|
Record |
Links |
|
Author |
Şentürk, D.G.; De Backer, A.; Van Aert, S. |
|
|
Title |
Element specific atom counting for heterogeneous nanostructures: Combining multiple ADF STEM images for simultaneous thickness and composition determination |
Type |
A1 Journal article |
|
Year |
2024 |
Publication |
Ultramicroscopy |
Abbreviated Journal |
Ultramicroscopy |
|
|
Volume |
259 |
Issue |
|
Pages |
113941 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
In this paper, a methodology is presented to count the number of atoms in heterogeneous nanoparticles based on the combination of multiple annular dark field scanning transmission electron microscopy (ADF STEM) images. The different non-overlapping annular detector collection regions are selected based on the principles of optimal statistical experiment design for the atom-counting problem. To count the number of atoms, the total intensities of scattered electrons for each atomic column, the so-called scattering cross-sections, are simultaneously compared with simulated library values for the different detector regions by minimising the squared differences. The performance of the method is evaluated for simulated Ni@Pt and Au@Ag core-shell nanoparticles. Our approach turns out to be a dose efficient alternative for the investigation of beam-sensitive heterogeneous materials as compared to the combination of ADF STEM and energy dispersive X-ray spectroscopy. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001205 |
Publication Date |
2024-02-19 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0304-3991 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS full record |
|
|
Impact Factor |
2.2 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S. Van Aert). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0346.21N, GOA7723N, and EOS 40007495) and a postdoctoral grant to A. De Backer. S. Van Aert acknowledges funding from the University of Antwerp Research fund (BOF). |
Approved |
Most recent IF: 2.2; 2024 IF: 2.843 |
|
|
Call Number |
EMAT @ emat @c:irua:204353 |
Serial |
8996 |
|
Permanent link to this record |