toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Cui, W.; Lin, W.; Lu, W.; Liu, C.; Gao, Z.; Ma, H.; Zhao, W.; Van Tendeloo, G.; Zhao, W.; Zhang, Q.; Sang, X. url  doi
openurl 
  Title Direct observation of cation diffusion driven surface reconstruction at van der Waals gaps Type A1 Journal article
  Year (down) 2023 Publication Nature communications Abbreviated Journal  
  Volume 14 Issue 1 Pages 554-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Weak interlayer van der Waals (vdW) bonding has significant impact on the surface/interface structure, electronic properties, and transport properties of vdW layered materials. Unraveling the complex atomistic dynamics and structural evolution at vdW surfaces is therefore critical for the design and synthesis of the next-generation vdW layered materials. Here, we show that Ge/Bi cation diffusion along the vdW gap in layered GeBi2Te4 (GBT) can be directly observed using in situ heating scanning transmission electron microscopy (STEM). The cation concentration variation during diffusion was correlated with the local Te-6 octahedron distortion based on a quantitative analysis of the atomic column intensity and position in time-elapsed STEM images. The in-plane cation diffusion leads to out-of-plane surface etching through complex structural evolutions involving the formation and propagation of a non-centrosymmetric GeTe2 triple layer surface reconstruction on fresh vdW surfaces, and GBT subsurface reconstruction from a septuple layer to a quintuple layer. Our results provide atomistic insight into the cation diffusion and surface reconstruction in vdW layered materials. Weak interlayer van der Waals (vdW) bonding has significant impact on the structure and properties of vdW layered materials. Here authors use in-situ aberration-corrected ADF-STEM for an atomistic insight into the cation diffusion in the vdW gaps and the etching of vdW surfaces at high temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001076227200001 Publication Date 2023-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201342 Serial 9021  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: