (down) Structural characterization and luminescence properties of nanostructured lanthanide-doped Sc2O3 prepared by propellant synthesis Type A1 Journal article
  Year 2006 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 17 Issue 11 Pages 2805-2812  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000238250300038 Publication Date 2006-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 22 Open Access  
  Notes IAP5-01; PRIN/Cofin Approved Most recent IF: 3.44; 2006 IF: 3.037  
  Call Number UA @ lucian @ c:irua:60046 Serial 3217  
Permanent link to this record
 

 
Author Tomak, A.; Bacaksiz, C.; Mendirek, G.; Sahin, H.; Hur, D.; Gorgun, K.; Senger, R.T.; Birer, O.; Peeters, F.M.; Zareie, H.M. pdf  doi
openurl 
  Title (down) Structural changes in a Schiff base molecular assembly initiated by scanning tunneling microscopy tip Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 27 Issue 27 Pages 335601  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We report the controlled self-organization and switching of newly designed Schiff base (E)-4-((4-(phenylethynyl) benzylidene) amino) benzenethiol (EPBB) molecules on a Au (111) surface at room temperature. Scanning tunneling microscopy and spectroscopy (STM/STS) were used to image and analyze the conformational changes of the EPBB molecules. The conformational change of the molecules was induced by using the STM tip while increasing the tunneling current. The switching of a domain or island of molecules was shown to be induced by the STM tip during scanning. Unambiguous fingerprints of the switching mechanism were observed via STM/STS measurements. Surface-enhanced Raman scattering was employed, to control and identify quantitatively the switching mechanism of molecules in a monolayer. Density functional theory calculations were also performed in order to understand the microscopic details of the switching mechanism. These calculations revealed that the molecular switching behavior stemmed from the strong interaction of the EPBB molecules with the STM tip. Our approach to controlling intermolecular mechanics provides a path towards the bottom-up assembly of more sophisticated molecular machines.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000383780500012 Publication Date 2016-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 2 Open Access  
  Notes ; The authors acknowledge financial support from TUBITAK (PROJECT NO: 112T507). This work was also supported by the Flemish Science Foundation (FWO-Vl). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid-Infrastructure). HS is supported by an FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:137155 Serial 4363  
Permanent link to this record
 

 
Author Krsmanovic, R.; Morozov, V.A.; Lebedev, O.I.; Polizzi, S.; Speghini, A.; Bettinelli, M.; Van Tendeloo, G. pdf  doi
openurl 
  Title (down) Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis Type A1 Journal article
  Year 2007 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 18 Issue 32 Pages 325604-325609  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline powders of undoped and lanthanide (Pr3+, Tm3+)- doped gadolinium gallium garnet, Gd3Ga5O12 (GGG), were prepared by propellant synthesis and studied by x-ray powder diffraction (XRD), electron diffraction (ED), high-resolution electron microscopy (HREM) and luminescence spectroscopy. The x-ray diffraction patterns of the GGG samples were analysed using the Rietveld method. The Rietveld refinement reveals the existence of two garnet-type phases: both are cubic (space group Ia $(3) over bar $d) with a slightly different lattice parameter and probably a slightly different composition. Electron diffraction and electron microscopy measurements confirm the x-ray diffraction results. EDX measurements for lanthanide-doped samples show that stable solid solutions with composition Gd(3-x)Ln(x)Ga(5)O(12), x approximate to 0.3 ( Ln = Pr; Tm) have been obtained. The luminescence properties of the Tm3+ -doped nanocrystalline GGG samples were measured and analysed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000248231300010 Publication Date 2007-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 33 Open Access  
  Notes Iap5-01 Approved Most recent IF: 3.44; 2007 IF: 3.310  
  Call Number UA @ lucian @ c:irua:104042 Serial 3195  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Ghergherehchi, M. pdf  url
doi  isbn
openurl 
  Title (down) Strain, electric-field and functionalization induced widely tunable electronic properties in MoS2/BC3, /C3N and / C3N4 van der Waals heterostructures Type A1 Journal article
  Year 2020 Publication Nanotechnology (Bristol. Print) Abbreviated Journal  
  Volume Issue Pages 295202 pp  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract In this paper, the effect of BC3, C3N and C3N4BC(3) and MoS2/C(3)N4 heterostructures are direct semiconductors with band gaps of 0.4 and 1.74 eV, respectively, while MoS2/C3N is a metal. Furthermore, the influence of strain and electric field on the electronic structure of these van der Waals heterostructures is investigated. The MoS2/BC3 heterostructure, for strains larger than -4%, transforms it into a metal where the metallic character is maintained for strains larger than -6%. The band gap decreases with increasing strain to 0.35 eV (at +2%), while for strain (>+6%) a direct-indirect band gap transition is predicted to occur. For the MoS2/C3N heterostructure, the metallic character persists for all strains considered. On applying an electric field, the electronic properties of MoS2/C3N4 are modified and its band gap decreases as the electric field increases. Interestingly, the band gap reaches 30 meV at +0.8 V/angstrom, and with increase above +0.8 V/angstrom, a semiconductor-to-metal transition occurs. Furthermore, we investigated effects of semi- and full-hydrogenation of MoS2/C3N and we found that it leads to a metallic and semiconducting character, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000532366000001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0957-4484 Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 19 Open Access  
  Notes ; This work has supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(NRF-2017R1A2B2011989). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169523 Serial 6444  
Permanent link to this record
 

 
Author Petrovic, M.D.; Milovanović, S.P.; Peeters, F.M. pdf  doi
openurl 
  Title (down) Scanning gate microscopy of magnetic focusing in graphene devices : quantum versus classical simulation Type A1 Journal article
  Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 28 Issue 28 Pages 185202  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We compare classical versus quantum electron transport in recently investigated magnetic focusing devices (Bhandari et al 2016 Nano Lett. 16 1690) exposed to the perturbing potential of a scanning gate microscope (SGM). Using the Landauer-Buttiker formalism for a multi-terminal device, we calculate resistance maps that are obtained as the SGM tip is scanned over the sample. There are three unique regimes in which the scanning tip can operate (focusing, repelling, and mixed regime) which are investigated. Tip interacts mostly with electrons with cyclotron trajectories passing directly underneath it, leaving a trail of modified current density behind it. Other (indirect) trajectories become relevant when the tip is placed near the edges of the sample, and current is scattered between the tip and the edge. We point out that, in contrast to SGM experiments on gapped semiconductors, the STM tip can induce a pn junction in graphene, which improves contrast and resolution in SGM. We also discuss possible explanations for spatial asymmetry of experimentally measured resistance maps, and connect it with specific configurations of the measuring probes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000399273800001 Publication Date 2017-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 7 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:143639 Serial 4607  
Permanent link to this record
 

 
Author Zhang, Z.Z.; Wu, Z.H.; Chang, K.; Peeters, F.M. doi  openurl
  Title (down) Resonant tunneling through S- and U-shaped graphene nanoribbons Type A1 Journal article
  Year 2009 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 20 Issue 41 Pages 415203,1-415203,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate resonant tunneling through S- and U-shaped nanostructured graphene nanoribbons. A rich structure of resonant tunneling peaks is found emanating from different quasi-bound states in the middle region. The tunneling current can be turned on and off by varying the Fermi energy. Tunability of resonant tunneling is realized by changing the width of the left and/or right leads and without the use of any external gates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000269930100007 Publication Date 2009-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 32 Open Access  
  Notes Approved Most recent IF: 3.44; 2009 IF: 3.137  
  Call Number UA @ lucian @ c:irua:79311 Serial 2893  
Permanent link to this record
 

 
Author Wu, Z.; Zhang, Z.Z.; Chang, K.; Peeters, F.M. doi  openurl
  Title (down) Quantum tunneling through graphene nanorings Type A1 Journal article
  Year 2010 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 21 Issue 18 Pages 185201  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate theoretically quantum transport through graphene nanorings in the presence of a perpendicular magnetic field. Our theoretical results demonstrate that the graphene nanorings behave like a resonant tunneling device, contrary to the Aharonov-Bohm oscillations found in conventional semiconductor rings. The resonant tunneling can be tuned by the Fermi energy, the size of the central part of the graphene nanorings and the external magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000276672100005 Publication Date 2010-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 34 Open Access  
  Notes ; This work is partly supported by the NSFC, the project from the Chinese Academy of Sciences, the bilateral project between China and Sweden, the Flemish Science Foundation (FWLO-Vl) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.44; 2010 IF: 3.652  
  Call Number UA @ lucian @ c:irua:95614 Serial 2796  
Permanent link to this record
 

 
Author Du, G.; Van Tendeloo, G. pdf  doi
openurl 
  Title (down) Preparation and structure analysis of Gd(OH)3 nanorods Type A1 Journal article
  Year 2005 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 16 Issue 4 Pages 595-597  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000228949300052 Publication Date 2005-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 28 Open Access  
  Notes Iap V-1 Approved Most recent IF: 3.44; 2005 IF: 2.993  
  Call Number UA @ lucian @ c:irua:59057 Serial 2700  
Permanent link to this record
 

 
Author Ke, X.; Bittencourt, C.; Van Tendeloo, G. pdf  url
doi  openurl
  Title (down) Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials Type A1 Journal article
  Year 2015 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 6 Issue 6 Pages 1541-1557  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A major revolution for electron microscopy in the past decade is the introduction of aberration correction, which enables one to increase both the spatial resolution and the energy resolution to the optical limit. Aberration correction has contributed significantly to the imaging at low operating voltages. This is crucial for carbon-based nanomaterials which are sensitive to electron irradiation. The research of carbon nanomaterials and nanohybrids, in particular the fundamental understanding of defects and interfaces, can now be carried out in unprecedented detail by aberration-corrected transmission electron microscopy (AC-TEM). This review discusses new possibilities and limits of AC-TEM at low voltage, including the structural imaging at atomic resolution, in three dimensions and spectroscopic investigation of chemistry and bonding. In situ TEM of carbon-based nanomaterials is discussed and illustrated through recent reports with particular emphasis on the underlying physics of interactions between electrons and carbon atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357977300001 Publication Date 2015-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 10 Open Access  
  Notes 246791 Countatoms Approved Most recent IF: 3.127; 2015 IF: 2.670  
  Call Number c:irua:126857 Serial 2682  
Permanent link to this record
 

 
Author Rather, J.A.; Pilehvar, S.; De Wael, K. pdf  doi
openurl 
  Title (down) Polycyclodextrin and carbon nanotubes as composite for tyrosinase immobilization and its superior electrocatalytic activity towards butylparaben an endocrine disruptor Type A1 Journal article
  Year 2015 Publication Journal of nanoscience and nanotechnology Abbreviated Journal  
  Volume 15 Issue 5 Pages 3365-3372  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract We developed a protocol for the immobilization of tyrosinase (Tyr) on the composite of polycyclodextrin polymer (CDP) and carbon nanotubes for the detection of an endocrine disruptor, i.e., butylparaben (BP). The formation of the CDP polymer was characterized by UV-Vis spectrophotometry. The conducting film of cross-linked CDP and carbon nanotubes, displays excellent matrix capabilities for Tyr immobilization. The host-guest chemical reaction ability of CD and the ππ stacking interaction assure the bioactivity of Tyr towards butylparaben. The developed biosensor was characterized electrochemically by electrochemical impedance spectroscopy. The enzyme-substrate kinetic parameters such as the apparent Michaelis-Menten constant (K M app) was measured under saturated substrate concentration. The determination of butylparaben was carried out by using square wave voltammetry over the concentration range of 2.1 to 35.4 μM with a detection limit of 0.1 μM. The fabricated biosensor was successfully applied in real-life cosmetic samples with good recovery ranging from 98.5 to 102.8%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347435200007 Publication Date 2014-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1533-4899 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes ; The authors are highly thankful for the mobility grant (Non-Europe Postdoc Fellowship) for one of the author (Jahangir Ahmad Rather) supported by the Belgian Federal Science Policy (Belspo) co-funded by the Marie Curie Actions from the European Commission. Sanaz Pilehvar is funded by BOF-DOCPRO UA. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:119550 Serial 5776  
Permanent link to this record
 

 
Author Vishwakarma, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Mehta, B.R. pdf  url
doi  openurl
  Title (down) Nanoscale Characterization of Growth of Secondary Phases in Off-Stoichiometric CZTS Thin Films Type A1 Journal article
  Year 2018 Publication Journal of nanoscience and nanotechnology Abbreviated Journal J Nanosci Nanotechno  
  Volume 18 Issue 3 Pages 1688-1695  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The presence of secondary phases is one of the main issues that hinder the growth of pure kesterite Cu2ZnSnS4 (CZTS) based thin films with suitable electronic and junction properties for efficient solar cell devices. In this work, CZTS thin films with varied Zn and Sn content have been prepared by RF-power controlled co-sputtering deposition using Cu, ZnS and SnS targets and a subsequent sulphurization step. Detailed TEM investigations show that the film shows a layered structure with the majority of the top layer being the kesterite phase. Depending on the initial thin film composition, either about ~1 μm Cu-rich and Zn-poor kesterite or stoichiometric CZTS is formed as top layer. X-ray diffraction, Raman spectroscopy and transmission electron microscopy reveal the presence of Cu2−x S, ZnS and SnO2 minor secondary phases in the form of nanoinclusions or nanoparticles or intermediate layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426033400022 Publication Date 2018-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1533-4880 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.483 Times cited Open Access Not_Open_Access  
  Notes Manoj Vishwakarma acknowl- edges IIT Delhi for MHRD fellowship. Professor B. R. Mehta acknowledges the support of the Schlumberger chair professorship. Manoj Vishwakarma, Joke Hadermann and Olesia M. karakulina acknowledge support provided by InsoL-DST. Manoj Vishwakarma acknowledges sup- port provided by CSIR funded projects and the support of DST-FIST Raman facility. References Approved Most recent IF: 1.483  
  Call Number EMAT @ emat @c:irua:147505 Serial 4775  
Permanent link to this record
 

 
Author de Witte, K.; Cool, P.; de Witte, I.; Ruys, L.; Rao, J.; Van Tendeloo, G.; Vansant, E.F. doi  openurl
  Title (down) Multistep loading of titania nanoparticles in the mesopores of SBA-15 for enhanced photocatalytic activity Type A1 Journal article
  Year 2007 Publication Journal of nanoscience and nanotechnology Abbreviated Journal J Nanosci Nanotechno  
  Volume 7 Issue 7 Pages 2511-2515  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000246347700042 Publication Date 2007-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1533-4880;0000-0000; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.483 Times cited 13 Open Access  
  Notes Approved Most recent IF: 1.483; 2007 IF: 1.987  
  Call Number UA @ lucian @ c:irua:64773 Serial 2240  
Permanent link to this record
 

 
Author Trofimova, E.Y.; Kurdyukov, D.A.; Yakovlev, S.A.; Kirilenko, D.A.; Kukushkina, Y.A.; Nashchekin, A.V.; Sitnikova, A.A.; Yagovkina, M.A.; Golubev, V.G. pdf  doi
openurl 
  Title (down) Monodisperse spherical mesoporous silica particles : fast synthesis procedure and fabrication of photonic-crystal films Type A1 Journal article
  Year 2013 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 24 Issue 15 Pages 155601-155611  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A procedure for the synthesis of monodisperse spherical mesoporous silica particles (MSMSPs) via the controlled coagulation of silica/surfactant clusters into spherical aggregates with mean diameters of 250-1500 nm has been developed. The synthesis is fast (taking less than 1 h) because identical clusters are simultaneously formed in the reaction mixture. The results of microscopic, x-ray diffraction, adsorption and optical measurements allowed us to conclude that the clusters are similar to 15 nm in size and have hexagonally packed cylindrical pore channels. The channel diameters in MSMSPs obtained with cethyltrimethylammonium bromide and decyltrimethylammonium bromide as structure-directing agents were 3.1 +/- 0.15 and 2.3 +/- 0.12 nm, respectively. The specific surface area and the pore volume of MSMSP were, depending on synthesis conditions, 480-1095 m(2) g(-1) and 0.50-0.65 cm(3) g(-1). The MSMSP were used to grow opal-like photonic-crystal films possessing a hierarchical macro-mesoporous structure, with pores within and between the particles. A selective filling of mesopore channels with glycerol, based on the difference between the capillary pressures in macro- and mesopores, was demonstrated. It is shown that this approach makes it possible to control the photonic bandgap position in mesoporous opal films by varying the degree of mesopore filling with glycerol. Online supplementary data available from stacks.iop.org/Nano/24/155601/mmedia  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000316988700009 Publication Date 2013-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 49 Open Access  
  Notes Approved Most recent IF: 3.44; 2013 IF: 3.672  
  Call Number UA @ lucian @ c:irua:108462 Serial 2191  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: