toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vermeulen, B.B.; Raymenants, E.; Pham, V.T.; Pizzini, S.; Sorée, B.; Wostyn, K.; Couet, S.; Nguyen, V.D.; Temst, K. url  doi
openurl 
  Title Towards fully electrically controlled domain-wall logic Type A1 Journal article
  Year 2024 Publication (down) AIP advances Abbreviated Journal  
  Volume 14 Issue 2 Pages 025030-25035  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Utilizing magnetic tunnel junctions (MTJs) for write/read and fast spin-orbit-torque (SOT)-driven domain-wall (DW) motion for propagation, enables non-volatile logic and majority operations, representing a breakthrough in the implementation of nanoscale DW logic devices. Recently, current-driven DW logic gates have been demonstrated via magnetic imaging, where the Dzyaloshinskii-Moriya interaction (DMI) induces chiral coupling between perpendicular magnetic anisotropy (PMA) regions via an in-plane (IP) oriented region. However, full electrical operation of nanoscale DW logic requires electrical write/read operations and a method to pattern PMA and IP regions compatible with the fabrication of PMA MTJs. Here, we study the use of a Hybrid Free Layer (HFL) concept to combine an MTJ stack with DW motion materials, and He+ ion irradiation to convert the stack from PMA to IP. First, we investigate the free layer thickness dependence of 100-nm diameter HFL-MTJ devices and find an optimal CoFeB thickness, from 7 to 10 angstrom, providing high tunneling magnetoresistance (TMR) readout and efficient spin-transfer torque (STT) writing. We then show that high DMI materials, like Pt/Co, can be integrated into an MTJ stack via interlayer exchange coupling with the CoFeB free layer. In this design, DMI values suitable for SOT-driven DW motion are measured by asymmetric bubble expansion. Finally, we demonstrate that He+ irradiation reliably converts the coupled free layers from PMA to IP. These findings offer a path toward the integration of fully electrically controlled DW logic circuits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001163573400005 Publication Date 2024-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:203823 Serial 9109  
Permanent link to this record
 

 
Author Kenawy, A.; Magnus, W.; Milošević, M.V.; Sorée, B. doi  openurl
  Title Voltage-controlled superconducting magnetic memory Type A1 Journal article
  Year 2019 Publication (down) AIP advances T2 – 64th Annual Conference on Magnetism and Magnetic Materials (MMM), NOV 04-08, 2019, Las Vegas, NV Abbreviated Journal  
  Volume 9 Issue 12 Pages 125223  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Over the past few decades, superconducting circuits have been used to realize various novel electronic devices such as quantum bits, SQUIDs, parametric amplifiers, etc. One domain, however, where superconducting circuits fall short is information storage. Superconducting memories are based on the quantization of magnetic flux in superconducting loops. Standard implementations store information as magnetic flux quanta in a superconducting loop interrupted by two Josephson junctions (i.e., a SQUID). However, due to the large inductance required, the size of the SQUID loop cannot be scaled below several micrometers, resulting in low-density memory chips. Here, we propose a scalable memory consisting of a voltage-biased superconducting ring threaded by a half-quantum flux bias. By numerically solving the time-dependent Ginzburg-Landau equations, we show that applying a time-dependent bias voltage in the microwave range constitutes a writing mechanism to change the number of stored flux quanta within the ring. Since the proposed device does not require a large loop inductance, it can be scaled down, enabling a high-density memory technology. (C) 2019 Author(s).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515525300002 Publication Date 2019-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:167551 Serial 8740  
Permanent link to this record
 

 
Author Zografos, O.; Dutta, S.; Manfrini, M.; Vaysset, A.; Sorée, B.; Naeemi, A.; Raghavan, P.; Lauwereins, R.; Radu, I.P. pdf  doi
openurl 
  Title Non-volatile spin wave majority gate at the nanoscale Type A1 Journal article
  Year 2017 Publication (down) AIP advances T2 – 61st Annual Conference on Magnetism and Magnetic Materials (MMM), OCT 31-NOV 04, 2016, New Orleans, LA Abbreviated Journal Aip Adv  
  Volume 7 Issue 5 Pages 056020  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract A spin wave majority fork-like structure with feature size of 40 nm, is presented and investigated, through micromagnetic simulations. The structure consists of three merging out-of-plane magnetization spin wave buses and four magneto-electric cells serving as three inputs and an output. The information of the logic signals is encoded in the phase of the transmitted spin waves and subsequently stored as direction of magnetization of the magneto-electric cells upon detection. The minimum dimensions of the structure that produce an operational majority gate are identified. For all input combinations, the detection scheme employed manages to capture the majority phase result of the spin wave interference and ignore all reflection effects induced by the geometry of the structure. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).  
  Address  
  Corporate Author Thesis  
  Publisher Amer inst physics Place of Publication Melville Editor  
  Language Wos 000402797100177 Publication Date 2017-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.568 Times cited 13 Open Access  
  Notes ; ; Approved Most recent IF: 1.568  
  Call Number UA @ lucian @ c:irua:144288 Serial 4673  
Permanent link to this record
 

 
Author Hu, L.; Amini, M.N.; Wu, Y.; Jin, Z.; Yuan, J.; Lin, R.; Wu, J.; Dai, Y.; He, H.; Lu, Y.; Lu, J.; Ye, Z.; Han, S.-T.; Ye, J.; Partoens, B.; Zeng, Y.-J.; Ruan, S. pdf  doi
openurl 
  Title Charge transfer doping modulated raman scattering and enhanced stability of black phosphorus quantum dots on a ZnO nanorod Type A1 Journal article
  Year 2018 Publication (down) Advanced Optical Materials Abbreviated Journal Adv Opt Mater  
  Volume 6 Issue 15 Pages 1800440  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Black phosphorus (BP) has recently triggered an unprecedented interest in the 2D community. However, many of its unique properties are not exploited and the well-known environmental vulnerability is not conquered. Herein, a type-I mixed-dimensional (0D-1D) van der Waals heterojunction is developed, where three-atomic-layer BP quantum dots (QDs) are assembled on a single ZnO nanorod (NR). By adjusting the indium (In) content in ZnO NRs, the degree and even the direction of surface charge transfer doping within the heterojunction can be tuned, which result in selective Raman scattering enhancements between ZnO and BP. The maximal enhancement factor is determined as 4340 for BP QDs with sub-ppm level. Furthermore, an unexpected long-term ambient stability (more than six months) of BP QDs is revealed, which is ascribed to the electron doping from ZnO:In NRs. The first demonstration of selective Raman enhancements between two inorganic semiconductors as well as the improved stability of BP shed light on this emerging 2D material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000440815200023 Publication Date 2018-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2195-1071 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.875 Times cited 37 Open Access Not_Open_Access  
  Notes ; L. Hu and M. N. Amini contributed equally to this work. This work was supported by the National Natural Science Foundation of China under Grant Nos. 51502178, 81571763 and 81622026, the Shenzhen Science and Technology Project under Grant Nos. JCYJ20150324141711644, JCYJ20170412105400428, KQJSCX20170727101208249 and JCYJ20170302153853962. Parts of the computational calculations were carried out using the HPC infrastructure at University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, supported financially by the FWO-Vlaanderen and the Flemish Government (EWI Department). L. H. acknowledges the PhD Start-up Fund of Natural Science Foundation of Guangdong Province under Grand No. 2017A030310072. J. Y. acknowledges the funding of Shanghai Jiao Tong University (Nos. YG2016MS51 and YG2017MS54). ; Approved Most recent IF: 6.875  
  Call Number UA @ lucian @ c:irua:153112UA @ admin @ c:irua:153112 Serial 5082  
Permanent link to this record
 

 
Author Yang, S.; Kang, J.; Yue, Q.; Coey, J.M.D.; Jiang, C. pdf  doi
openurl 
  Title Defect-modulated transistors and gas-enhanced photodetectors on ReS2 nanosheets Type A1 Journal article
  Year 2016 Publication (down) Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 3 Issue 3 Pages 1500707  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373149400011 Publication Date 2016-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 22 Open Access  
  Notes ; This work was supported by the National Natural Science Foundations of China (NSFC) under Grant No.51331001. The authors thank S. Tongay for giving them the ReS<INF>2</INF> crystals. ; Approved Most recent IF: 4.279  
  Call Number UA @ lucian @ c:irua:133232 Serial 4159  
Permanent link to this record
 

 
Author Han, S.; Tang, C.S.; Li, L.; Liu, Y.; Liu, H.; Gou, J.; Wu, J.; Zhou, D.; Yang, P.; Diao, C.; Ji, J.; Bao, J.; Zhang, L.; Zhao, M.; Milošević, M.V.; Guo, Y.; Tian, L.; Breese, M.B.H.; Cao, G.; Cai, C.; Wee, A.T.S.; Yin, X. pdf  url
doi  openurl
  Title Orbital-hybridization-driven charge density wave transition in CsV₃Sb₅ kagome superconductor Type A1 Journal article
  Year 2022 Publication (down) Advanced materials Abbreviated Journal Adv Mater  
  Volume Issue Pages 1-9  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Owing to its inherent non-trivial geometry, the unique structural motif of the recently discovered kagome topological superconductor AV(3)Sb(5) (A = K, Rb, Cs) is an ideal host of diverse topologically non-trivial phenomena, including giant anomalous Hall conductivity, topological charge order, charge density wave (CDW), and unconventional superconductivity. Despite possessing a normal-state CDW order in the form of topological chiral charge order and diverse superconducting gaps structures, it remains unclear how fundamental atomic-level properties and many-body effects including Fermi surface nesting, electron-phonon coupling, and orbital hybridization contribute to these symmetry-breaking phenomena. Here, the direct participation of the V3d-Sb5p orbital hybridization in mediating the CDW phase transition in CsV3Sb5 is reported. The combination of temperature-dependent X-ray absorption and first-principles studies clearly indicates the inverse Star-of-David structure as the preferred reconstruction in the low-temperature CDW phase. The results highlight the critical role that Sb orbitals play and establish orbital hybridization as the direct mediator of the CDW states and structural transition dynamics in kagome unconventional superconductors. This is a significant step toward the fundamental understanding and control of the emerging correlated phases from the kagome lattice through the orbital interactions and provides promising approaches to novel regimes in unconventional orders and topology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000903664200001 Publication Date 2022-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.4 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 29.4  
  Call Number UA @ admin @ c:irua:193500 Serial 7328  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Shayesteh, S.F.; Peeters, F.M. pdf  doi
openurl 
  Title Exploiting the novel electronic and magnetic structure of C3Nvia functionalization and conformation Type A1 Journal article
  Year 2019 Publication (down) Advanced Electronic Materials Abbreviated Journal Adv Electron Mater  
  Volume 5 Issue 5 Pages 1900459  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract 2D polyaniline, C3N, is of recent high interest due to its unusual properties and potential use in various technological applications. In this work, through systematic first-principles calculations, the atomic, electronic, and magnetic structure of C3N and the changes induced due to functionalization by the adsorption of hydrogen, oxygen, and fluorine, for different coverages and sites, as well as on formation of nanoribbons including the effect of adsorbed hydrogen and oxygen, and the effect of strain, are investigated. Among other interesting phenomena, for hydrogen adsorption, a semiconductor-to-topological insulator transition, where two Dirac-points appear around the Fermi level, as well as ferromagnetic ordering for both hydrogen and oxygen functionalization, is identified. Considering C3N nanoribbons, adsorption of H leads to significant changes in the electronic properties, such as transforming the structures from semiconductor to metallic. Furthermore, investigating the effect of strain on the physical properties, it is found that the band gap can be significantly altered and controlled. The present findings predict that a wide variation in the magnetic and electronic structure of C3N can be achieved by adatom functionalization and conformation indicating its high potential for use in various technological applications, ranging from catalysis, energy storage, and nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486528200001 Publication Date 2019-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-160x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.193 Times cited 35 Open Access  
  Notes ; This work was supported by the FLAG-ERA project 2DTRANS and the Flemish Science Foundation (FWO-Vl). In addition, we acknowledge the OpenMX team for OpenMX code. ; Approved Most recent IF: 4.193  
  Call Number UA @ admin @ c:irua:162790 Serial 5414  
Permanent link to this record
 

 
Author Anisimovas, E.; Matulis, A.; Peeters, F.M. url  openurl
  Title Classical nature of quantum dots in a magnetic field Type A1 Journal article
  Year 2005 Publication (down) Acta physica Polonica: A: general physics, solid state physics, applied physics Abbreviated Journal Acta Phys Pol A  
  Volume 107 Issue 1 Pages 188-192  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A quasiclassical theory of few-electron quantum dots in a strong magnetic field is developed. The ground state energy and the corresponding many-electron wave function are obtained and used to derive a universal relation of critical magnetic fields and calculate the currents and the density-current correlation function.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Warszawa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor 0.469 Times cited Open Access  
  Notes Approved Most recent IF: 0.469; 2005 IF: 0.394  
  Call Number UA @ lucian @ c:irua:94749 Serial 369  
Permanent link to this record
 

 
Author Arsoski, V.; Tadić, M.; Peeters, F.M. url  openurl
  Title Interband optical properties of concentric type-I nanorings in a normal magnetic field Type A1 Journal article
  Year 2010 Publication (down) Acta physica Polonica: A: general physics, solid state physics, applied physics Abbreviated Journal Acta Phys Pol A  
  Volume 117 Issue 5 Pages 733-737  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two concentric two-dimensional GaAs/(Al,Ga)As nanorings in a normal magnetic field are theoretically studied. The single-band effective mass approximation is adopted for both the electron and the hole states, and the analytical solutions are given. We find that the electronic single particle states are arranged in pairs, which exhibit anticrossings and the orbital momentum transitions in the energy spectrum when magnetic field increases. Their period is essentially determined by the radius of the outer ring. The oscillator strength for interband transitions is strongly reduced close to each anticrossing. We show that an optical excitonic Aharonov-Bohm effect may occur in concentric nanorings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Warszawa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.469 Times cited Open Access  
  Notes Approved Most recent IF: 0.469; 2010 IF: 0.467  
  Call Number UA @ lucian @ c:irua:83377 Serial 1690  
Permanent link to this record
 

 
Author Tadić, M.; Arsoski, V.; Čukarić, N.; Peeters, F.M. url  openurl
  Title The optical excitonic Aharonov-Bohm effect in a few nanometer wide type-I nanorings Type A1 Journal article
  Year 2010 Publication (down) Acta physica Polonica: A: general physics, solid state physics, applied physics Abbreviated Journal Acta Phys Pol A  
  Volume 117 Issue 6 Pages 974-977  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The optical excitonic Aharonov-Bohm effect in type-1 three-dimensional (In, Ga)As/GaAs nanorings in theoretically explored. The single-particle states of the electron and the hole are extracted from the effective mass theory in the presence of inhomogeneous strain, and an exact numerical diagonalization approach is used to compute the exciton states and the oscillator strength fx for exciton recombination. We studied both the large lithographically-defined and small self-assembled rings. Only in smaller self-assembled nanorings we found optical excitonic AharonovBohm effect. Those oscillations are established by anticrossings between the optically active exciton states with zero orbital momentum. In lithographically defined rings, whose average radius is 33 nm, fx shows no oscillations, whereas in the smaller self-assembled nanoring with average radius of 11.5 nm oscillations in fx for the ground exciton state are found as function of the magnetic field that is superposed on a linear dependence. These oscillations are smeared out at finite temperature, thus photoluminescence intensity exhibits step-like variation with magnetic field even at temperature as small as 4.2 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Warszawa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.469 Times cited Open Access  
  Notes Approved Most recent IF: 0.469; 2010 IF: 0.467  
  Call Number UA @ lucian @ c:irua:84080 Serial 2474  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M. url  openurl
  Title Free-standing Si and Ge, and Ge/Si core-shell semiconductor nanowires Type A1 Journal article
  Year 2012 Publication (down) Acta physica Polonica: A: general physics, solid state physics, applied physics T2 – WELCOME Scientific Meeting on Hybrid Nanostructures, AUG 28-31, 2011, Torun, POLAND Abbreviated Journal Acta Phys Pol A  
  Volume 122 Issue 2 Pages 294-298  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The properties of free-standing silicon and germanium nanowires oriented along the [110] direction are studied using different first principles methods. We show the corrections due to quasi-particles to the band structures obtained using the local-density approximation. The formation energies of B and P doped nanowires are calculated, both in the absence and presence of dangling bond defects and we link these to experimental results. Furthermore, we report on the phonon properties of pure Si and Ge nanowires, as well as Ge/Si core-shell nanowires, and discuss the differences between them.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Warszawa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor 0.469 Times cited Open Access  
  Notes Approved Most recent IF: 0.469; 2012 IF: 0.531  
  Call Number UA @ lucian @ c:irua:101896 Serial 1277  
Permanent link to this record
 

 
Author Avetisyan, A.A.; Ghazaryan, A.V.; Djotyan, A.P.; Kirakosyan, A.A.; Moulopoulos, K. pdf  doi
openurl 
  Title Magnetoexcitons in semiconductor quantum rings with complicated (Kane's) dispersion law Type A1 Journal article
  Year 2009 Publication (down) Acta physica Polonica: A: general physics, solid state physics, applied physics T2 – 4th Workshop on Quantum Chaos and Localisation Phenomena, MAY 22-24, 2009, Polish Acad Sci, Ctr Theoret Phys, Inst Phys, Polish Acad Sci, Ctr Theoret Phys, Inst Phys, War Abbreviated Journal  
  Volume 116 Issue 5 Pages 826-828  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of the nonparabolicity of charge carriers dispersion law (Kane's dispersion) on a magnetoexciton energy spectrum in InSb quantum rings is theoretically investigated The analytical expression for the energy spectrum of exciton in a narrow-gap semiconductor nanoring in a magnetic field is obtained. The Aharonov – Bohm oscillations in the energy of excited states are studied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000273091200015 Publication Date 2016-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:172293 Serial 8193  
Permanent link to this record
 

 
Author Michel, K.H.; Lamoen, D.; David, W.I.F. doi  openurl
  Title Orientational order and disorder in solid C60 : theory and diffraction experiments Type A1 Journal article
  Year 1995 Publication (down) Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A  
  Volume 51 Issue 3 Pages 365-374  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from a microscope model of the intermolecular potential, a unified description is presented of the Bragg scattering law in the orientationally disordered and in the ordered phase of solid C-60. The orientational structure factor is expanded in terms of symmetry-adapted surface harmonics. The expansion coefficients are calculated from theory and compared with experiment Their temperature evolution is studied in the disordered phase at the 260 K transitions and in the ordered phase. In the ordered phase, new results from high-resolution neutron powder diffraction are given. In the disordered phase, space group Fm $($) over bar$$ 3m, the reflections have A(1g) symmetry; in the ordered phase, space group Pa $$($) over bar 3, reflections of T-2g symmetry appear and in addition the A(1g) reflections are renormalized. The orientational density distribution is calculated. The effective crystal-field potential is constructed, its temperature evolution in the ordered phase is studied and related to the occurrence of an orientational glass.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos A1995RB59400018 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0108-7673; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.307 Times cited 14 Open Access  
  Notes Approved CHEMISTRY, MULTIDISCIPLINARY 65/163 Q2 # CRYSTALLOGRAPHY 10/26 Q2 #  
  Call Number UA @ lucian @ c:irua:12189 Serial 2518  
Permanent link to this record
 

 
Author McLachlan, G.; Majdak, P.; Reijniers, J.; Peremans, H. url  doi
openurl 
  Title Towards modelling active sound localisation based on Bayesian inference in a static environment Type A1 Journal article
  Year 2021 Publication (down) Acta Acustica Abbreviated Journal  
  Volume 5 Issue Pages 45  
  Keywords A1 Journal article; Engineering Management (ENM); Condensed Matter Theory (CMT)  
  Abstract Over the decades, Bayesian statistical inference has become a staple technique for modelling human multisensory perception. Many studies have successfully shown how sensory and prior information can be combined to optimally interpret our environment. Because of the multiple sound localisation cues available in the binaural signal, sound localisation models based on Bayesian inference are a promising way of explaining behavioural human data. An interesting aspect is the consideration of dynamic localisation cues obtained through self-motion. Here we provide a review of the recent developments in modelling dynamic sound localisation with a particular focus on Bayesian inference. Further, we describe a theoretical Bayesian framework capable to model dynamic and active listening situations in humans in a static auditory environment. In order to demonstrate its potential in future implementations, we provide results from two examples of simplified versions of that framework.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000709050000001 Publication Date 2021-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182453 Serial 7035  
Permanent link to this record
 

 
Author Bafekry, A.; Shahrokhi, M.; Shafique, A.; Jappor, H.R.; Fadlallah, M.M.; Stampfl, C.; Ghergherehchi, M.; Mushtaq, M.; Feghhi, S.A.H.; Gogova, D. url  doi
openurl 
  Title Semiconducting chalcogenide alloys based on the (Ge, Sn, Pb) (S, Se, Te) formula with outstanding properties : a first-principles calculation study Type A1 Journal article
  Year 2021 Publication (down) ACS Omega Abbreviated Journal  
  Volume 6 Issue 14 Pages 9433-9441  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Very recently, a new class of the multicationic and -anionic entropy-stabilized chalcogenide alloys based on the (Ge, Sn, Pb) (S, Se, Te) formula has been successfully fabricated and characterized experimentally [Zihao Deng et al., Chem. Mater. 32, 6070 (2020)]. Motivated by the recent experiment, herein, we perform density functional theory-based first-principles calculations in order to investigate the structural, mechanical, electronic, optical, and thermoelectric properties. The calculations of the cohesive energy and elasticity parameters indicate that the alloy is stable. Also, the mechanical study shows that the alloy has a brittle nature. The GeSnPbSSeTe alloy is a semiconductor with a direct band gap of 0.4 eV (0.3 eV using spin-orbit coupling effect). The optical analysis illustrates that the first peak of Im(epsilon) for the GeSnPbSSeTe alloy along all polarization directions is located in the visible range of the spectrum which renders it a promising material for applications in optical and electronic devices. Interestingly, we find an optically anisotropic character of this system which is highly desirable for the design of polarization-sensitive photodetectors. We have accurately predicted the thermoelectric coefficients and have calculated a large power factor value of 3.7 x 10(11) W m(-1) K-2 s(-1) for p-type. The high p-type power factor is originated from the multiple valleys near the valence band maxima. The anisotropic results of the optical and transport properties are related to the specific tetragonal alloy unit cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000640649500012 Publication Date 2021-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178395 Serial 7017  
Permanent link to this record
 

 
Author Chen, B.; Sahin, H.; Suslu, A.; Ding, L.; Bertoni, M.I.; Peeters, F.M.; Tongay, S. doi  openurl
  Title Environmental changes in MoTe2 excitonic dynamics by defects-activated molecular interaction Type A1 Journal article
  Year 2015 Publication (down) ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue 9 Pages 5326-5332  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Monolayers of group VI transition metal dichalcogenides possess direct gaps in the visible spectrum with the exception of MoTe2, where its gap is suitably located in the infrared region but its stability is of particular interest, as tellurium compounds are acutely sensitive to oxygen exposure. Here, our environmental (time-dependent) measurements reveal two distinct effects on MoTe2 monolayers: For weakly luminescent monolayers, photoluminescence signal and optical contrast disappear, as if they are decomposed, but yet remain intact as evidenced by AFM and Raman measurements. In contrast, strongly luminescent monolayers retain their optical contrast for a prolonged amount of time, while their PL peak blue-shifts and PL intensity saturates to slightly lower values. Our X-ray photoelectron spectroscopy measurements and DFT calculations suggest that the presence of defects and functionalization of these defect sites with O-2 molecules strongly dictate their material properties and aging response by changing the excitonic dynamics due to deep or shallow states that are created within the optical band gap. Presented results not only shed light on environmental effects on fundamental material properties and excitonic dynamics of MoTe2 monolayers but also highlight striking material transformation for metastable 20 systems such as WTe2, silicone, and phosphorene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355383000068 Publication Date 2015-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 150 Open Access  
  Notes ; This work was supported by the Arizona State University seeding program. The authors thank Hui Cai and Kedi Wu for useful discussions. We gratefully acknowledge the use of facilities at the LeRoy Eyring Center for Solid State Science at Arizona State University. This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem Foundation of the Flemish government. H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:126441 Serial 1068  
Permanent link to this record
 

