toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Bafekry, A.; Stampfl, C.; Ghergherehchi, M. pdf  url
doi  isbn
openurl 
  Title Strain, electric-field and functionalization induced widely tunable electronic properties in MoS2/BC3, /C3N and / C3N4 van der Waals heterostructures Type A1 Journal article
  Year (down) 2020 Publication Nanotechnology (Bristol. Print) Abbreviated Journal  
  Volume Issue Pages 295202 pp  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract In this paper, the effect of BC3, C3N and C3N4BC(3) and MoS2/C(3)N4 heterostructures are direct semiconductors with band gaps of 0.4 and 1.74 eV, respectively, while MoS2/C3N is a metal. Furthermore, the influence of strain and electric field on the electronic structure of these van der Waals heterostructures is investigated. The MoS2/BC3 heterostructure, for strains larger than -4%, transforms it into a metal where the metallic character is maintained for strains larger than -6%. The band gap decreases with increasing strain to 0.35 eV (at +2%), while for strain (>+6%) a direct-indirect band gap transition is predicted to occur. For the MoS2/C3N heterostructure, the metallic character persists for all strains considered. On applying an electric field, the electronic properties of MoS2/C3N4 are modified and its band gap decreases as the electric field increases. Interestingly, the band gap reaches 30 meV at +0.8 V/angstrom, and with increase above +0.8 V/angstrom, a semiconductor-to-metal transition occurs. Furthermore, we investigated effects of semi- and full-hydrogenation of MoS2/C3N and we found that it leads to a metallic and semiconducting character, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000532366000001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0957-4484 Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 19 Open Access  
  Notes ; This work has supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(NRF-2017R1A2B2011989). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169523 Serial 6444  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: