

Topochemistry

Angewandte International Edition www.angewandte.org

How to cite: Angew. Chem. Int. Ed. 2024, 63, e202313067 doi.org/10.1002/anie.202313067

Disproportionation of Co^{2+} in the Topochemically Reduced Oxide LaSrCoRuO_5

Zhilin Liang, Maria Batuk, Fabio Orlandi, Pascal Manuel, Joke Hadermann, and Michael A. Hayward*

Abstract: Complex transition-metal oxides exhibit a wide variety of chemical and physical properties which are a strong function the local electronic states of the transition-metal centres, as determined by a combination of metal oxidation state and local coordination environment. Topochemical reduction of the double perovskite oxide, LaSrCoRuO₆, using Zr, yields LaSr-CoRuO₅. This reduced phase contains an ordered array of apex-linked square-based pyramidal Ru³⁺O₅, squareplanar Co¹⁺O₄ and octahedral Co³⁺O₆ units, consistent with the coordination-geometry driven disproportionation of Co²⁺. Coordination-geometry driven disproportionation of d^7 transition-metal cations (e.g. Rh^{2+} , Pd^{3+} , Pt^{3+}) is common in complex oxides containing 4d and 5d metals. However, the weak ligand field experienced by a 3d transition-metal such as cobalt leads to the expectation that d⁷⁺ Co²⁺ should be stable to disproportionation in oxide environments, so the presence of $Co^{1+}O_4$ and Co³⁺O₆ units in LaSrCoRuO₅ is surprising. Lowtemperature measurements indicate LaSrCoRuO₅ adopts a ferromagnetically ordered state below 120 K due to couplings between $S = \frac{1}{2} Ru^{3+}$ and $S = 1 Co^{1+}$.

Complex metal oxides have been the subject of extensive study due to the wide variety properties they exhibit. These range from electronic and magnetic behaviors such as ferroelectricity, superconductivity and magnetoresistance to an extensive array of catalytic and electrochemical phenomena. As the chemical and physical behaviors exhibited by metal oxides tend to depend strongly on the electric

[*] Z. Liang, M. A. Hayward Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford South Parks Road, Oxford OX1 3QR (UK) E-mail: michael.hayward@chem.ox.ac.uk
M. Batuk, J. Hadermann EMAT, University of Antwerp Groenenborgerlaan 171, 2020 Antwerp (Belgium)
F. Orlandi, P. Manuel ISIS Neutron and Muon Source, Rutherford Appleton Laboratory Chilton, Oxon OX11 0QX (UK)
C 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which

the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. configurations of the metal cations they contain (defined by a combination of oxidation states and coordination environments), there has been an enduring interest in establishing composition-structure-property relations in extended oxide systems to explore these features. These studies have revealed that a number of elements exhibit 'disfavored' oxidation states in oxide environments, i.e. oxidation states that appear to be thermodynamically accessible (sufficient lattice energy to overcome the required ionization energy) but are unstable with respect to disproportionation, when the metal is located in an extended oxide framework.

The instability of some of these disfavored states, such as the disproportionation of Pb^{3+} and Bi^{4+} in Pb_2O_3 and BiO_2 respectively,^[1-2] can be accounted for by universal chemical concepts—in this instance the global instability of ns^1 electron configurations in main group metals leads to Pb_2O_3 and BiO_2 being better described as $Pb^{II}Pb^{IV}O_3$ and $Bi^{III}Bi^VO_4$ respectively.

However, similar disproportionations are observed in transition-metal systems, where the instability of the metal oxidation state cannot be easily attributed to a global instability of a particular electron count but appears to arise from the favorability of particular combinations of delectron count and local coordination environment. For example, AgO is better described as $Ag^{I}Ag^{III}O_2$,^[3] with the disproportionation of Ag^{II} attributed to the favorability of locating $d^{10} Ag^{I}$ in a linear coordination and $d^8 Ag^{III}$ in square-planar coordination sites within the oxide framework. Likewise, analogous disproportionations of d^7 cations, such as $Pd^{II} or Pt^{II}$ are observed, driven by the favorability of locating $d^6 Pd^{IV}/Pt^{IV}$ cations in octahedral environments and $d^8 Pd^{II}/Pt^{II}$ cations in square-planar coordinations, in phases such as $K_2Pd^{II}_3Pd^{IV}O_6$ and CdPt^{II}Pt^{IV}_2O_6.^[4-5]

Recently we observed the disproportionation of $d^7 Rh^{II}$ during the topochemical reduction of the Ruddlesden-Popper LaSrM_{0.5}Rh_{0.5}O₄ (M=Co, Ni) and perovskite LaM_{0.5}Rh_{0.5}O₃ oxides, with the reduced phases (LaSrM_{0.5}Rh_{0.5}O_{3.25} and LaM_{0.5}Rh_{0.5}O_{2.25} respectively) hosting d⁸ Rh¹ in square-planar coordination sites, and d⁶ Rh^{III} in 5-coordinate, square-based pyramidal sites.^[6–7] Here we describe the first observation of the disproportionation of d⁷ Co^{II} in an extended oxide, which occurs during the topochemical reduction of the double perovskite oxide LaSr-CoRuO₆ to LaSrCoRuO₅.

Previous work revealed that rapidly quenching the double perovskite oxide LaSrNiRuO₆ through a *R*-3 to $P2_1/n$ phase transition $(T \approx 400 \,^{\circ}\text{C})^{[8]}$ increased the reactivity of this oxide phase with CaH₂, allowing the preparation of the

Angew. Chem. Int. Ed. 2024, 63, e202313067 (1 of 5)

infinite layer phase, LaSrNiRuO₄, by topochemical anion deintercalation.^[9-10] The corresponding cobalt phase, LaSrCoRuO₆,^[11-12] exhibits an analogous phase transition at $T \approx 450$ °C. Rapidly quenching LaSrCoRuO₆ through its *R*-3 to *P*2₁/*n* phase transition also enhances its reactivity enabling the preparation of the infinite layer phase LaSrCoRuO₄ via reaction with binary metal hydrides, as will be described in detail elsewhere. However, in contrast to the LaSrNiRuO_{6-x} system, quenched samples of LaSrCoRuO₆ can be reduced to a phase of intermediate oxygen content (shown to be LaSrCoRuO₅ by oxidative thermogravimetric analysis) by reaction with a Zr getter at 450 °C.

Synchrotron X-ray powder diffraction (SXRD) data collected from LaSrCoRuO₅ could be indexed using a bodycentered monoclinic unit cell (a=5.40 Å, b=5.41 Å, c= 8.16 Å, γ =90.5 °) consistent with the retention of the perovskite framework from the LaSrCoRuO₆ parent phase. However, close inspection revealed a series of weak additional reflections in the SXRD data that could not be indexed by this cell. Electron diffraction (ED) data collected from LaSrCoRuO₅, shown in Figure 1, are consistent with a 2×2×1 cell expansion compared to the LaSrCoRuO₆ parent phase (2 $\sqrt{2}$ ×2 $\sqrt{2}$ ×2 compared to a simple ABO₃ perovskite unit cell).^[13-14] This expanded cell accounts for all the additional weak peaks observed in the SXRD data and can also index neutron powder diffraction (NPD) data collected at room temperature from LaSrCoRuO₅.

Considering the $A_2BB'O_5$ composition and the $2\sqrt{2}\times2\sqrt{2}\times2$ cell expansion of the phase, a number of anionvacancy ordered and B-site cation ordered perovskite structural models were considered for LaSrCoRuO₅. It was observed that a good fit to the SXRD and NPD data could

Figure 1. Observed, calculated and difference plots from structural refinement of LaSrCoRuO₅ against NPD data. Inset shows ED pattern demonstrating $2\sqrt{2\times}2\sqrt{2\times}2$ cell expansion.

be achieved using a model based on the anion-vacancy ordered structure of LaNi_{0.9}Co_{0.1}O_{2.5} which consists of a network of apex-linked 6-coordinate octahedral, 5-coordinate square-based pyramidal and 4-coordinate square planar BO_x units.^[15] The model was modified to take account of the rock salt ordering of the Co and Ru cations, so that the Ru centers were exclusively located within 5-coordinate sites, while the Co centers occupied both 6- and 4-coordinate sites within a monoclinic unit cell (*a*=10.8128(2) Å, *b*=10.8231 (2) Å, *c*=8.1626(1) Å, γ =90.55(1) °) with *P*112₁ space group symmetry, as shown in Figure 2. The model was refined against the NPD data to achieve a good fit (wRp=6.33%) as shown in Figure 1 and described in detail in the Supporting Information.^[16]

The crystal structure of LaSrCoRuO₅ shown in Figure 2 reveals that the cobalt cations occupy two distinct sites within the oxide framework. A 4-coordinate planar site and a 6-coordinate octahedral site. The location of the cobalt

Figure 2. Crystal structure of LaSrCoRuO₅ (top) and a projection of the transition metal coordination polyhedra at $z \approx 0.75$ (bottom).

Angew. Chem. Int. Ed. 2024, 63, e202313067 (2 of 5)

 $\textcircled{\sc c}$ 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

cations in two distinct sites is reminiscent of the localcoordination-driven disproportionation of transition metals with d⁷ electron counts observed for Pd³⁺ and Pt³⁺ and more recently Rh²⁺, and suggests the disproportionation of Co²⁺ into Co¹⁺ (square-planar) and Co³⁺ (octahedral). Analysis of the local coordination environments of the cobalt centers is hampered by the lack of reported Co¹⁺O₄ units for comparison. However, the observed bond lengths of the CoO₄ units in LaSrCoRuO₅ (Co–O=2.032(11) Å×2; 2.119(9) Å×2) are significantly longer than those in the Co²⁺ O₄ units reported in Sr₃Co₂O₄Cl₂ (Co–O=2.007(1) Å×4)^[17] or Sr₂CoO₂Cu₂S₂ (Co–O=1.995(1) Å×4)^[18] consistent with assignment of Co¹⁺O, for the units present in LaSrCoRuO

2.119(9) Å×2) are significantly longer than those in the Co^{2+} O_4 units reported in Sr₃Co₂O₄Cl₂ (Co-O=2.007(1) Å×4)^[17] or $Sr_2CoO_2Cu_2S_2$ (Co-O=1.995(1) Å×4)^[18] consistent with assignment of Co¹⁺O₄ for the units present in LaSrCoRuO₅. Bond valance sums (BVS)^[19] calculated using parameters for Co^{2+} $LaSrCoRuO_5:Co+1.42,$ yield values of $Sr_3Co_2O_4Cl_2$: Co+1.70 and $Sr_2CoO_2Cu_2S_2$: Co+1.76. The CoO₆ units in LaSrCoRuO₅ have a rather irregular shape but exhibit an average bond length of < Co–O = 2.004 Å>(BVS = Co + 2.69) compared to < Co - O = 2.033 Å > (BVS =Co+2.38) the $Co^{II}O_6$ units in the LaSrCoRuO₆ parent phase.^[12] Thus, it can be seen that the BVS values of the square-planar (BVS = Co + 1.42) and octahedral sites (BVS = Co + 2.69) in LaSrCoRuO₅ differ by 1.27 units. This difference is significantly larger than the difference between the octahedral and tetrahedral sites in the Co²⁺ brownmillerite phase $La_2Co_2O_5$ (CoO₆ BVS = Co + 2.23; CoO₄ BVS = $Co+2.07, \Delta=0.16)^{[20]}$ or the difference between octahedral and square-planar sites in the Ni²⁺ phase La₂Ni₂O₅ (NiO₆ BVS = 2.08; NiO₄ BVS = 2.11, $\Delta = 0.03$)^[21] and provides strong support for the disproportionation of Co²⁺ in LaSrCoRuO5.

In an attempt to further confirm the disproportionation of Co^{2+} , cobalt EELS data collected from LaSrCoRuO₅. These data show a single set of Co L₂ and L₃ peaks (Figure S14 in the Supporting Information) and thus represent the superposition of signals from both the squareplanar and octahedral cobalt sites. In the absence of a Co¹⁺ oxide standard we are unable to know if a Co¹⁺/Co³⁺ oxidation state combination would be expected to lead to a resolvable splitting of the L₂ and L₃ peaks. It should be noted that splitting of Co²⁺/Co³⁺ signals is not resolvable for Co₃O₄.^[22] The L₃/L₂ intensity ratio (4.83) and L₃-L₂ energy difference (15.06 eV) from the data are broadly consistent with Co²⁺.

Magnetization data collected from LaSrCoRuO₅ indicate that, in common with many other topochemically reduced phases containing cobalt, samples of LaSrCoRuO₅ contain small quantities of ferromagnetic, elemental cobalt not detectable by diffraction. The magnetization of LaSrCoRuO₅ was therefore measured using the 'ferromagnetic subtraction' method described in the Supporting Information. A plot of the magnetic susceptibility of LaSrCoRuO₅ against temperature (Figure 3a) can be fit by the Curie– Weiss law in the range 140 < T/K < 300. However, the extracted Curie constant (C=3.76 cm³K mol⁻¹; θ = +82.7 K) is much larger than can be accounted for by a combination of Co¹⁺, Co³⁺ and Ru³⁺ cations (even with the cobalt centers in high-spin states), suggesting strong magnetic

b) 1.2 Saturated Moment (µB per fu) 1.0 0.8 0.6 0.4 0.2 0-150 200 0 50 100 250 300 Temperature (K) C) Co Ru³⁺ z^2 SE DE

Figure 3. a) Paramagnetic susceptibility and b) saturated ferromagnetic moment of LaSrCoRuO₅ measured via the 'ferrosubtraction' method and plotted as a function of temperature, c) The direct exchange and super exchange pathways in LaSrCoRuO₅.

interactions are present between the metal centers in this temperature range.

a)

dM/dH (emu mol⁻¹)

80×10⁻²

60

40

20

The bond lengths of the square-planar and octahedral cobalt sites in LaSrCoRuO₅ are consistent with a high spin, S=1 Co¹⁺ center, and a low spin, S=0 Co³⁺ respectively. Thus, the most significant magnetic couplings in the system will be between the square-planar Co¹⁺ centers, which have a $(d_{xz/vz})^4 (d_{xy})^2 (d_{z2})^1 (d_{x2-v2})^1$ electronic configuration, and the Ru³⁺ centers located in square-based pyramidal sites which have a $(d_{xz/yz})^4 (d_{xy})^1 (d_{z2})^0 (d_{x2-y2})^0$ electronic configuration.

As shown in Figure 3c, the Co^{1+} and Ru^{3+} centers are magnetically coupled by either (Ru4d_{x2-y2})–O2p–(Co3d_{x2-y2}) or $(Ru4d_{z2})$ -O2p- $(Co3d_{x2-y2})$ σ -type super exchange or $(Ru4d_{z2})$ - $(Co3d_{z2})$ direct exchange. Given that the Ru $4d_{x2-y2}$ and $4d_{z2}$ orbitals are empty and the corresponding Co3d orbitals are half filled, all of these interactions will be ferromagnetic,^[23] consistent with the low-temperature magnetization data.

The disproportionation of Co²⁺ evident in LaSrCoRuO₅ is surprising. As noted above, other transition metal cations with d^7 electron counts (e.g., Pd^{3+} , Pt^{3+} , Rh^{2+}) are observed to disproportionate in oxide environments, driven by the presence of 'preferred' coordination sites. However, to date, this behavior has been restricted to 4d and 5d transition metals where the stronger ligand fields (compared to 3d metals) provide a larger energetic stabilization for the d⁶ octahedral and d⁸ square-planar electron-count/coordination combinations. It is therefore unexpected to see Co^{2+} , a common oxidation state with a modest ligand field in oxides, undergo a coordination-site driven disproportionation.

There are limited examples of 3d transition metal cations, such as Fe⁴⁺ and Ni³⁺ disproportionating in extended oxides. However, in these cases the disproportionation of the metal center (e.g. Fe⁴⁺ in CaFeO₃ or BaFeO₃; Ni^{3+} in $\mathrm{Tl}\mathrm{NiO}_3)^{[24-26]}$ is driven by a metal-insulator phase transition driven by the presence of a single electron in the σ -band of these oxides phases, rather than coordination site preference.

The unique observation of coordination-site driven disproportionation of Co²⁺ in LaSrCoRuO₅ suggests that the topochemical reaction which forms LaSrCoRuO₅ may act to 'select' this phase, as the disproportionated structure is a local energy minimum in composition-structure space in the reaction path between LaSrCoRuO₆ and LaSrCoRuO₄. Indeed, the same argument can be applied to the topochemical reactions which form the Rh^I/Rh^{III} disproportionated phases reported previously.^[6-7] In combination these observations suggest further coordination-site driven disproportionated oxide phases could be accessible by this type of low-temperature reaction, presenting an opportunity to prepare a range of transition metal oxides with a rich variety of novel metal oxidation-state/coordination geometry-combinations.

Acknowledgements

Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award "Oxford Solid State Chemistry BAG to probe composition-structureproperty relationships in solids" (CY25166). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC (doi.org/10.5286/ISI-S.E.RB2220199). ZL and MAH thank the EPSRC (EP/ T027991/1) for funding. We thank Daphne Vandemeulebroucke for assistance collecting the EELS data.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords: Disproportionation · Double Perovskite Oxides · Ferromagnetism · Topochemical Reduction · Transition-Metal Oxides

- [1] J. Bouvaist, D. Weigel, Acta Crystallogr. Sect. A 1970, 26, 501-510.
- [2] N. Kumada, N. Kinomura, P. M. Woodward, A. W. Sleight, J. Solid State Chem. 1995, 116, 281-285.
- [3] J. A. McMillan, J. Inorg. Nucl. Chem. 1960, 13, 28-31.
- [4] R. V. Panin, N. R. Khasanova, C. Bougerol, W. Schnelle, G. Van Tendeloo, E. V. Antipov, Inorg. Chem. 2010, 49, 1295-1297.
- [5] C. T. Prewitt, K. B. Schwartz, R. D. Shannon, Acta Crystallogr. Sect. C 1983, 39, 519-521.
- [6] Z. Xu, R. G. Palgrave, M. A. Hayward, Inorg. Chem. 2020, 59, 13767-13773.
- [7] Z. Y. Xu, P. K. Thakur, T. L. Lee, A. Regoutz, E. Suard, I. Puente-Orench, M. A. Hayward, Inorg. Chem. 2022, 61, 15686-15692.
- [8] M. Gateshki, J. M. Igartua, Mater. Res. Bull. 2003, 38, 1893-1900.
- [9] Z. Liang, M. Amano Patino, M. Hendrickx, J. Hadermann, M. A. Hayward, ACS Org. Inorg. Au 2022, 2, 75-82.
- [10] M. Amano Patino, D. Zeng, R. Bower, J. E. McGrady, M. A. Hayward, Inorg. Chem. 2016, 55, 9012-9016.
- [11] S. H. Kim, P. D. Battle, J. Solid State Chem. 1995, 114, 174-183
- [12] J. W. G. Bos, J. P. Attfield, Chem. Mater. 2004, 16, 1822-1827.
- [13] S. Plana-Ruiz, Y. Krysiak, J. Portillo, E. Alig, S. Estrade, F. Peiro, U. Kolb, Ultramicroscopy 2020, 211.
- [14] L. Palatinus, P. Brazda, M. Jelinek, J. Hrda, G. Steciuk, M. Klementova, Acta Crystallogr. Sect. B 2019, 75, 512-522.
- [15] S. Aasland, H. Fjellvag, B. C. Hauback, J. Solid State Chem. **1998**, 135, 103–110.
- [16] A. A. Coelho, J. Appl. Crystallogr. 2018, 51, 210-218.
- [17] F. Denis Romero, L. Coyle, M. A. Hayward, J. Am. Chem. Soc. 2012, 134, 15946-15952.
- C. F. Smura, D. R. Parker, M. Zbiri, M. R. Johnson, Z. A. Gal, [18] S. J. Clarke, J. Am. Chem. Soc. 2011, 133, 2691-2705.

Angew. Chem. Int. Ed. 2024, 63, e202313067 (4 of 5)

© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

GDCh

- [19] N. E. Brese, M. O'Keeffee, Acta Crystallogr. Sect. B 1991, 47, 192–197.
- [20] O. H. Hansteen, H. Fjellvag, B. C. Hauback, J. Solid State Chem. 1998, 141, 411–417.
- [21] J. A. Alonso, M. J. MartinezLope, J. L. GarciaMunoz, M. T. FernandezDiaz, J. Phys. Condens. Matter 1997, 9, 6417–6426.
- [22] O. A. Makgae, T. N. Phaahlamohlaka, B. Z. Yao, M. E. Schuster, T. J. A. Slater, P. P. Edwards, N. J. Coville, E. Liberti, A. I. Kirkland, J. Phys. Chem. C 2022, 126, 6325–6333.
- [23] J. B. Goodenough, Magnetism and the chemical bond, Wiley, New York 1963.
- [24] M. Takano, N. Nakanishi, Y. Takeda, S. Naka, T. Takada, *Mater. Res. Bull.* 1977, 12, 923–928.
- [25] Z. H. Tan, F. D. Romero, T. Saito, M. Goto, M. A. Patino, A. Koedtruad, Y. Kosugi, W. T. Chen, Y. C. Chuang, H. S. Sheu, J. P. Attfield, Y. Shimakawa, *Phys. Rev. B* 2020, *102*, 054404.
- [26] S. J. Kim, M. J. Martinez-Lope, M. T. Fernandez-Diaz, J. A. Alonso, I. Presniakov, G. Demazeau, *Chem. Mater.* 2002, 14, 4926–4932.

Manuscript received: September 5, 2023 Accepted manuscript online: December 12, 2023 Version of record online: December 12, 2023