 
Author Tognalii, N.G.; Cortés, E.; Hernández-Nieves, A.D.; Carro, P.; Usaj, G.; Balseiro, C.A.; Vela, M.E.; Salvarezza, R.C.; Fainstein, A. doi  openurl
  Title From single to multiple Ag-layer modification of Au nanocavity substrates : a tunable probe of the chemical surface-enhanced Raman scattering mechanism Type A1 Journal article
  Year 2011 Publication (down) ACS nano Abbreviated Journal Acs Nano  
  Volume 5 Issue 7 Pages 5433-5443  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present experimental and computational results that enlighten the mechanisms underlying the chemical contribution to surface-enhanced Raman scattering (SERS). Gold void metallic arrays electrochemically covered either by a Ag monolayer or 10100 Ag layers were modified with a self-assembled monolayer of 4-mercaptopyridine as a molecular Raman probe displaying a rich and unexpected Raman response. A resonant increase of the Raman intensity in the red part of the spectrum is observed that cannot be related to plasmon excitations of the cavity-array. Notably, we find an additional 1020 time increase of the SERS amplification upon deposition of a single Ag layer on the Au substrate, which is, however, almost quenched upon deposition of 10 atomic layers. Further deposition of 100 atomic Ag layers results in a new increase of the SERS signal, consistent with the improved plasmonic efficiency of Ag bulk-like structures. The SERS response as a function of the Ag layer thickness is analyzed in terms of ab initio calculations and a microscopic model for the SERS chemical mechanism based on a resonant charge transfer process between the molecular HOMO state and the Fermi level in the metal surface. We find that a rearrangement of the electronic charge density related to the presence of the Ag monolayer in the Au/Ag/molecule complex causes an increase in the distance between the HOMO center of charge and the metallic image plane that is responsible for the variation of Raman enhancement between the studied substrates. Our results provide a general platform for studying the chemical contribution to SERS, and for enhancing the Raman efficiency of tailored Au-SERS templates through electrochemical modification with Ag films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293035200019 Publication Date 2011-06-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 26 Open Access  
  Notes ; We acknowledge financial support from ANPCyT (Argentina, PICT08-1617, PICT08-2236, PICT06-621, PICT-CNPQ-08-0019, PAE 22711, PICT06-01061, PICT06-483) and Project CTQ2008-06017/BQU, Spain. N.G.T, E.C., A.D.H.N., R.C.S, G.U., C.A.B., and A.F. are also at CONICET. M.E.V. is a member of the research career of CIC BsAs. R.C.S., C.A.B., and A.F. are Guggenheim Foundation Fellows. We would like to thank Dr. M. H. Fonticelli for fruitful discussions on the electrochemical measurements and Dr. H. Pastoriza for the help with the SEM measurements. ; Approved Most recent IF: 13.942; 2011 IF: 11.421  
  Call Number UA @ lucian @ c:irua:91775 Serial 1285  
Permanent link to this record
 

 
Author Walter, A.L.; Sahin, H.; Jeon, K.J.; Bostwick, A.; Horzum, S.; Koch, R.; Speck, F.; Ostler, M.; Nagel, P.; Merz, M.; Schupler, S.; Moreschini, L.; Chang, Y.J.; Seyller, T.; Peeters, F.M.; Horn, K.; Rotenberg, E.; doi  openurl
  Title Luminescence, patterned metallic regions, and photon-mediated electronic changes in single-sided fluorinated graphene sheets Type A1 Journal article
  Year 2014 Publication (down) ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 8 Pages 7801-7808  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Single-sided fluorination has been predicted to open an electronic band gap in graphene and to exhibit unique electronic and magnetic properties; however, this has not been substantiated by experimental reports. Our comprehensive experimental and theoretical study of this material on a SiC(0001) substrate shows that single-sided fluorographene exhibits two phases, a stable one with a band gap of similar to 6 eV and a metastable one, induced by UV irradiation, with a band gap of similar to 2.5 eV. The metastable structure, which reverts to the stable “ground-state” phase upon annealing under emission of blue light, in our view is induced by defect states, based on the observation of a nondispersive electronic state at the top of the valence band, not unlike that found in organic molecular layers. Our structural data show that the stable C2F ground state has a “boat” structure, in agreement with our X-ray magnetic circular dichroism data, which show the absence of an ordered magnetic phase. A high flux of UV or X-ray photons removes the fluorine atoms, demonstrating the possibility of lithographically patterning conducting regions into an otherwise semiconducting 2D material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000340992300025 Publication Date 2014-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 23 Open Access  
  Notes Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:119263 Serial 1857  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.; Grigorieva, I.V.; Geim, A.K. url  doi
openurl 
  Title Commensurability Effects in Viscosity of Nanoconfined Water Type A1 Journal article
  Year 2016 Publication (down) ACS nano Abbreviated Journal Acs Nano  
  Volume 10 Issue 10 Pages 3685-3692  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The rate of water flow through hydrophobic nanocapillaries is greatly enhanced as compared to that expected from macroscopic hydrodynamics. This phenomenon is usually described in terms of a relatively large slip length, which is in turn defined by such microscopic properties as the friction between water and capillary surfaces and the viscosity of water. We show that the viscosity of water and, therefore, its flow rate are profoundly affected by the layered structure of confined water if the capillary size becomes less than 2 nm. To this end, we study the structure and dynamics of water confined between two parallel graphene layers using equilibrium molecular dynamics simulations. We find that the shear viscosity is not only greatly enhanced for subnanometer capillaries, but also exhibits large oscillations that originate from commensurability between the capillary size and the size of water molecules. Such oscillating behavior of viscosity and, consequently, the slip length should be taken into account in designing and studying graphene-based and similar membranes for desalination and filtration.  
  Address School of Physics and Astronomy, University of Manchester , Manchester M13 9PL, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000372855400073 Publication Date 2016-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 160 Open Access  
  Notes ; M.N.A. was support by Shahid Rajaee Teacher Training University under contract number 29605. ; Approved Most recent IF: 13.942  
  Call Number c:irua:133237 Serial 4012  
Permanent link to this record
 

 
Author Galván-Moya, J.E.; Altantzis, T.; Nelissen, K.; Peeters, F.M.; Grzelczak, M.; Liz-Marán, L.M.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Self-organization of highly symmetric nanoassemblies : a matter of competition Type A1 Journal article
  Year 2014 Publication (down) ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 4 Pages 3869-3875  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The properties and applications of metallic nanoparticles are inseparably connected not only to their detailed morphology and composition but also to their structural configuration and mutual interactions. As a result, the assemblies often have superior properties as compared to individual nanoparticles. Although it has been reported that nanoparticles can form highly symmetric clusters, if the configuration can be predicted as a function of the synthesis parameters, more targeted and accurate synthesis will be possible. We present here a theoretical model that accurately predicts the structure and configuration of self-assembled gold nanoclusters. The validity of the model is verified using quantitative experimental data extracted from electron tomography 3D reconstructions of different assemblies. The present theoretical model is generic and can in principle be used for different types of nanoparticles, providing a very wide window of potential applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000334990600084 Publication Date 2014-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 34 Open Access OpenAccess  
  Notes FWO; Methusalem; 246791 COUNTATOMS; 335078 COLOURATOM; 262348 ESMI; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:116955 Serial 2977  
Permanent link to this record
 

 
Author Xu, P.; Dong, L.; Neek-Amal, M.; Ackerman, M.L.; Yu, J.; Barber, S.D.; Schoelz, J.K.; Qi, D.; Xu, F.; Thibado, P.M.; Peeters, F.M.; doi  openurl
  Title Self-organized platinum nanoparticles on freestanding graphene Type A1 Journal article
  Year 2014 Publication (down) ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 3 Pages 2697-2703  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Freestanding graphene membranes were successfully functionalized with platinum nanoparticles (Pt NPs). High-resolution transmission electron microscopy revealed a homogeneous distribution of single-crystal Pt NPs that tend to exhibit a preferred orientation. Unexpectedly, the NPs were also found to be partially exposed to the vacuum with the top Pt surface raised above the graphene substrate, as deduced from atomic-scale scanning tunneling microscopy images and detailed molecular dynamics simulations. Local strain accumulation during the growth process is thought to be the origin of the NP self-organization. These findings are expected to shape future approaches in developing Pt NP catalysts for fuel cells as well as NP-functionalized graphene-based high-performance electronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000333539400085 Publication Date 2014-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 38 Open Access  
  Notes ; M.N.A. acknowledges financial support by the EU-Marie Curie IIF postdoc Fellowship/299855. F.M.P. acknowledges financial support by the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-VI), and the Methusalem Foundation of the Flemish Government. L.D. acknowledges financial support by the Taishan Overseas Scholar program (tshw20091005), the International Science & Technology Cooperation Program of China (2014DFA60150), the National Natural Science Foundation of China (51172113), the Shandong Natural Science Foundation (JQ201118), the Qingdao Municipal Science and Technology Commission (12-1-4-136-hz), and the National Science Foundation (DMR-0821159). P.M.T. is thankful for the financial support of the Office of Naval Research under Grant No. N00014-10-1-0181 and the National Science Foundation under Grant No. DMR-0855358. ; Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:116881 Serial 2978  
Permanent link to this record
 

 
Author Schouteden, K.; Govaerts, K.; Debehets, J.; Thupakula, U.; Chen, T.; Li, Z.; Netsou, A.; Song, F.; Lamoen, D.; Van Haesendonck, C.; Partoens, B.; Park, K. pdf  url
doi  openurl
  Title Annealing-Induced Bi Bilayer on Bi2Te3 Investigated via Quasi-Particle-Interference Mapping Type A1 Journal article
  Year 2016 Publication (down) ACS nano Abbreviated Journal Acs Nano  
  Volume 10 Issue 10 Pages 8778-8787  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Topological insulators (TIs) are renowned for their exotic topological surface states (TSSs) that reside in the top atomic layers, and hence, detailed knowledge of the surface top atomic layers is of utmost importance. Here we present the remarkable morphology changes of Bi2Te3 surfaces, which have been freshly cleaved in air, upon subsequent systematic annealing in ultrahigh vacuum and the resulting effects on the local and area-averaging electronic properties of the surface states, which are investigated by combining scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and Auger electron spectroscopy (AES) experiments with density functional theory (DFT) calculations. Our findings demonstrate that the annealing induces the formation of a Bi bilayer atop the Bi2Te3 surface. The adlayer results in n-type doping, and the atomic defects act as scattering centers of the TSS electrons. We also investigated the annealing-induced Bi bilayer surface on Bi2Te3 via voltage-dependent quasi-particle-interference (QPI) mapping of the surface local density of states and via comparison with the calculated constant-energy contours and QPI patterns. We observed closed hexagonal patterns in the Fourier transform of real-space QPI maps with secondary outer spikes. DFT calculations attribute these complex QPI patterns to the appearance of a “second” cone due to the surface charge transfer between the Bi bilayer and the Bi2Te3. Annealing in ultrahigh vacuum offers a facile route for tuning of the topological properties and may yield similar results for other topological materials.  
  Address Department of Physics, Virginia Tech , Blacksburg, Virginia 24061, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000384399300073 Publication Date 2016-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 15 Open Access  
  Notes The research in Leuven and Antwerp was supported by the Research FoundationFlanders (FWO, Belgium). The research in Leuven received additional support from the Flemish Concerted Research Action Program (BOF KULeuven, Project GOA/14/007) and the KULeuven Project GOA “Fundamental Challenges in Semiconductor Research”. Z.L. acknowledges the support from the China Scholarship Council (2011624021) and from KU Leuven Internal Funds (PDM). K.S. and J.D. acknowledge additional support from the FWO. T.C. and F.S. acknowledge the financial support of the National Key Projects for Basic Research of China (Grants 2013CB922103 and 2011CB922103), the National NaturalScience Foundation of China (Grant s 91421109, 11134005,11522432, and 11274003), the Natural Science Foundation ofJiangsu Province (Grant BK20130054), and the FundamentalResearch Funds for the Central Universities. K.P. wassupported by the U.S. National Science Foundation (DMR-1206354) and San Diego Supercomputer Center (SDSC)Comet and Gordon (DMR060009N). Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @ c:irua:136269 Serial 4294  
Permanent link to this record
 

 
Author Griffin, E.; Mogg, L.; Hao, G.-P.; Kalon, G.; Bacaksiz, C.; Lopez-Polin, G.; Zhou, T.Y.; Guarochico, V.; Cai, J.; Neumann, C.; Winter, A.; Mohn, M.; Lee, J.H.; Lin, J.; Kaiser, U.; Grigorieva, I., V; Suenaga, K.; Ozyilmaz, B.; Cheng, H.-M.; Ren, W.; Turchanin, A.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M. pdf  url
doi  openurl
  Title Proton and Li-Ion permeation through graphene with eight-atom-ring defects Type A1 Journal article
  Year 2020 Publication (down) Acs Nano Abbreviated Journal Acs Nano  
  Volume 14 Issue 6 Pages 7280-7286  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Defect-free graphene is impermeable to gases and liquids but highly permeable to thermal protons. Atomic-scale defects such as vacancies, grain boundaries, and Stone-Wales defects are predicted to enhance graphene's proton permeability and may even allow small ions through, whereas larger species such as gas molecules should remain blocked. These expectations have so far remained untested in experiment. Here, we show that atomically thin carbon films with a high density of atomic-scale defects continue blocking all molecular transport, but their proton permeability becomes similar to 1000 times higher than that of defect-free graphene. Lithium ions can also permeate through such disordered graphene. The enhanced proton and ion permeability is attributed to a high density of eight-carbon-atom rings. The latter pose approximately twice lower energy barriers for incoming protons compared to that of the six-atom rings of graphene and a relatively low barrier of similar to 0.6 eV for Li ions. Our findings suggest that disordered graphene could be of interest as membranes and protective barriers in various Li-ion and hydrogen technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543744100086 Publication Date 2020-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 34 Open Access  
  Notes ; The work was supported by the Lloyd's Register Foundation, EPSRC-EP/N010345/1, the European Research Council, the Graphene Flagship, the Deutsche Forschungsgemeinschaft project TRR 234 “CataLight” (Project B7, Grant No. 364549901), and the research infrastructure Grant No. INST 275/25 7-1 FUGG. E.G. and L.M. acknowledge the EPSRC NowNANO programme for funding. ; Approved Most recent IF: 17.1; 2020 IF: 13.942  
  Call Number UA @ admin @ c:irua:170708 Serial 6586  
Permanent link to this record
 

 
Author Scolfaro, D.; Finamor, M.; Trinchao, L.O.; Rosa, B.L.T.; Chaves, A.; Santos, P., V.; Iikawa, F.; Couto, O.D.D., Jr. url  doi
openurl 
  Title Acoustically driven stark effect in transition metal dichalcogenide monolayers Type A1 Journal article
  Year 2021 Publication (down) Acs Nano Abbreviated Journal Acs Nano  
  Volume 15 Issue 9 Pages 15371-15380  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The Stark effect is one of the most efficient mechanisms to manipulate many-body states in nanostructured systems. In mono- and few-layer transition metal dichalcogenides, it has been successfully induced by optical and electric field means. Here, we tune the optical emission energies and dissociate excitonic states in MoSe2 monolayers employing the 220 MHz in-plane piezoelectric field carried by surface acoustic waves. We transfer the monolayers to high dielectric constant piezoelectric substrates, where the neutral exciton binding energy is reduced, allowing us to efficiently quench (above 90%) and red-shift the excitonic optical emissions. A model for the acoustically induced Stark effect yields neutral exciton and trion in-plane polarizabilities of 530 and 630 x 10(-5) meV/(kV/cm)(2), respectively, which are considerably larger than those reported for monolayers encapsulated in hexagonal boron nitride. Large in-plane polarizabilities are an attractive ingredient to manipulate and modulate multiexciton interactions in two-dimensional semiconductor nanostructures for optoelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000703553600129 Publication Date 2021-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:182545 Serial 7415  
Permanent link to this record
 

 
Author Zhang, G.; Huang, S.; Chaves, A.; Yan, H. pdf  doi
openurl 
  Title Black phosphorus as tunable Van der Waals quantum wells with high optical quality Type A1 Journal article
  Year 2023 Publication (down) ACS nano Abbreviated Journal  
  Volume 17 Issue 6 Pages 6073-6080  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Van der Waals quantum wells, naturally formed in two-dimensional layered materials with nanoscale thickness, possess many inherent advantages over conventional molecular beam epitaxy grown counterparts, and could bring up intriguing physics and applications. However, optical transitions originated from the series of quantized states in these emerging quantum wells are still elusive. Here, we show that multilayer black phosphorus appears to be an excellent candidate for van der Waals quantum wells with well-defined subbands and high optical quality. Using infrared absorption spectroscopy, we probe subband structures of multilayer black phosphorus with tens of atomic layers, revealing clear signatures for optical transitions with subband index as high as 10, far from what was attainable previously. Surprisingly, in addition to allowed transitions, an unexpected series of “forbidden” transitions is also evidently observed, which enables us to determine energy spacings separately for conduction and valence subbands. Furthermore, the linear tunability of subband spacings by temperature and strain is demonstrated. Our results are expected to facilitate potential applications for infrared optoelectronics based on tunable van der Waals quantum wells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953463300001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 17.1; 2023 IF: 13.942  
  Call Number UA @ admin @ c:irua:196100 Serial 7565  
Permanent link to this record
 

 
Author Tran, T.T.; Lee, Y.; Roy, S.; Tran, T.U.; Kim, Y.; Taniguchi, T.; Watanabe, K.; Milošević, M.V.; Lim, S.C.; Chaves, A.; Jang, J.I.; Kim, J. pdf  doi
openurl 
  Title Synergetic enhancement of quantum yield and exciton lifetime of monolayer WS₂ by proximal metal plate and negative electric bias Type A1 Journal article
  Year 2023 Publication (down) ACS nano Abbreviated Journal  
  Volume 18 Issue 1 Pages 220-228  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The efficiency of light emission is a critical performance factor for monolayer transition metal dichalcogenides (1L-TMDs) for photonic applications. While various methods have been studied to compensate for lattice defects to improve the quantum yield (QY) of 1L-TMDs, exciton-exciton annihilation (EEA) is still a major nonradiative decay channel for excitons at high exciton densities. Here, we demonstrate that the combined use of a proximal Au plate and a negative electric gate bias (NEGB) for 1L-WS2 provides a dramatic enhancement of the exciton lifetime at high exciton densities with the corresponding QY enhanced by 30 times and the EEA rate constant decreased by 80 times. The suppression of EEA by NEGB is attributed to the reduction of the defect-assisted EEA process, which we also explain with our theoretical model. Our results provide a synergetic solution to cope with EEA to realize high-intensity 2D light emitters using TMDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001139516800001 Publication Date 2023-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202811 Serial 9101  
Permanent link to this record
 

 
Author Zeng, Y.-J.; Schouteden, K.; Amini, M.N.; Ruan, S.-C.; Lu, Y.-F.; Ye, Z.-Z.; Partoens, B.; Lamoen, D.; Van Haesendonck, C. pdf  url
doi  openurl
  Title Electronic band structures and native point defects of ultrafine ZnO nanocrystals Type A1 Journal article
  Year 2015 Publication (down) ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 7 Issue 7 Pages 10617-10622  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Ultrafine ZnO nanocrystals with a thickness down to 0.25 nm are grown by a metalorganic chemical vapor deposition method. Electronic band structures and native point defects of ZnO nanocrystals are studied by a combination of scanning tunneling microscopy/spectroscopy and first-principles density functional theory calculations. Below a critical thickness of nm ZnO adopts a graphitic-like structure and exhibits a wide band gap similar to its wurtzite counterpart. The hexagonal wurtzite structure, with a well-developed band gap evident from scanning tunneling spectroscopy, is established for a thickness starting from similar to 1.4 nm. With further increase of the thickness to 2 nm, V-O-V-Zn defect pairs are easily produced in ZnO nanocrystals due to the self-compensation effect in highly doped semiconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355055000063 Publication Date 2015-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 15 Open Access  
  Notes Hercules; EWI Approved Most recent IF: 7.504; 2015 IF: 6.723  
  Call Number c:irua:126408 Serial 999  
Permanent link to this record
 

 
Author Ao, Z.; Jiang, Q.; Li, S.; Liu, H.; Peeters, F.M.; Li, S.; Wang, G. url  doi
openurl 
  Title Enhancement of the stability of fluorine atoms on defective graphene and at graphene/fluorographene interface Type A1 Journal article
  Year 2015 Publication (down) ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 7 Issue 7 Pages 19659-19665  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Fluorinated graphene is one of the most important derivatives of graphene and has been found to have great potential in optoelectronic and photonic nanodevices. However, the stability of F atoms on fluorinated graphene under different conditions, which is essential to maintain the desired properties of fluorinated graphene, is still unclear. In this work, we investigate the diffusion of F atoms on pristine graphene, graphene with defects, and at graphene/fluorographene interfaces by using density functional theory calculations. We find that an isolated F atom diffuses easily on graphene, but those F atoms can be localized by inducing vacancies or absorbates in graphene and by creating graphene/fluorographene interfaces, which would strengthen the binding energy of F atoms on graphene and increase the diffusion energy barrier of F atoms remarkably.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000361252400018 Publication Date 2015-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 35 Open Access  
  Notes ; We acknowledge the financial supports from the Chancellor's Research Fellowship Program of the University of Technology Sydney, the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish Government. This research was also supported by the National Computational Infrastructure (NCI) through the merit allocation scheme and used the NCI resources and facilities in Canberra, Australia. ; Approved Most recent IF: 7.504; 2015 IF: 6.723  
  Call Number UA @ lucian @ c:irua:128703 Serial 4177  
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M. pdf  url
doi  openurl
  Title Arresting aqueous swelling of layered graphene-oxide membranes with H3O+ and OH- ions Type A1 Journal article
  Year 2022 Publication (down) ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 14 Issue 30 Pages 34946-34954  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Over the past decade, graphene oxide (GO) has emerged as a promising membrane material with superior separation performance and intriguing mechanical/chemical stability. However, its practical implementation remains very challenging primarily because of its undesirable swelling in an aqueous environment. Here, we demonstrated that dissociation of water molecules into H3O+ and OH- ions inside the interlayer gallery of a layered GO membrane can strongly affect its stability and performance. We reveal that H3O+ and OH- ions form clusters inside the GO laminates that impede the permeance of water and salt ions through the membrane. Dynamics of those clusters is sensitive to an external ac electric field, which can be used to tailor the membrane performance. The presence of H3O+ and OH- ions also leads to increased stability of the hydrogen bond (H-bond) network among the water molecules and the GO layers, which further reduces water permeance through the membrane, while crucially imparting stability to the layered GO membrane against undesirable swelling. KEYWORDS: layered graphene-oxide membrane, aqueous stability, H3O+ and OH- ions, external electric field, molecular dynamics  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000835946500001 Publication Date 2022-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 9.5  
  Call Number UA @ admin @ c:irua:189467 Serial 7127  
Permanent link to this record
 

 
Author Tran, T.L.A.; Çakir, D.; Wong, P.K.J.; Preobrajenski, A.B.; Brocks, G.; van der Wiel, W.G.; de Jong, M.P. doi  openurl
  Title Magnetic properties of bcc-Fe(001)/C-60 interfaces for organic spintronics Type A1 Journal article
  Year 2013 Publication (down) Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 5 Issue 3 Pages 837-841  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The magnetic structure of the interfaces between organic semiconductors and ferromagnetic contacts plays a key role in the spin injection and extraction processes in organic spintronic devices. We present a combined computational (density functional theory) and experimental (X-ray magnetic circular dichroism) study on the magnetic properties of interfaces between bcc-Fe(001) and C-60 molecules. C-60 is an interesting candidate for application in organic spintronics due to the absence of hydrogen atoms and the associated hyperfine fields. Adsorption of C-60 on Fe(001) reduces the magnetic moments on the top Fe layers by similar to 6%, while inducing an antiparrallel magnetic moment of similar to-0.2 mu(B) on C-60. Adsorption of C-60 on a model ferromagnetic substrate consisting of three Fe monolayers on W(001) leads to a different structure but to very similar interface magnetic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315079700050 Publication Date 2013-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 28 Open Access  
  Notes ; The authors acknowledge support from the European project MINOTOR (Grant No. FP7-NMP-228424), the European Research Council (ERC Starting Grant No. 280020), and the NWO VIDI program (Grant No. 10246). The use of supercomputer facilities was sponsored by the “Stichting Nationale Computerfaciliteiten (NCF)”, financially supported by the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)”. ; Approved Most recent IF: 7.504; 2013 IF: 5.900  
  Call Number UA @ lucian @ c:irua:128326 Serial 4599  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: