toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Liang, Z.; Batuk, M.; Orlandi, F.; Manuel, P.; Hadermann, J.; Hayward, M.A. url  doi
openurl 
  Title Disproportionation of Co2+ in the topochemically reduced oxide LaSrCoRuO₅ Type A1 Journal article
  Year 2024 Publication Angewandte Chemie: international edition in English Abbreviated Journal  
  Volume 63 Issue 6 Pages e202313067-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Complex transition-metal oxides exhibit a wide variety of chemical and physical properties which are a strong function the local electronic states of the transition-metal centres, as determined by a combination of metal oxidation state and local coordination environment. Topochemical reduction of the double perovskite oxide, LaSrCoRuO6, using Zr, yields LaSrCoRuO5. This reduced phase contains an ordered array of apex-linked square-based pyramidal Ru3+O5, square-planar Co1+O4 and octahedral Co3+O6 units, consistent with the coordination-geometry driven disproportionation of Co2+. Coordination-geometry driven disproportionation of d(7) transition-metal cations (e.g. Rh2+, Pd3+, Pt3+) is common in complex oxides containing 4d and 5d metals. However, the weak ligand field experienced by a 3d transition-metal such as cobalt leads to the expectation that d(7+) Co2+ should be stable to disproportionation in oxide environments, so the presence of Co1+O4 and Co3+O6 units in LaSrCoRuO5 is surprising. Low-temperature measurements indicate LaSrCoRuO5 adopts a ferromagnetically ordered state below 120 K due to couplings between S=(1)/(2) Ru3+ and S=1 Co1+.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001136579700001 Publication Date 2023-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202801 Serial (down) 9023  
Permanent link to this record
 

 
Author Jenkinson, K.; Spadaro, M.C.; Golovanova, V.; Andreu, T.; Morante, J.R.; Arbiol, J.; Bals, S. url  doi
openurl 
  Title Direct operando visualization of metal support interactions induced by hydrogen spillover during CO₂ hydrogenation Type A1 Journal article
  Year 2023 Publication Advanced materials Abbreviated Journal  
  Volume 35 Issue 51 Pages 2306447-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The understanding of catalyst active sites is a fundamental challenge for the future rational design of optimized and bespoke catalysts. For instance, the partial reduction of Ce4+ surface sites to Ce3+ and the formation of oxygen vacancies are critical for CO2 hydrogenation, CO oxidation, and the water gas shift reaction. Furthermore, metal nanoparticles, the reducible support, and metal support interactions are prone to evolve under reaction conditions; therefore a catalyst structure must be characterized under operando conditions to identify active states and deduce structure-activity relationships. In the present work, temperature-induced morphological and chemical changes in Ni nanoparticle-decorated mesoporous CeO2 by means of in situ quantitative multimode electron tomography and in situ heating electron energy loss spectroscopy, respectively, are investigated. Moreover, operando electron energy loss spectroscopy is employed using a windowed gas cell and reveals the role of Ni-induced hydrogen spillover on active Ce3+ site formation and enhancement of the overall catalytic performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001106139400001 Publication Date 2023-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201143 Serial (down) 9022  
Permanent link to this record
 

 
Author Cui, W.; Lin, W.; Lu, W.; Liu, C.; Gao, Z.; Ma, H.; Zhao, W.; Van Tendeloo, G.; Zhao, W.; Zhang, Q.; Sang, X. url  doi
openurl 
  Title Direct observation of cation diffusion driven surface reconstruction at van der Waals gaps Type A1 Journal article
  Year 2023 Publication Nature communications Abbreviated Journal  
  Volume 14 Issue 1 Pages 554-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Weak interlayer van der Waals (vdW) bonding has significant impact on the surface/interface structure, electronic properties, and transport properties of vdW layered materials. Unraveling the complex atomistic dynamics and structural evolution at vdW surfaces is therefore critical for the design and synthesis of the next-generation vdW layered materials. Here, we show that Ge/Bi cation diffusion along the vdW gap in layered GeBi2Te4 (GBT) can be directly observed using in situ heating scanning transmission electron microscopy (STEM). The cation concentration variation during diffusion was correlated with the local Te-6 octahedron distortion based on a quantitative analysis of the atomic column intensity and position in time-elapsed STEM images. The in-plane cation diffusion leads to out-of-plane surface etching through complex structural evolutions involving the formation and propagation of a non-centrosymmetric GeTe2 triple layer surface reconstruction on fresh vdW surfaces, and GBT subsurface reconstruction from a septuple layer to a quintuple layer. Our results provide atomistic insight into the cation diffusion and surface reconstruction in vdW layered materials. Weak interlayer van der Waals (vdW) bonding has significant impact on the structure and properties of vdW layered materials. Here authors use in-situ aberration-corrected ADF-STEM for an atomistic insight into the cation diffusion in the vdW gaps and the etching of vdW surfaces at high temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001076227200001 Publication Date 2023-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201342 Serial (down) 9021  
Permanent link to this record
 

 
Author Truta, F.M.; Cruz, A.G.; Dragan, A.-M.; Tertis, M.; Cowen, T.; Stefan, M.-G.; Topala, T.; Slosse, A.; Piletska, E.; Van Durme, F.; Kiss, B.; De Wael, K.; Piletsky, S.A.; Cristea, C. pdf  doi
openurl 
  Title Design of smart nanoparticles for the electrochemical detection of 3,4-methylenedioxymethamphetamine to allow in field screening by law enforcement officers Type A1 Journal article
  Year 2023 Publication Drug testing and analysis Abbreviated Journal  
  Volume Issue Pages 1-14  
  Keywords A1 Journal article; Pharmacology. Therapy; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract A portable and highly sensitive sensor was designed for the specific detection of 3,4-methyl-enedioxy-methamphetamine (MDMA), in a range of field-testing situations. The sensor can detect MDMA in street samples, even when other controlled substances drugs, or adulterants are present. In this work, we report for the first time a sensor using electroactive molecularly imprinted polymer nanoparticles computationally designed to recognize MDMA and then produced using solid phase synthesis. A composite comprising chitosan, reduced graphene oxide, and molecularly imprinted polymer nanoparticles synthesized for MDMA for the first time was immobilized on screen-printed carbon electrodes. The sensors displayed a satisfactory sensitivity (106.8 nA x mu M-1), limit of detection (1.6 nM; 0.31 ng/mL), and recoveries (92-99%). The accuracy of the results was confirmed through validation using Ultra-High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (UPLC-MS/MS). This technology could be used in forensic analysis and make it possible to selectively detect MDMA in street samples. A highly sensitive and portable sensor has been developed to detect MDMA in street samples. It uses electroactive molecularly imprinted polymer nanoparticles computationally designed to recognize MDMA, which were immobilized on screen-printed carbon electrodes with chitosan and graphene. The sensor showed good sensitivity and satisfactory recoveries (92-99%), confirmed with UPLC-MS/MS validation. This technology has the potential to be used in forensic analysis.image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001107703400001 Publication Date 2023-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202058 Serial (down) 9020  
Permanent link to this record
 

 
Author Calogiuri, T.; Hagens, M.; Van Groenigen, J.W.; Corbett, T.; Hartmann, J.; Hendriksen, R.; Janssens, I.; Janssens, I.A.; Ledesma Dominguez, G.; Loescher, G.; Mortier, S.; Neubeck, A.; Niron, H.; Poetra, R.P.; Rieder, L.; Struyf, E.; Van Tendeloo, M.; De Schepper, T.; Verdonck, T.; Vlaeminck, S.E.; Vicca, S.; Vidal, A. url  doi
openurl 
  Title Design and construction of an experimental setup to enhance mineral weathering through the activity of soil organisms Type A1 Journal article
  Year 2023 Publication Journal of visualized experiments Abbreviated Journal  
  Volume Issue 201 Pages e65563-30  
  Keywords A1 Journal article; Engineering sciences. Technology; Internet Data Lab (IDLab); Applied mathematics; Sustainable Energy, Air and Water Technology (DuEL); Plant and Ecosystems (PLECO) – Ecology in a time of change  
  Abstract Enhanced weathering (EW) is an emerging carbon dioxide (CO2) removal technology that can contribute to climate change mitigation. This technology relies on accelerating the natural process of mineral weathering in soils by manipulating the abiotic variables that govern this process, in particular mineral grain size and exposure to acids dissolved in water. EW mainly aims at reducing atmospheric CO2 concentrations by enhancing inorganic carbon sequestration. Until now, knowledge of EW has been mainly gained through experiments that focused on the abiotic variables known for stimulating mineral weathering, thereby neglecting the potential influence of biotic components. While bacteria, fungi, and earthworms are known to increase mineral weathering rates, the use of soil organisms in the context of EW remains underexplored. This protocol describes the design and construction of an experimental setup developed to enhance mineral weathering rates through soil organisms while concurrently controlling abiotic conditions. The setup is designed to maximize weathering rates while maintaining soil organisms' activity. It consists of a large number of columns filled with rock powder and organic material, located in a climate chamber and with water applied via a downflow irrigation system. Columns are placed above a fridge containing jerrycans to collect the leachate. Representative results demonstrate that this setup is suitable to ensure the activity of soil organisms and quantify their effect on inorganic carbon sequestration. Challenges remain in minimizing leachate losses, ensuring homogeneous ventilation through the climate chamber, and avoiding flooding of the columns. With this setup, an innovative and promising approach is proposed to enhance mineral weathering rates through the activity of soil biota and disentangle the effect of biotic and abiotic factors as drivers of EW.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001127854400015 Publication Date 2023-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1940-087x ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200770 Serial (down) 9019  
Permanent link to this record
 

 
Author Luo, Y.; He, Y.; Ding, Y.; Zuo, L.; Zhong, C.; Ma, Y.; Sun, M. pdf  doi
openurl 
  Title Defective biphenylene as high-efficiency hydrogen evolution catalysts Type A1 Journal article
  Year 2023 Publication Inorganic chemistry Abbreviated Journal  
  Volume 63 Issue 2 Pages 1136-1141  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrocatalysts play a pivotal role in advancing the application of water splitting for hydrogen production. This research unveils the potential of defective biphenylenes as high-efficiency catalysts for the hydrogen evolution reaction. Using first-principles simulations, we systematically investigated the structure, stability, and catalytic performance of defective biphenylenes. Our findings unveil that defect engineering significantly enhances the electrocatalytic activity for hydrogen evolution. Specifically, biphenylene with a double-vacancy defect exhibits an outstanding Gibbs free energy of -0.08 eV, surpassing that of Pt, accompanied by a remarkable exchange current density of -3.08 A cm(-2), also surpassing that of Pt. Furthermore, we find the preference for the Volmer-Heyrovsky mechanism in the hydrogen evolution reaction, with a low energy barrier of 0.80 eV. This research provides a promising avenue for developing novel metal-free electrocatalysts for water splitting with earth-abundant carbon elements, making a significant step toward sustainable hydrogen production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001143581300001 Publication Date 2023-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202780 Serial (down) 9018  
Permanent link to this record
 

 
Author Cassimon, J.; Kovács, A.; Neyts, E.; Cornet, I.; Billen, P. pdf  doi
openurl 
  Title Deacetylation of mannosylerythritol lipids in hydrophobic natural deep eutectic solvents Type A1 Journal article
  Year 2023 Publication European journal of organic chemistry Abbreviated Journal  
  Volume 27 Issue 5 Pages e202300934-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Mannosylerythritol lipids (MELs) are a promising group of biosurfactants due to their high fermentation yield, selfassembly and biological activity. During fermentation by Pseudozyma aphidis, a mixture of MELs with different levels of acylation is formed, of which the fully deacetylated form is the most valuable. In order to reduce the environmental impact of deacetylation, an enzymatic process using natural deep eutectic solvents (NADES) has been developed. We tested the deacetylation of a purified MELs mixture with immobilized Candida antarctica lipase B enzyme and 2-ethylhexanol as co-substrate in 140 h reactions with different NADES. We identified hydrophobic NADES systems with similar yields and kinetics as in pure 2-ethylhexanol solvent. Our results indicate that deacetylation of MELs mixtures in NADES as a solvent is possible with yields comparable to pure co-substrate and that hydrophobic NADES without carboxylic acid compounds facilitate the reaction to the greatest extent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-193x; 1099-0690 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201382 Serial (down) 9017  
Permanent link to this record
 

 
Author Broers, F.T.H.; Verslype, I.; Bossers, K.W.; Vanmeert, F.; Gonzalez, V.; Garrevoet, J.; van Loon, A.; va Duijn, E.; Krekeler, A.; De Keyser, N.; Steeman, I.; Noble, P.; Janssens, K.; Meirer, F.; Keune, K. url  doi
openurl 
  Title Correlated x-ray fluorescence and ptychographic nano-tomography on Rembrandt's The Night Watch reveals unknown lead “layer” Type A1 Journal article
  Year 2023 Publication Science Advances Abbreviated Journal  
  Volume 9 Issue 50 Pages eadj9394-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract The Night Watch, one of the most famous masterpieces by Rembrandt, is the subject of a large research and conservation project. For the conservation treatment, it is of great importance to understand its current condition. Correlated nano-tomography using x-ray fluorescence and ptychography revealed a-so far unknown-lead-containing “layer”, which likely acts as a protective impregnation layer applied on the canvas before the quartz-clay ground was applied. This layer might explain the presence of lead soap protrusions in areas where no other lead components are present. In addition to the three-dimensional elemental mapping, ptychography visualizes and quantifies components not detectable by hard x-ray fluorescence such as the organic fraction and quartz. The first-time use of this combination of synchrotron-based techniques on a historic paint micro-sample shows it to be an important tool to better interpret the results of noninvasive imaging techniques operating on the macroscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001142514700010 Publication Date 2023-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:203849 Serial (down) 9016  
Permanent link to this record
 

 
Author Annys, A.; Jannis, D.; Verbeeck, J. doi  openurl
  Title Core-loss EELS dataset and neural networks for element identification Type Dataset
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract We present a large dataset containing simulated core-loss electron energy loss spectroscopy (EELS) spectra with the elemental content as ground-truth labels. Additionally we present some neural networks trained on this data for element identification.  The simulated dataset contains zero padded core-loss spectra from 0 to 3072 eV, which represents 107 core-loss edges through all 80 elements from Be up to Bi. The core-loss edges are calculated from the generalised oscillator strength (GOS) database presented by Zhang et al.[1] Generic fine structures using lifetime broadened peaks are used to imitate fine structure due to solid-state effects in experimental spectra. Generic low-loss regions are used to imitate the effect of multiple scattering. Each spectrum contains at least one edge of a given query element and possibly additional edges depending on samples drawn from The Materials Project [2]. The dataset contains for each of the 80 elements: 7000 training spectra, 1500 test spectra, 600 validation spectra and 100 spectra representing only the query element. This results in a total 736 000 labeled spectra. Code on how to  – read the simulated data – transform HDF5 format to TFRecord format – train and evaluate neural networks using the simulated data – use the trained networks for automated element identification is available on GitHub at arnoannys/EELS_ID A full report on the simulation of the dataset and the training and evaluation of the neural networks can be found at:                    Annys, A., Jannis, D. & Verbeeck, J. Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy. Sci Rep 13, 13724 (2023). https://doi.org/10.1038/s41598-023-40943-7 [1] Zezhong Zhang, Ivan Lobato, Daen Jannis, Johan Verbeeck, Sandra Van Aert, & Peter Nellist. (2023). Generalised oscillator strength for core-shell electron excitation by fast electrons based on Dirac solutions (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7729585 [2] Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, Kristin A. Persson; Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater 1 July 2013; 1 (1): 011002. [https://doi.org/10.1063/1.4812323](https://doi.org/10.1063/1.4812323)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:203391 Serial (down) 9015  
Permanent link to this record
 

 
Author Gielis, J. url  doi
openurl 
  Title Conquering Mount Improbable Type P1 Proceeding
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 153-173 T2 - Proceedings of the 1st International  
  Keywords P1 Proceeding; Economics; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Our scientific and technological worldviews are largely dominated by the concepts of entropy and complexity. Originating in 19th-century thermodynamics, the concept of entropy merged with information in the last century, leading to definitions of entropy and complexity by Kolmogorov, Shannon and others. In its simplest form, this worldview is an application of the normal rules of arithmetic. In this worldview, when tossing a coin, a million heads or tails in a row is theoretically possible, but impossible in practice and in real life. On this basis, the impossible (in the binary case, the outermost entries of Pascal's triangle xn and yn for large values of n) can be safely neglected, and one can concentrate fully on what is common and what conforms to the law of large numbers, in fields ranging from physics to sociology and everything in between. However, in recent decades it has been shown that what is most improbable tends to be the rule in nature. Indeed, if one combines the outermost entries xn and yn with the normal rules of arithmetic, either addition or multiplication, one obtains Lamé curves and power laws respectively. In this article, some of these correspondences are highlighted, leading to a double conclusion. First, Gabriel Lamé's geometric footprint in mathematics and the sciences is enormous. Second, conic sections are at the core once more. Whereas mathematics so far has been exclusively the language of patterns in the sciences, the door is opened for mathematics to also become the language of the individual. The probabilistic worldview and Lamé's footprint can be seen as dual methods. In this context, it is to be expected that the notions of information, complexity, simplicity and redundancy benefit from this different viewpoint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-90-833839-0-3 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201045 Serial (down) 9014  
Permanent link to this record
 

 
Author Shevchenko, V.A.; Glazkova, I.S.; Novichkov, D.A.; Skvortsova, I.; V. Sobolev, A.; Abakumov, A.M.; Presniakov, I.A.; Drozhzhin, O.A.; V. Antipov, E. pdf  doi
openurl 
  Title Competition between the Ni and Fe redox in the O3-NaNi1/3Fe1/3Mn1/3O2 cathode material for Na-ion batteries Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume 35 Issue 10 Pages 4015-4025  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sodium-ion batteries are attracting great attention due to their low cost and abundance of sodium. The O3-type NaNi1/3Fe1/3Mn1/3O2 layered oxide material is a promising candidate for positive electrodes (cathodes) in Na-ion batteries. However, its stable electrochemical performance is restricted by the upper voltage limit of 4.0 V (vs Na/Na+), which allows for reversibly removing 0.5-0.55 Na+ per formula unit, corresponding to the capacity of 120-130 mAh.g(-1). Further reduction of sodium content inevitably accelerates capacity degradation, and this issue calls for a detailed study of the redox reactions that accompany the electrochemical (de)intercalation of a large amount of sodium. Here, we present operando and ex situ studies using powder X-ray diffraction and X-ray absorption spectroscopy combined with Fe-57 Mossbauer spectroscopy. Our approach reveals the sequence of the redox transitions that occur during the charge and discharge of O3-NaNi1/3Fe1/3Mn1/3O2. Our data show that in addition to nickel and iron cations oxidizing to M+4, a part of iron transforms into the “3 + delta” state owing to the fast electron exchange Fe3+ + Fe4+ <-> Fe4+ + Fe3+. This process freezes upon cooling the material to 35 K, producing Fe4+ cations, some of which occupy tetrahedral positions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000985970200001 Publication Date 2023-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:197352 Serial (down) 9013  
Permanent link to this record
 

 
Author Jorissen, B.; Covaci, L.; Partoens, B. url  doi
openurl 
  Title Comparative analysis of tight-binding models for transition metal dichalcogenides Type A1 Journal article
  Year 2024 Publication SciPost physics core Abbreviated Journal  
  Volume 7 Issue 1 Pages 004-30  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We provide a comprehensive analysis of the prominent tight-binding (TB) models for transition metal dichalcogenides (TMDs) available in the literature. We inspect the construction of these TB models, discuss their parameterization used and conduct a thorough comparison of their effectiveness in capturing important electronic properties. Based on these insights, we propose a novel TB model for TMDs designed for enhanced computational efficiency. Utilizing MoS2 as a representative case, we explain why specific models offer a more accurate description. Our primary aim is to assist researchers in choosing the most appropriate TB model for their calculations on TMDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202983 Serial (down) 9012  
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmenev, R.A.; Neyts, E.C.; Koptyug, A.V.; Volkova, A.P.; Surmeneva, M.A. url  doi
openurl 
  Title Combined first-principles and experimental study on the microstructure and mechanical characteristics of the multicomponent additive-manufactured Ti-35Nb-7Zr-5Ta alloy Type A1 Journal article
  Year 2023 Publication ACS Omega Abbreviated Journal  
  Volume 8 Issue 30 Pages 27519-27533  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract New & beta;-stabilizedTi-based alloys are highly promising forbone implants, thanks in part to their low elasticity. The natureof this elasticity, however, is as yet unknown. We here present combinedfirst-principles DFT calculations and experiments on the microstructure,structural stability, mechanical characteristics, and electronic structureto elucidate this origin. Our results suggest that the studied & beta;Ti-35Nb-7Zr-5Ta wt % (TNZT) alloy manufacturedby the electron-beam powder bed fusion (E-PBF) method has homogeneousmechanical properties (H = 2.01 & PLUSMN; 0.22 GPa and E = 69.48 & PLUSMN; 0.03 GPa) along the building direction,which is dictated by the crystallographic texture and microstructuremorphologies. The analysis of the structural and electronic properties,as the main factors dominating the chemical bonding mechanism, indicatesthat TNZT has a mixture of strong metallic and weak covalent bonding.Our calculations demonstrate that the softening in the Cauchy pressure(C & PRIME; = 98.00 GPa) and elastic constant C ̅ ( 44 ) = 23.84 GPa is the originof the low elasticity of TNZT. Moreover, the nature of this softeningphenomenon can be related to the weakness of the second and thirdneighbor bonds in comparison with the first neighbor bonds in theTNZT. Thus, the obtained results indicate that a carefully designedTNZT alloy can be an excellent candidate for the manufacturing oforthopedic internal fixation devices. In addition, the current findingscan be used as guidance not only for predicting the mechanical propertiesbut also the nature of elastic characteristics of the newly developedalloys with yet unknown properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001031269000001 Publication Date 2023-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:198313 Serial (down) 9011  
Permanent link to this record
 

 
Author Nakazato, R.; Matsumoto, K.; Yamaguchi, N.; Cavallo, M.; Crocella, V.; Bonino, F.; Quintelier, M.; Hadermann, J.; Rosero-Navarro, N.C.; Miura, A.; Tadanaga, K. doi  openurl
  Title CO2 Electrochemical Reduction with Zn-Al Layered Double Hydroxide-Loaded Gas-Diffusion Electrode (Supporting Information) Type Dataset
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001079191200001 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200933 Serial (down) 9010  
Permanent link to this record
 

 
Author Nakazato, R.; Matsumoto, K.; Yamaguchi, N.; Cavallo, M.; Crocella, V.; Bonino, F.; Quintelier, M.; Hadermann, J.; Rosero-navarro, N.C.; Miura, A.; Tadanaga, K. doi  openurl
  Title CO₂ electrochemical reduction with Zn-Al layered double hydroxide-loaded gas-diffusion electrode Type A1 Journal article
  Year 2023 Publication Electrochemistry Abbreviated Journal  
  Volume 91 Issue 9 Pages 097003-97007  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082818000001 Publication Date 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200340 Serial (down) 9009  
Permanent link to this record
 

 
Author Hassani, N.; Yagmurcukardes, M.; Peeters, F.M.; Neek-Amal, M. pdf  doi
openurl 
  Title Chlorinated phosphorene for energy application Type A1 Journal article
  Year 2024 Publication Computational materials science Abbreviated Journal  
  Volume 231 Issue Pages 112625-112628  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of decoration with impurities and the composition dependent band gap in 2D materials has been the subject of debate for a long time. Here, by using Density Functional Theory (DFT) calculations, we systematically disclose physical properties of chlorinated phosphorene having the stoichiometry of PmCln. By analyzing the adsorption energy, charge density, migration energy barrier, structural, vibrational, and electronic properties of chlorinated phosphorene, we found that (I) the Cl-P bonds are strong with binding energy Eb =-1.61 eV, decreases with increasing n. (II) Cl atoms on phosphorene have anionic feature, (III) the migration path of Cl on phosphorene is anisotropic with an energy barrier of 0.38 eV, (IV) the phonon band dispersion reveal that chlorinated phosphorenes are stable when r <= 0.25 where r = m/n, (V) chlorinated phosphorenes is found to be a photonic crystal in the frequency range of 280 cm-1 to 325 cm-1, (VI) electronic band structure of chlorinated phosphorenes exhibits quasi-flat bands emerging around the Fermi level with widths in the range of 22 meV to 580 meV, and (VII) Cl adsorption causes a semiconducting to metallic/semi-metallic transition which makes it suitable for application as an electroactive material. To elucidate this application, we investigated the change in binding energy (Eb), specific capacity, and open-circuit voltage as a function of the density of adsorbed Cl. The theoretical storage capacity of the chlorinated phosphorene is found to be 168.19 mA h g-1with a large average voltage (similar to 2.08 V) which is ideal number as a cathode in chloride-ion batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001110003400001 Publication Date 2023-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202125 Serial (down) 9008  
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Quanico, J.; Scovacricchi, T.; Avranovich Clerici, E.; Baggerman, G.; Janssens, K. pdf  doi
openurl 
  Title Chemical mapping of the degradation of geranium lake in paint cross sections by MALDI-MSI Type A1 Journal article
  Year 2023 Publication Analytical chemistry Abbreviated Journal  
  Volume 95 Issue 49 Pages 18215-18223  
  Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS); Ecosphere  
  Abstract Matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has become a powerful method to extract spatially resolved chemical information in complex materials. This study provides the first use of MALDI-MSI to define spatial–temporal changes in oil paints. Due to the highly heterogeneous nature of oil paints, the sample preparation had to be optimized to prevent molecules from delocalizing. Here, we present a new protocol for the layer-specific analysis of oil paint cross sections achieving a lateral resolution of 10 μm and without losing ionization efficiency due to topographic effects. The efficacy of this method was investigated in oil paint samples containing a mixture of two historic organic pigments, geranium lake and lead white, a mixture often employed in the work of painter Vincent Van Gogh. This methodology not only allows for spatial visualization of the molecules responsible for the pink hue of the paint but also helps to elucidate the chemical changes behind the discoloration of paintings with this composition. The results demonstrate that this approach provides valuable molecular compositional information about the degradation pathways of pigments in specific paint layers and their interaction with the binding medium and other paint components and with light over time. Since a spatial correlation between molecular species and the visual pattern of the discoloration pattern can be made, we expect that mass spectrometry imaging will become highly relevant in future degradation studies of many more historical pigments and paints.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001142876000001 Publication Date 2023-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201644 Serial (down) 9007  
Permanent link to this record
 

 
Author Khalilov, U.; Uljayev, U.; Mehmonov, K.; Nematollahi, P.; Yusupov, M.; Neyts, E.C.; Neyts, E.C. pdf  doi
openurl 
  Title Can endohedral transition metals enhance hydrogen storage in carbon nanotubes? Type A1 Journal article
  Year 2024 Publication International journal of hydrogen energy Abbreviated Journal  
  Volume 55 Issue Pages 640-610  
  Keywords A1 Journal article; Engineering sciences. Technology; Modelling and Simulation in Chemistry (MOSAIC); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The safe and efficient use of hydrogen energy, which is in high demand worldwide today, requires efficient hydrogen storage. Despite significant advances in hydrogen storage using carbon-based nanomaterials, including carbon nanotubes (CNTs), efforts to substantially increase the storage capacity remain less effective. In this work, we demonstrate the effect of endohedral transition metal atoms on the hydrogen storage capacity of CNTs using reactive molecular dynamics simulations. We find that an increase in the volume fraction of endohedral nickel atoms leads to an increase in the concentration of physisorbed hydrogen molecules around single-walled CNTs (SWNTs) by approximately 1.6 times compared to pure SWNTs. The obtained results provide insight into the underlying mechanisms of how endohedral transition metal atoms enhance the hydrogen storage ability of SWNTs under nearly ambient conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001142427400001 Publication Date 2023-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202315 Serial (down) 9006  
Permanent link to this record
 

 
Author Kovács, A.; Janssens, N.; Mielants, M.; Cornet, I.; Neyts, E.C.; Billen, P. pdf  doi
openurl 
  Title Biocatalyzed vinyl laurate transesterification in natural deep eutectic solvents Type A1 Journal article
  Year 2023 Publication Waste and biomass valorization Abbreviated Journal  
  Volume Issue Pages 1-12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Purpose Natural deep eutectic solvents (NADES) represent a green alternative to conventional organic solvents as reaction medium, offering more benign properties. To efficiently design NADES for biocatalysis, a better understanding of their effect on these reactions is needed. We hypothesize that this effect can be described by separately considering (1) the solvent interactions with the substrates, (2) the solvent viscosities and (3) the enzyme stability in NADES. Methods We investigated the effect of substrate solvation and viscosity on the reaction rate; and the stability of the enzyme in NADES. To this end, we monitored the conversion over time of the transesterification of vinyl laurate with 1- butanol by the lipase enzyme Candida antarctica B in NADES of different compounds and molar ratios. Results The initial reaction rate is higher in most NADES ( varying between 1.14 and 15.07 mu mol min(-1) mg(-1)) than in the reference n-hexane (4.0 mu mol min(-1) mg(-1))), but no clear relationship between viscosity and initial reaction rate was found. The increased reaction rate is most likely related to the solvation of the substrate due to a change in the activation energy of the reaction or a change in the conformation of the substrate. The enzyme retained part of its activity after the first 2 h of reaction (on average 20 % of the substrate reacted in the 2-24 h period). Enzyme incubation in ethylene glycol-based NADES resulted in a reduced reaction rate ( 15.07 vs. 3.34 mu mol min(-1) mg(-1)), but this may also be due to slow dissolution of the substrate. Conclusions The effect of viscosity seems to be marginal next to the effect of solvation and possible enzyme-NADES interaction. The enzyme retains some of its activity during the 24-hour measurements, but the enzyme incubation experiments did not yield accurate, comparable values. [GRAPHICS] .  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001117290800003 Publication Date 2023-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1877-2641; 1877-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202709 Serial (down) 9005  
Permanent link to this record
 

 
Author Zaryouh, H.; Verswyvel, H.; Bauwens, M.; Van Haesendonck, G.; Deben, C.; Lin, A.; De Waele, J.; Vermorken, J.B.; Koljenovic, S.; Bogaerts, A.; Lardon, F.; Smits, E.; Wouters, A. openurl 
  Title De belofte van hoofdhalskankerorganoïden in kankeronderzoek : een blik op de toekomst Type A2 Journal article
  Year 2023 Publication Onco-hemato : multidisciplinair tijdschrift voor oncologie Abbreviated Journal  
  Volume 17 Issue 7 Pages 54-58  
  Keywords A2 Journal article; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Hoofd-halskanker vormt een aanzienlijke uitdaging met bijna 900.000 nieuwe diagnoses per jaar, waarbij de jaarlijkse incidentie blijft stijgen. Vaak wordt de diagnose pas in een laat stadium gesteld, wat complexe behandelingen noodzakelijk maakt. Terugval van patiënten is helaas een veelvoorkomend probleem. De gemiddelde overlevingsduur is beperkt tot enkele maanden. Daarom is er een dringende behoefte om nieuwe, veelbelovende behandelingen te ontwikkelen voor patiënten met hoofd-halskanker. Voor het bereiken van deze vooruitgang spelen innovatieve studiemodellen een cruciale rol. Het ontwikkelen van deze nieuwe behandelingen start met laboratoriumonderzoek, waarbij traditionele tweedimensionale celculturen hun beperkingen hebben. Daarom verschuiven onderzoekers hun aandacht meer en meer naar geavanceerdere driedimensionale modellen, met hoofd-halskankerorganoïden als beloftevol nieuw model. Dit model behoudt immers zowel het genetische profiel als de morfologische kenmerken van de originele tumor van de hoofd-halskankerpatiënt. Hoofdhalskankerorganoïden bieden daarom de mogelijkheid om innovatieve behandelingen te testen en kunnen mogelijk zelfs de respons van een patiënt op bepaalde therapieën voorspellen. Hoewel tumororganoïden als ‘patiënt-in-het-lab’ veelbelovend zijn, zijn er uitdagingen te overwinnen, zoals de ontwikkelingstijd en de toepasbaarheid bij alle tumortypes, evenals het ontbreken van immuuncellen en andere micro-omgevingscomponenten. Er is daarom een grote behoefte aan gestandaardiseerde protocollen voor de ontwikkeling van organoïden en verkorting van de ontwikkelingstijd. Concluderend bieden driedimensionale hoofd-halskankerorganoïden een veelbelovend perspectief voor de toekomst van kankerbehandelingen. Ze hebben het potentieel om bij te dragen aan de ontwikkeling van gepersonaliseerde behandelingen en zo de overlevingskansen van kankerpatiënten te verbeteren. Het is echter belangrijk om hun voorspellend vermogen en toepassingsmogelijkheden verder te onderzoeken, voordat ze op grote schaal worden geïmplementeerd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2030-2738 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202271 Serial (down) 9004  
Permanent link to this record
 

 
Author Vingerhoets, R.; Brienza, C.; Sigurnjak, I.; Buysse, J.; Vlaeminck, S.E.; Spiller, M.; Meers, E. pdf  doi
openurl 
  Title Ammonia stripping and scrubbing followed by nitrification and denitrification saves costs for manure treatment based on a calibrated model approach Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 477 Issue Pages 146984-14  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Resource-efficient nitrogen management is of high environmental and economic interest, and manure represents the major nutrient flow in livestock-intensive regions. Ammonia stripping/scrubbing (SS) is an appealing nitrogen recovery route from manure, yet its real-life implementation has been limited thus far. In nutrient surplus regions like Flanders, treatment of the liquid fraction (LF) of (co–)digested manure typically consists of nitrification/denitrification (NDN) removing most N as nitrogen gas. Integrating SS before NDN in existing plants would expand treatment capacity and recover N while maintaining low N effluent values, yet cost estimations of this novel approach after process optimisation are not yet available. A programming model was developed and calibrated to minimise the treatment costs of this approach and find the balance between N recovery versus N removal. Four crucial operational parameters (CO2 stripping time, NH3 stripping time, temperature and NaOH addition) were optimised for 18 scenarios which were different in terms of technical set-up, influent characteristics and scrubber acid. The model shows that SS before NDN can decrease the costs by 1 to 56% under optimal conditions compared to treatment with NDN only, with 1 to 8% reduction for the LF of manure (22–29% recovered of N treated), and 11 to 56% reduction for the LF of co-digested manure (42–67% recovered of N treated), primarily dependent on resource pricing. This study shows the power of modelling for minimum-cost design and operation of manure treatment yielding savings while producing useful N recovery products with SS followed by NDN.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001108935900001 Publication Date 2023-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200649 Serial (down) 9003  
Permanent link to this record
 

 
Author Mescia, L.; Bia, P.; Gielis, J.; Caratelli, D. url  doi
openurl 
  Title Advanced particle swarm optimization methods for electromagnetics Type P1 Proceeding
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 109-122 T2 - Proceedings of the 1st International  
  Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Electromagnetic design problems involve optimizing multiple parameters that are nonlinearly related to objective functions. Traditional optimization techniques require significant computational resources that grow exponentially as the problem size increases. Therefore, a method that can produce good results with moderate memory and computational resources is desirable. Bioinspired optimization methods, such as particle swarm optimization (PSO), are known for their computational efficiency and are commonly used in various scientific and technological fields. In this article we explore the potential of advanced PSO-based algorithms to tackle challenging electromagnetic design and analysis problems faced in real-life applications. It provides a detailed comparison between conventional PSO and its quantum-inspired version regarding accuracy and computational costs. Additionally, theoretical insights on convergence issues and sensitivity analysis on parameters influencing the stochastic process are reported. The utilization of a novel quantum PSO-based algorithm in advanced scenarios, such as reconfigurable and shaped lens antenna synthesis, is illustrated. The hybrid modeling approach, based on the unified geometrical description enabled by the Gielis Transformation, is applied in combination with a suitable quantum PSO-based algorithm, along with a geometrical tube tracing and physical optics technique for solving the inverse problem aimed at identifying the geometrical parameters that yield optimal antenna performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-90-833839-0-3 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201048 Serial (down) 9002  
Permanent link to this record
 

 
Author Mychinko, M. url  openurl
  Title Advanced Electron Tomography to Investigate the Growth and Stability of Complex Metal Nanoparticles = Geavanceerde Elektronentomografie om de Groei en Stabiliteit van Complexe Metallische Nanodeeltjes te Onderzoeken Type Doctoral thesis
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages 227 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract During the past decades, metallic nanoparticles (NPs) have attracted great attention in materials science due to their specific optical properties based on surface plasmon resonances. Because of these phenomena, plasmonic NPs (or nanoplasmonics) are very promising for application in biosensing, photocatalysts, medicine, data storage, solar energy conversion, etc. Currently, colloidal synthesis techniques enable scientists to routinely produce mono and bimetallic NPs of various shapes, sizes, composition, and elemental distribution, with superior properties for plasmonic applications. Two primary directions for further advancing nanoplasmonic-based technologies include synthesizing novel morphologies, such as highly asymmetric chiral NPs, and gaining deeper insights into the factors affecting the stability of produced nanoplasmonics. With the increasing complexity of nanoplasmonics morphologies and higher stability requirements, there is a pressing need for thorough investigations into their 3D structures and their evolution under different conditions, with high resolution. Electron tomography (ET) emerges as an ideal tool to retrieve shape and element-sensitive information about individual nanoparticles in 3D, achieving resolutions down to the atomic level. Moreover, ET techniques can be combined with in situ holders, enabling detailed studies of processes mimicking real applications of nanoplasmonic-based devices. The first part of this thesis will focus on detailed studies of chiral Au NPs, promising for spectroscopy techniques based on the differential absorption of left- and right-handed circularly polarized light. Specifically, I will discuss the primary strategies for wet-colloidal growth of the various types of intrinsically chiral Au NPs. Advanced ET methods will be demonstrated as powerful tools for characterizing the final helical morphologies of the produced Au NPs and for studying the chiral growth mechanisms by examining intermediate structures obtained during chiral growth. The second part will focus on the heat-induced stability of various Au@Ag core-shell NPs. Operating in real conditions, such as elevated temperatures, may cause particle reshaping and redistribution of metals between the core and shell, gradually altering nanoplasmonics properties. Hence, a thorough understanding of the influence of size, shape, and defects on these processes is crucial for further developments. Recently developed techniques, combining fast ET with in-situ heating holders, have allowed me to evaluate the influence of various parameters (size, shape, defect structure) on heat-induced elemental redistribution in Au@Ag core-shell nanoparticles qualitatively and quantitatively. Additionally, I will discuss the prospects of high-resolution ET for visualizing the diffusion of individual atoms within complex nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202976 Serial (down) 9001  
Permanent link to this record
 

 
Author Duran, T.A.; Yayak, Y.O.; Aydin, H.; Peeters, F.M.; Yagmurcukardes, M. pdf  doi
openurl 
  Title A perspective on the state-of-the-art functionalized 2D materials Type A1 Journal article
  Year 2023 Publication Journal of applied physics Abbreviated Journal  
  Volume 134 Issue 12 Pages 120901-120929  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) ultra-thin materials are more crucial than their bulk counterparts for the covalent functionalization of their surface owing to atomic thinness, large surface-to-volume ratio, and high reactivity of surface atoms having unoccupied orbitals. Since the surface of a 2D material is composed of atoms having unoccupied orbitals, covalent functionalization enables one to improve or precisely modify the properties of the ultra-thin materials. Chemical functionalization of 2D materials not only modifies their intrinsic properties but also makes them adapted for nanotechnology applications. Such engineered materials have been used in many different applications with their improved properties. In the present Perspective, we begin with a brief history of functionalization followed by the introduction of functionalized 2D materials. Our Perspective is composed of the following sections: the applications areas of 2D graphene and graphene oxide crystals, transition metal dichalcogenides, and in-plane anisotropic black phosphorus, all of which have been widely used in different nanotechnology applications. Finally, our Perspectives on the future directions of applications of functionalized 2D materials are given. The present Perspective sheds light on the current progress in nanotechnological applications of engineered 2D materials through surface functionalization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001087770500008 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201281 Serial (down) 9000  
Permanent link to this record
 

 
Author Mayda, S.; Monico, L.; Krishnan, D.; De Meyer, S.; Cotte, M.; Garrevoet, J.; Falkenberg, G.; Sandu, I.C.A.; Partoens, B.; Lamoen, D.; Romani, A.; Miliani, C.; Verbeeck, J.; Janssens, K. pdf  doi
openurl 
  Title A combined experimental and computational approach to understanding CdS pigment oxidation in a renowned early 20th century painting Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume 35 Issue 24 Pages 10403-10415  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Cadmium sulfide (CdS)-based yellow pigments have been used in a number of early 20th century artworks, including The Scream series painted by Edvard Munch. Some of these unique paintings are threatened by the discoloration of these CdS-based yellow oil paints because of the oxidation of the original sulfides to sulfates. The experimental data obtained here prove that moisture and cadmium chloride compounds play a key role in promoting such oxidation. To clarify how these two factors effectively prompt the process, we studied the band alignment between CdS, CdCl2, and Cd-(OH)Cl as well as the radicals center dot OH and H3O center dot by density functional theory (DFT) methods. Our results show that a stack of several layers of Cd-(OH)Cl creates a pocket of positive holes at the Cl-terminated surface and a pocket of electrons at the OH-terminated surface by leading in a difference in ionization energy at both surfaces. The resulting band alignment indicates that Cd-(OH)Cl can indeed play the role of an oxidative catalyst for CdS in a moist environment, thus providing an explanation for the experimental evidence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001133000900001 Publication Date 2023-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes The experimental research on the cadmium yellow powders/paint mock-ups and The Scream (ca. 1910) was financially supported by the European Union, research projects IPERION-CH (H2020-INFRAIA-2014-2015, GA no. 654028) and IPERION-HS (H2020-INFRAIA-2019-1, GA no. 871034) and the project AMIS within the program Dipartimenti di Eccellenza 2018-2022 (funded by MUR and the University of Perugia). For the beamtime grants received, the authors thank the ESRF-ID21 beamline (experiments HG64 and HG95), the DESY-P06 beamline, a member of the Helmholtz Association HGF (experiments I-20130221 EC and I-20160126 EC), and the project CALIPSOplus under the GA no. 730872 from the E.U. Framework Programme for Research and Innovation Horizon 2020. All of the staff of the MUNCH Museum (Conservation Department) is acknowledged for their collaboration. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO – Vlaanderen and the Flemish Government, Department EWI. Approved no  
  Call Number UA @ admin @ c:irua:202836 Serial (down) 8999  
Permanent link to this record
 

 
Author Parrilla, M.; Sena-Torralba, A.; Steijlen, A.; Morais, S.; Maquieira, Á.; De Wael, K. pdf  doi
openurl 
  Title A 3D-printed hollow microneedle-based electrochemical sensing device for in situ plant health monitoring Type A1 Journal article
  Year 2024 Publication Biosensors and bioelectronics Abbreviated Journal  
  Volume 251 Issue Pages 116131-116139  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Plant health monitoring is devised as a new concept to elucidate in situ physiological processes. The need for increased food production to nourish the growing global population is inconsistent with the dramatic impact of climate change, which hinders crop health and exacerbates plant stress. In this context, wearable sensors play a crucial role in assessing plant stress. Herein, we present a low-cost 3D-printed hollow microneedle array (HMA) patch as a sampling device coupled with biosensors based on screen-printing technology, leading to affordable analysis of biomarkers in the plant fluid of a leaf. First, a refinement of the 3D-printing method showed a tip diameter of 25.9 ± 3.7 μm with a side hole diameter on the microneedle of 228.2 ± 18.6 μm using an affordable 3D printer (<500 EUR). Notably, the HMA patch withstanded the forces exerted by thumb pressing (i.e. 20-40 N). Subsequently, the holes of the HMA enabled the fluid extraction tested in vitro and in vivo in plant leaves (i.e. 13.5 ± 1.1 μL). A paper-based sampling strategy adapted to the HMA allowed the collection of plant fluid. Finally, integrating the sampling device onto biosensors facilitated the in situ electrochemical analysis of plant health biomarkers (i.e. H2O2, glucose, and pH) and the electrochemical profiling of plants in five plant species. Overall, this electrochemical platform advances precise and versatile sensors for plant health monitoring. The wearable device can potentially improve precision farming practices, addressing the critical need for sustainable and resilient agriculture in changing environmental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:203204 Serial (down) 8998  
Permanent link to this record
 

 
Author Vandemeulebroucke, D.; Batuk, M.; Hajizadeh, A.; Wastiaux, M.; Roussel, P.; Hadermann, J. url  doi
openurl 
  Title Incommensurate Modulations and Perovskite Growth in LaxSr2–xMnO4−δAffecting Solid Oxide Fuel Cell Conductivity Type A1 Journal Article
  Year 2024 Publication Chemistry of Materials Abbreviated Journal Chem. Mater.  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Ruddlesden-Popper La????Sr2−????MnO4−???? materials are interesting symmetric solid oxide

fuel cell electrodes due to their good redox stability, mixed ionic and electronic conducting behavior and thermal expansion that matches well with common electrolytes. In reducing environments – as at a solid oxide fuel cell anode – the x = 0.5 member, i.e. La0.5Sr1.5MnO4−????, has a much higher total conductivity than compounds with a different La/Sr ratio, although all those compositions have the same K2NiF4-type I4/mmm structure. The origin for this conductivity difference is not yet known in literature. Now, a combination of in-situ and ex-situ 3D electron diffraction, high-resolution imaging, energy-dispersive X-ray analysis and electron energy-loss spectroscopy uncovered clear differences between x=0.25 and x=0.5 in the pristine structure, as well as in the transformations upon high-temperature reduction. In La0.5Sr1.5MnO4−????, Ruddlesden-Popper n=2 layer defects and an amorphous surface layer are present, but not in La0.25Sr1.75MnO4−????. After annealing at 700°C in 5% H2/Ar, La0.25Sr1.75MnO4−???? transforms to a tetragonal 2D incommensurately modulated structure with modulation vectors ⃗????1 = 0.2848(1) · (⃗????* +⃗????*) and ⃗????2 =0.2848(1) · (⃗????* – ⃗????*), whereas La0.5Sr1.5MnO4−???? only partially transforms to an orthorhombic 1D incommensurately modulated structure,

with ⃗???? = 0.318(2) · ⃗????*. Perovskite domains grow at the crystal edge at 700°C in 5%

H2 or vacuum, due to the higher La concentration on the surface compared to the bulk, which leads to a different thermodynamic equilibrium. Since it is known that a lower degree of oxygen vacancy ordering and a higher amount of perovskite blocks enhance oxygen mobility, those differences in defect structure and structural transformation upon reduction, might all contribute to the higher conductivity of La0.5Sr1.5MnO4−???? in solid oxide fuel cell anode conditions compared to other La/Sr ratios.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos Publication Date 2024-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links  
  Impact Factor 8.6 Times cited Open Access Not_Open_Access  
  Notes Universiteit Antwerpen, BOF TOP 38689 ; Fonds Wetenschappelijk Onderzoek, I003218N ; European Commission NanED, 956099 ; Approved Most recent IF: 8.6; 2024 IF: 9.466  
  Call Number EMAT @ emat @ Serial (down) 8997  
Permanent link to this record
 

 
Author Şentürk, D.G.; De Backer, A.; Van Aert, S. url  doi
openurl 
  Title Element specific atom counting for heterogeneous nanostructures: Combining multiple ADF STEM images for simultaneous thickness and composition determination Type A1 Journal Article
  Year 2024 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 259 Issue Pages 113941  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract In this paper, a methodology is presented to count the number of atoms in heterogeneous nanoparticles based on the combination of multiple annular dark field scanning transmission electron microscopy (ADF STEM) images. The different non-overlapping annular detector collection regions are selected based on the principles of optimal statistical experiment design for the atom-counting problem. To count the number of atoms, the total intensities of scattered electrons for each atomic column, the so-called scattering cross-sections, are simultaneously compared with simulated library values for the different detector regions by minimising the squared differences. The performance of the method is evaluated for simulated Ni@Pt and Au@Ag core-shell nanoparticles. Our approach turns out to be a dose efficient alternative for the investigation of beam-sensitive heterogeneous materials as compared to the combination of ADF STEM and energy dispersive X-ray spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links  
  Impact Factor 2.2 Times cited Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S. Van Aert). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0346.21N, GOA7723N, and EOS 40007495) and a postdoctoral grant to A. De Backer. S. Van Aert acknowledges funding from the University of Antwerp Research fund (BOF). Approved Most recent IF: 2.2; 2024 IF: 2.843  
  Call Number EMAT @ emat @ Serial (down) 8996  
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J. url  doi
openurl 
  Title In Situ Plasma Studies Using a Direct Current Microplasma in a Scanning Electron Microscope Type A1 Journal Article
  Year 2024 Publication Advanced Materials Technologies Abbreviated Journal Adv Materials Technologies  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Microplasmas can be used for a wide range of technological applications and to improve the understanding of fundamental physics. Scanning electron microscopy, on the other hand, provides insights into the sample morphology and chemistry of materials from the mm‐ down to the nm‐scale. Combining both would provide direct insight into plasma‐sample interactions in real‐time and at high spatial resolution. Up till now, very few attempts in this direction have been made, and significant challenges remain. This work presents a stable direct current glow discharge microplasma setup built inside a scanning electron microscope. The experimental setup is capable of real‐time in situ imaging of the sample evolution during plasma operation and it demonstrates localized sputtering and sample oxidation. Further, the experimental parameters such as varying gas mixtures, electrode polarity, and field strength are explored and experimental<italic>V</italic>–<italic>I</italic>curves under various conditions are provided. These results demonstrate the capabilities of this setup in potential investigations of plasma physics, plasma‐surface interactions, and materials science and its practical applications. The presented setup shows the potential to have several technological applications, for example, to locally modify the sample surface (e.g., local oxidation and ion implantation for nanotechnology applications) on the µm‐scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2365-709X ISBN Additional Links  
  Impact Factor 6.8 Times cited Open Access OpenAccess  
  Notes L.G., S.B., and J.V. acknowledge support from the iBOF-21-085 PERsist research fund. D.C., S.V.A., and J.V. acknowledge funding from a TOPBOF project of the University of Antwerp (FFB 170366). R.D.M., A.B., and J.V. acknowledge funding from the Methusalem project of the University of Antwerp (FFB 15001A, FFB 15001C). A.O. and J.V. acknowledge funding from the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. Approved Most recent IF: 6.8; 2024 IF: NA  
  Call Number EMAT @ emat @ Serial (down) 8995  
Permanent link to this record
 

 
Author Lobato, I.; Friedrich, T.; Van Aert, S. pdf  url
doi  openurl
  Title Deep convolutional neural networks to restore single-shot electron microscopy images Type A1 Journal Article
  Year 2024 Publication npj Computational Materials Abbreviated Journal npj Comput Mater  
  Volume 10 Issue 1 Pages 10  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Advanced electron microscopy techniques, including scanning electron microscopes (SEM), scanning transmission electron microscopes (STEM), and transmission electron microscopes (TEM), have revolutionized imaging capabilities. However, achieving high-quality experimental images remains a challenge due to various distortions stemming from the instrumentation and external factors. These distortions, introduced at different stages of imaging, hinder the extraction of reliable quantitative insights. In this paper, we will discuss the main sources of distortion in TEM and S(T)EM images, develop models to describe them, and propose a method to correct these distortions using a convolutional neural network. We validate the effectiveness of our method on a range of simulated and experimental images, demonstrating its ability to significantly enhance the signal-to-noise ratio. This improvement leads to a more reliable extraction of quantitative structural information from the images. In summary, our findings offer a robust framework to enhance the quality of electron microscopy images, which in turn supports progress in structural analysis and quantification in materials science and biology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001138183000001 Publication Date 2024-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2057-3960 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S.V.A.). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G034621N, G0A7723N and EOS 40007495). S.V.A. acknowledges funding from the University of Antwerp Research Fund (BOF). The authors thank Lukas Grünewald for data acquisition and support for Fig. 7. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:202714 Serial (down) 8994  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: