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Abstract – Over the decades, Bayesian statistical inference has become a staple technique for modelling
human multisensory perception. Many studies have successfully shown how sensory and prior information
can be combined to optimally interpret our environment. Because of the multiple sound localisation cues
available in the binaural signal, sound localisation models based on Bayesian inference are a promising way
of explaining behavioural human data. An interesting aspect is the consideration of dynamic localisation cues
obtained through self-motion. Here we provide a review of the recent developments in modelling dynamic sound
localisation with a particular focus on Bayesian inference. Further, we describe a theoretical Bayesian frame-
work capable to model dynamic and active listening situations in humans in a static auditory environment.
In order to demonstrate its potential in future implementations, we provide results from two examples of
simplified versions of that framework.
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1 Introduction

Sound localisation is a primary function of the human
auditory system. Besides the well established evolutionary
advantages [1], it is a crucial process for attention control
and self-orientation. Proper understanding and implemen-
tation of the cues responsible for localisation is relevant
for a range of modern audio applications, such as binaural
hearing aids and three-dimensional audio displays for
augmented or virtual reality [2].

The binaural nature of the auditory system is of high
importance for localisation of the lateral position (Fig. 1)
of a sound source [3]. Humans obtain information about
the source through the interaural differences in time of arri-
val (interaural time difference, ITD) and level (interaural
level difference, ILD). However, the ITD and ILD cues do
not provide enough information for accurate localisation
beyond the horizontal plane, as several source locations will
give rise to nearly the exact same binaural cues in the so
called “cones of confusion” [4]. Monaural spectral cues,
which result from the filtering properties of the outer ear,
head and torso, carry additional information on the polar
position of the source (Fig. 1). This spectral information
aids in resolving the ambiguity in the binaural cues [5].

The aforementioned ITD, ILD and spectral cues can
be considered “static”, as they are usually obtained in a

situation where neither the source, nor the head undergoes
any movement. However, in addition to these static cues,
the auditory system can also utilise “dynamic” cues, which
are obtained by either sound source or head movement.
Thus, dynamic cues can be defined as the changes in static
cues during motion. Dynamic cues are beneficial during
sound localisation, especially for resolving front–back confu-
sions (e.g., [6]). They aid localisation in some way, but their
importance relative to static cues is still an active point of
research. Furthermore, dynamic cues obtained from self
motion, e.g., head movements, bring the additional chal-
lenge of processing sensorimotor information. As a result,
the majority of state of the art models for sound localisation
do not include the use of head movements [7].

There are many available models, which each focus on a
specific aspect of binaural localisation, such as processing of
binaural cues [8, 9], spectral cues [10, 11], or reverberant
environments [12]. Over the past decade, machine learning
techniques have also been applied to the modelling problem
(e.g., [13, 14]). Despite promising results, these techniques
require substantial amounts of training data and can be
difficult to understand due to their black-box nature [15].

Bayesian inference is a method to optimally combine
information about a multivariate system, when relying on
noisy observations only. Bayesian inference has often been
shown to take place not only in human multisensory per-
ception [16–20] but also human perception based on multi-
ple cues within a single modality [21–23]. Because of the*Corresponding author: glen.mclachlan@uantwerpen.be

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Acta Acustica 2021, 5, 45

Available online at:

�G. McLachlan et al., Published by EDP Sciences, 2021

https://acta-acustica.edpsciences.org

https://doi.org/10.1051/aacus/2021039

Special Issue: Auditory models

REVIEW ARTICLE

https://creativecommons.org/licenses/by/4.0/
https://www.edpsciences.org/
https://actacustica.edpsciences.org
https://actacustica.edpsciences.org
https://doi.org/10.1051/aacus/2021039


multiple sound localisation cues available in the binaural
signal, sound localisation models based on Bayesian infer-
ence seem to be a promising way of explaining behavioural
human data. Temporal integration and learning can be
modelled through recursive Bayesian estimation, where
probabilities and estimates are updated recursively over
time with incoming measurements [24, 25].

This article has two main purposes. First, we review the
relevance of dynamic cues and their role in existing models
of sound localisation, with a particular focus on the
implementation of Bayesian inference. Second, we describe
a recursive theoretical framework for dynamic listening
through Bayesian inference. This framework aims at mod-
elling dynamic listening situations which involve stationary
sound sources in combination with head movements.

2 Static listening
2.1 Acoustic features and perceptual cues

Sound source localisation consists of determining the
position of a source in three dimensions comprising two
angles and the distance. In the interaural-polar coordinate
system, the two angles are defined as the lateral and polar
angles relative to a single pole passing through the two ears,
i.e., the interaural axis. The interaural-polar system as used
in [10, 26, 27] with a fixed distance between the listener and
the source is illustrated in Figure 1. The static physical
acoustic cues for localisation are captured by the (binaural)
head-related transfer functions (HRTFs), which describes
the filtering of the sound for a given direction by the
listener’s anatomy as recorded at the two ear drums.

For sound-source localisation along the lateral angle, the
two main cues are the ITDs and the ILDs which are caused
by the wave propagation time difference and the shadowing
effects of the head, respectively [3]. ITD as a function of
lateral angle roughly follows a sine shape, with zeroes on
the median plane and maxima on the interaural axis [28].
This means that small displacements around the median
plane produce larger changes in ITD than the same dis-
placements at the lateral sides of the head. The ILD calcu-
lated for a spherical head model doesn’t show maxima on
the interaural axis, but for locations 45� on either side of
that axis [28]. For narrowband sounds, the ILD cues are
dominant at the middle to high-frequency range of human
hearing, and the ITD cues are particularly important for
low frequencies [29]. This is known as the duplex theory
of sound localisation. For broadband sounds, which encom-
passes most natural signals, both cues have substantial
weight, but ITD dominates for most listeners [30].

ITDs and ILDs produced by a sound at one location are
ambiguous cues as they can also be produced by a sound at
any location on the surface of a cone centred on the interau-
ral axis, an effect known as the “cone of confusion” [3]. Thus,
in addition to these interaural broadband cues, the asym-
metric and convoluted shape of the outer ears functions
as a direction-dependent filter by causing frequency-
dependent interference before sound waves reach the ear
drums. The spectral cues introduced at each ear provide
spatial information along the sagittal planes that helps to
disambiguate the cones of confusion [5] which results in
smaller elevation errors and a reduced so-called quadrant
error rate, i.e., rate of confusing the spatial quadrant of
the source direction, including the confusions between front
and back and top and bottom [26, 31]. Thus, the interaural-
polar coordinate system provides a simple but complete
representation of all sound directions from the perceptual
perspective [32], in which the lateral angle depends mostly
on interaural cues and polar angle depends mostly on
monaural spectral cues (see Fig. 1).

Despite the varying contributions from different
spectral regions, incoming sound must comprise sufficient
energy in the relevant frequency region to make use of the
spectral cues by the auditory system [33, 34]. The human
pinna’s most prominent spectral notch related to the
sound’s polar angle falls within the 6–9 kHz band, which
varies systematically and monotonically with polar angle
[34]. Acoustic features above 9 kHz still dependent on the
polar angle, but they vary in a much more complex way.
As a general upper limit, frequencies up to l6 kHz are
evaluated by the auditory system in order to localise the
direction of a sound [35]. As for the lower frequency limit,
sounds below 4 kHz have wavelengths that are too large
to be affected by the dimensions of the pinnae and, thus,
the resonances are direction independent [36]. Additionally,
the effectiveness of monaural cues is highly listener specific,
due to individual head and ear morphology [37]. This is a
prominent issue in 3D auditory displays for sound presenta-
tion over headphones [38] as such systems require listener-
specific HRTFs to reproduce the spectral cues with full
accuracy.

Figure 1. Interaural-polar coordinate system as used in [10,
26, 27]. The lateral angle of 0� describes sources located on the
median plane. The polar angle of 0� describes sources located on
the horizontal plane at the eye level. Note that in this system, the
lateral angle increases to the left, providing the advantage that
for sources located at the eye level, the lateral angle coincides
with the azimuth angle of the widely used spherical coordinate
system.
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Note that in this article we focus on the direction, and
put less attention on the third dimension, the distance.
On the one hand, distance perception is closely linked to
sound reverberation [39]. On the other hand, our proposed
framework is expandable to consider additional variables
and more complex problems. For example, in the near field
(distances below 1 m), ILDs become a significant cue for the
disambiguation of source location [40] and this information
could be used to extend our considerations to more complex
localisation scenarios. Also, auditory motion parallax can be
exploited to assess the relative distances of two sound
sources [41].

2.2 Ill-posed problem and prior information

Even for sound sources that meet the requirements
above, polar angle estimation is still argued to be a mathe-
matically ill-posed problem [42], as the spectrum of the
signal at the eardrum results from a time-domain convolu-
tion of two unknowns: the actual source spectrum and the
particular direction-dependent HRTF. This means that a
priori knowledge of the source spectrum and/or direction
helps to differentiate between spectral cues resulting from
the source properties and from the filtering by the pinnae.
Thus, a listener with an a priori knowledge is better able
to estimate the pinna filtering characteristics from an
incoming sound and associate those characteristics with
the appropriate source position.

Despite the ill-posed problem for sound’s polar-angle
estimation, human localisation performance can be accurate
and precise for most sound directions. Thus, to estimate the
most likely direction, the auditory system seems to comple-
ment the acoustic cues with non-acoustic information about
sounds and the environment. For example, the auditory
system considers certain parts of the sensory information
to be more reliable than others, such as different weightings
on different frequency bands [34]. With respect to sound
localisation, priors emphasising the central directions
helped to describe the systematic underestimation of
peripheral source directions in owls [43]. There also appears
to be a clear mapping between frequency and elevation
estimation, where high pitch is consistently mapped to high
positions and vice versa [44]. A priori assumptions such as
the HRTF being unique for each sound elevation and
natural source spectra not resembling HRTFs helped in
modelling the process of sound localisation [45].

Interestingly, sound-localisation mechanisms seem to be
independent along the horizontal and vertical dimensions,
providing evidence that they may be embedded as distinct
strategies to deal with spatial uncertainty in the acoustic
environment [42]. In the same study, azimuth estimation
did not require a prior. Conversely, elevation estimation
did require a prior in the form of a Gaussian spatial distri-
bution centred around the horizontal plane. This is in line
with the current understanding of multisensory perception
where priors are independently encoded [46]. The elegant
inclusion of such prior information is a major advantage
of a Bayesian framework.

In vision, priors have been discovered, e.g., observers
tend to underestimate the speed of an object as they
initially assume them to move stationary or move slowly
[47]. These priors may also apply to audition. In fact, an
analogous prior for low velocity of auditory sources has
already been suggested [48, 49].

3 Dynamic listening

Our acoustic environment is in constant motion, due to
both animate objects and listener movements. This makes
the dynamic listening problem twofold [50]: (1) How is
motion perceived and encoded in the auditory system? (2)
How can a listener disambiguate moving sources from the
apparent motion caused by head rotation? Both questions
will be addressed in this section.

It is important to distinguish here between “passive”
dynamic listening and “active” dynamic listening, particu-
larly because several definitions exist in different fields
related to audition [51–54]. According to our definition,
passive dynamic listening involves a dynamic acoustic
environment without the employment of head movements,
i.e., dynamic cues are solely produced by moving sound
sources. In contrast, in the active dynamic listening situa-
tion listeners can rotate their heads and obtain dynamic
cues even from static sound sources.

There are three degrees of freedom considered in most
research related to dynamic listening: head rotation around
the z-axis (yaw), head turn around the y-axis (pitch) and
head tilt around the x-axis (roll), see Figure 2. Note that
in this article, we focus on the directional localisation
process, thus we do not consider head translations, which
are usually related to distance estimation [55].

3.1 Acoustic features and perceptual cues

Wallach first suggested that dynamic ITDs and ILDs
associated with head rotation are used to refine localisation
accuracy, especially along the cones of confusion [56].
He argued that head yaw rotations would eliminate front–
back ambiguity due to the contrasting change in the
interaural cues provided by a stationary source [57]. The
contribution of dynamic cues to resolve front from back
has since been empirically shown multiple times [58–60],
especially in conditions in which spectral cues are not fully
accessible to the auditory system [38, 61, 62]. Dynamic
interaural cues contribute more to front–back resolution
than dynamic monaural spectral cues [63] and dynamic
ITD is a more salient cue than dynamic ILD [57].

Not only yaw rotations produce a strong dynamic cue,
head rolls provide supplementary information to resolve
up-down confusions [36]. The contribution of yaw and roll
to the process of sound localisation based on ITD can be
investigated with the so-called ITD angular rate, i.e.,
dITD/da with a being the source angle along a given rota-
tion axis. ITD angular rate describes the change in ITD
caused by the change in the source direction [64]. Figure 3
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shows ITD angular rates for the three rotation axes and
sources placed over the full sphere. The ITDs were calcu-
lated from the HRTFs of a mannequin (KU 100, Neumann,
Germany) available from the THK SOFA database [65].
Figure 3 shows that yaw and roll induce large ITD rates
providing a strong cue to resolve the cone of confusion.
The head pitch, on the other hand, does not seem to evoke
significant ITD rates, i.e., it does not provide dynamic cues
to sufficiently resolve the cone of confusion.

Dynamic cues also help in estimating the elevation of a
sound source. As it can be deduced from Figure 3a, the ITD

angular rates caused by head yaw depend on the source
elevation angle [56]. They are large for sources placed on
the horizontal plane and nearly zero for those placed
directly above or below a listener. This relation is shown
in more detail in Figure 4, which shows the ITD angular
rate for head yaw (dITD/da with a being the lateral angle)
as a function of the polar angle for sources located on the
median plane. The auditory system is able to evaluate these
ITD rate differences and associate them with the sound
elevation [6, 7, 38, 56, 61]. The sensitivity of this feature
varies with the elevation. In reference to Figure 4, the
ITD yaw rate is largest for sources on the horizontal plane
and the smallest for sources above and below the listener.
The opposite is true for the slope of the ITD yaw rate,
i.e., the slope is steeper for higher polar angles. The steep-
ness of the slope may explain why elevation estimation
based on dynamic ITD only improves for elevations greater
than 30� above or below the horizontal plane [6]. Generally,
the relation between the dynamic ITD rate and elevation
perception seems to be quite complex, as it seems to further
depend on the stimulus bandwidth [61] and might even be
supported by dynamic spectral cues [38], but not in a
monaural listening situation [66].

Head movements do not always improve localisation.
Brief sounds played during an ongoing head movement
may even degrade localisation accuracy [67, 68]. During
rapid head turns, the auditory space can be perceived as dis-
torted or “smeared” [69], which indicates that rotation speed
may be a relevant parameter in the process of sound locali-
sation. Interestingly, those distortions only occurred when
the sounds were presented near the end of the head turn
indicating a complex interaction between the head rotation
and perceived auditory space. On top of that, all the spatial
cues can vary temporally and our brains need to integrate
the information somehow in order to obtain a stable image
of the environment. Unfortunately, it is not completely clear
yet how the brain accomplishes this task [70].

Figure 3. ITD angular rates (dITD/da) in ls per degree. Here
da corresponds with a positive rotation around the (a) z-axis
(yaw), (b) y-axis (pitch), and (c) x-axis (roll). Left and right
panels represent source locations in the front and back of the
head, respectively.

Figure 4. ITD yaw rates (in ls per degree) calculated for the
median plane as a function of the sound-source polar angle. Note
the sinusoidal shape indicating that the ITD yaw rates do not
change linearly with polar angle, showing the largest values at
eye level (polar angle of zero), but the largest changes above or
below the listener (polar angle of ±90).

Figure 2. Three degrees of freedom in head orientation: yaw
(head rotation), roll (head pivot), and pitch (head tip).
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So far, there is no evidence for peripheral neurons sensi-
tive to auditory motion [71–73], in contrast to those found
in the visual system. Still, humans are able to faithfully
track a sound’s unpredictable movements in the horizontal
plane with smooth-pursuit responses of the head, which in
turn supports the existence of a pursuit system for auditory
head-tracking [74]. This is supported by neurons in the
midbrain (inferior colliculus and medial geniculate nucleus)
sensitive to dynamic cue changes. This suggests the exis-
tence of a higher-level neural network estimating sound
motion, similar to that of third-order (acceleration) motion
detectors found in vision for cats [75], bats [76], guinae pigs
[77], and barn owls [78, 79]. These networks are heavily
modulated by attention [80] and have been measured by
means of electroencephalography (EEG) [81], providing
further evidence for higher cognitive processes involved in
decoding sound velocity in humans. Taken together, sound
motion is most probably tracked by sampling the estimated
source position and integrating that information by
higher stages of the auditory system [50, 82], rather than
by a continuous measurement of sound velocity in the
peripheral stages.

It is generally accepted that the auditory system
depends on a type of “temporal integration” [83]. It is impor-
tant here to distinguish between the operation of mathe-
matical integration (as the term “temporal integration”
seems to imply) and the actual process in the analysis of
time-variant information. In cognitive sciences, temporal
integration considers a variety of models working on various
time scales [84]. For example, in the “multiple looks” model,
samples or “looks” are taken from the acoustic features,
stored in memory, and can be selectively accessed and
processed [85]. When applied to the process of sound local-
isation, the auditory system seems to integrate acoustic
information over a duration of approximately 5 ms to form
a single look, which are then combined through a leaky
integrator, with a stable composite estimation requiring a
stimulus duration of approximately 80 ms [86].

More specifically, static elevation estimation seems to
require 40–80 ms of broadband input [86]. For static later-
alisation, stable performance can be achieved with stimuli
as short as 3 ms [87]. During dynamic sound-source localisa-
tion, the sound localisation system seems to require a
minimum 100 ms of input to yield an improved estimate
(likely due to the process of vestibular-auditory integra-
tion), with the stimulus duration above 100 ms further
improving the localisation performance [6, 57].

Doppler shift, i.e., the frequency shift caused by the
motion of the sound source and/or the listener, is an addi-
tional dynamic cue that must be noted. Interestingly,
within a single frequency band, the binaural Doppler
equation results in mathematically equivalent results as
the ITD angular rate [88]. Despite its implementation in
robotic systems [89], there seems to be no evidence that
human use the Doppler effect to localise sound sources.
When considering moving sources, however, humans are
indeed able to utilise the Doppler shift as a cue for velocity
discrimination [90].

3.2 Integration of sensorimotor information

Listeners are capable of dissociating self-motion from
source motion, with the largest apparent difference being
the additional sensory feedback from the vestibular and
proprioceptive systems in the case of self motion [50]. Con-
sequently, the contribution of self-motion implies the con-
sideration of sensorimotor information in modelling the
localisation process.

In the human auditory system, acoustic cues are encoded
in an egocentric representation, i.e., head-centred reference
frame [87]. In the process of spatial inference, the frame of
reference needs to be transformed from egocentric to allocen-
tric, i.e., world-centred information about the environment
[91]. The auditory system is able to compensate for head
rotations during the perception of sound-source motion,
though this compensation seems to be incomplete [49].
Complementary information from other senses, integrated
with the acoustic input can help to better estimate the
allocentric spatial properties of the environment. In fact,
mechanisms responsible for building an allocentric frame
of reference are based on multisensory processing [92–94].

Thus, it is not surprising that in the process of sound
localisation, information needs to be integrated from many
systems such as the vestibular system, proprioception or
from efference copies of motor commands [95]. For example,
performance in a dynamic spatial auditory task improved
when dynamic cues were generated by self-induced head
motion rather than by the source itself [96]. However,
front–back confusions that initially did not resolve with
source movement were in fact resolved when source move-
ments were controlled by the listener [58], suggesting that
head movements may not be required to produce dynamic
cues to resolve front–back ambiguity and, instead, that
the listener’s priors, e.g., additional information on the direc-
tion of the source, contribute strongly.

The extent to which the various information channels
contribute to the process of spatial calibration remains an
open question. There is a strong indication that vestibu-
lar-auditory integration takes place in the sound localisa-
tion process as indicated by the requirement of a long
stimulus duration (in the range of 100 ms) for an effective
use of dynamic auditory cues [57]. However, in that study,
listeners rotated their head at a constant velocity and the
stimulus was played when the head orientation entered a
selected spatial window. Because of this, movement initia-
tion and acceleration, in which sensorimotor mechanisms
may play a prominent role, were not tested. Experiments
that made subjects orient themselves “straight ahead” found
that proprioceptive input from the neck region does signif-
icantly impact the subjective body orientation in humans,
even though the effect was smaller than that found for
vestibular stimulation [97]. In order to clarify whether the
sensorimotor information integrated with acoustic cues is
derived from vestibular or proprioceptive systems, several
head and and body movement conditions were tested in a
sound localisation experiment [98]. The proprioceptive
information did not improve localisation indicating that
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the vestibular inputs are sufficient to inform the auditory
system about head movement. In line with these findings,
work by Genzel et al. shows that auditory updating is
dominated by vestibular signals, though they did find sig-
nificant contributions from proprioception/efference copy
[99]. Even eye position [100] and audiovestibular interaction
[101] seem to affect the spatial localisation, which further
complicates the understanding of the contribution of senso-
rimotor information to the process of sound localisation.
It is apparent, however, that the vestibular system is
dominant in many of the tested scenarios.

3.3 Active-listening strategies

Borrowing from control theory terminology, active
listening can be subdivided into open-loop and closed-loop
listening. In open-loop listening head movements do not
depend on the sound source. For closed-loop listening, the
listener adjusts the head movements in response to the
perceived sound in a feedback loop, adapting the movement
for the duration of the sound signal. This makes closed-loop
listening a task-dependent problem. Closed-loop listening
can be beneficial to “triangulate” a source, to decrease
interference from reverberation, and to attend to a single
(moving) source in a complex listening environment [52].
Naturally, closed-loop listening strategies are only possible
if there is enough time to react. In a dynamic listening task,
localisation accuracy could be improved with signals as
short as 50 ms, but only in the cases where the listener
responds with a head movement within the duration of
the stimulus [6]. Note that, besides head movement, eyes
can also be moved as a reaction to a sound [102], but
because they do not change the auditory signal, we do
not consider them in this article.

In an unconstrained listening situation, i.e., any head
movements allowed, listeners utilise yaw more often than
pitch or roll [62, 103]. This is in line with the observation
that yaw produces the most informative dynamic cues,
compare Figure 3. In a closed-loop listening situation, lis-
teners can also orient their head towards the source. Indeed,
in another listening task, a majority of the subjects rotated
their head toward the direction of the source [104, 105].
This behaviour may be beneficial for several reasons such
as the spatial centring the acoustic image of a sound and
the alignment of the visual system with the source of the
sound [106]. The horizontal localisation is best in the area
around the frontal half of the median plane [107, 108] and
thus may be considered as a neuro-computational auditory
fovea, which somewhat resembles the visual ocular pursuit
system [74]. Following this, a listener’s intention may be to
orient their head such that the source direction is within the
field of highest spatial resolution [3]. Furthermore, listeners
also tend to make reversals in head movements, i.e., rotat-
ing their head back and forth [104, 105]. By doing so, a
continuum of dynamic cues is produced, which when inte-
grated, may improve the estimation of the position of a
stationary sound source.

It may be unnecessary to consider all physically attain-
able orientations of the head, because a confined area

around the initial position covers the majority of head
positions in natural listening situations. Even though
humans can rotate their heads on the yaw axis as far as
±70�, the listeners do not seem to rotate their heads to this
extent [7]. Small head rotations (up to ±16�) already signif-
icantly reduce the rate of front–back confusions, though
larger movements are required to also significantly reduce
elevation errors [38]. Head movements are smaller for
broadband noise than for narrowband noise [62], indicating
an inverse relationship between spectral content and the
required rotation angle.

It is important to note that all the aforementioned
studies report large individual differences in the head move-
ments. The optimal manner of obtaining dynamic informa-
tion may be subject-dependent because of differences in
morphology and hearing capabilities. It is, however, rather
likely that untrained and fully unconstrained listeners do
not inherently know how to utilise dynamic cues. In a
speech perception experiment, untrained listeners did not
make optimal use of the dynamic cues [109]. In fact, some
listeners did not move at all, some rotated directly to
near-optimum orientations, while others moved gradually
and erratically. After being instructed on the head move-
ments, listeners’ behaviour became more coherent and
performance improved indicating that listeners are capable
of quickly learning new strategies in order to optimise their
head movements. However, there seem to be only little
advantage from “free” (i.e., no instructions) over “forced”
(i.e., an instructed direction and speed) rotations [6, 59].
In summary, inclusion of individual listener strategies in
an active listening model would require the consideration
of a task-dependent variable driving the head orientation,
freely chosen at each moment of time.

4 Bayesian models

There is a general consensus that in order to estimate a
sound-source direction, the human auditory system per-
forms a comparison between incoming acoustic features
and their learned representation [11, 31, 34, 110]. In other
words, the models assume a template-matching process, in
which the auditory system maintains a stored library of
templates of the acoustic information associated with each
sound-source direction. When a stimulus is perceived, the
listener then compares it to the templates. Given some prior
assumptions, the localisation estimate then corresponds to
the direction for which the template fits most closely.

This procedure can be well represented in the Bayesian
framework, in which the probability of an occurring event
may be affected by prior knowledge about the event, e.g.,
how frequently a stimulus previously occurred at a given
position. The inclusion of a prior probability is what
distinguishes this method from other interpretations of
probability. A multitude of studies on multimodal percep-
tion suggests that the brain uses a Bayesian approach to
combine stimuli during estimation of spatial localisation
[16, 20, 111–113] and to learn and adapt to changes in the
environment [45, 72, 114–116].
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4.1 Bayesian estimation

In Bayes’ theorem (in terms of probability density
functions),

pðwjyÞ ¼ pðyjwÞpðwÞ
pðyÞ ;

the posterior probability density function (PDF) p(w|y) of
direction w of a source given acoustic information y
depends on three factors: (1) The likelihood p(y|w), repre-
senting the PDF of acoustic information y being observed
for a source at direction w; (2) The prior PDF p(w), rep-
resenting assumptions on the result, derived from the past
experience on the parameter to be estimated; and (3) The
denominator p(y), representing the PDF of acoustic infor-
mation y being observed and assumed to be a normalisa-
tion constant inferred from

R
pðwjyÞdw ¼ 1, so that the

area under the posterior PDF integrates to 1.
When formulating the sound source localisation prob-

lem as a Bayesian decision problem, the listener first deter-
mines the posterior PDF given both prior and sensory
information. Next, a loss function is defined on the set of
source directions and by using the posterior PDF to min-
imise the expected loss the “best” estimate of the source
direction is determined.

If the loss function specifies the minimisation of the prob-
ability of error, the optimal Bayesian decision rule selects the
maximum of the posterior PDF, a strategy known as the
maximum-a-posteriori (MAP) strategy [117]. Note that in
the special case of the prior being a uniform PDF, the
MAP strategy obtains the same result as maximum likeli-
hood estimation (MLE), which returns the parameter value
w that maximises the likelihood. Interestingly, the auditory
system does not always rely on a point estimate like the
MAP rule and a random sampling strategy from the poste-
rior PDF seems to better explain the localisation process in
some conditions [42].

Bayesian inference is a widely used approach in investi-
gating various auditory effects. For example, Bayesian
inference can help to reconstruct localisation cues from lis-
tener responses to random cue spectra [118], or to investi-
gate how fluctuations of binaural cues in realistic noisy
listening conditions affect localisation performance [119],
or to investigate the trading between accuracy and preci-
sion in the sound-localisation process [42].

Bayesian inference and the template-matching proce-
dure have been combined to model sound localisation based
on ITDs and spectral acoustic features of a stationary
source [11]. That Bayesian ideal-observer model was able
to predict empirical sound localisation errors, reproducing
patterns observed in human localisation experiments. It
can be seen as a first step in modelling active dynamic local-
isation and is, in fact, a simplified example for our model
later (see Sect. 5.5).

4.2 Recursive Bayesian estimation

There is a variety of methods to introduce time depen-
dency to Bayesian models [120], especially when it comes to

derive a decision in complex dynamic systems [121]. Recur-
sive Bayesian inference is one of these techniques and can be
applied to fit a statistical model to data in a series of steps
[122]. The methodology of recursive Bayesian inference can
be defined as a two-step process that recursively cycles
through a prediction step (which “predicts” a prior PDF
of current state based on the old estimate) and an update
step (which “updates” the state PDF to form a posterior
estimate by taking the newly available measurement into
account).

A popular way to approximate the recursive Bayesian
estimation in discrete state-space is through linear-
Gaussian models, i.e., Kalman filters, which assume that
the true state of system model X(ti) at time ti linearly
evolves from the state at time ti�1. In order to process
non-linear systems, adaptations of the Kalman filter can
be used, such as extended Kalman filters or unscented
Kalman filters [123]. The Kalman filter and its variants
update the process mean, i.e., the state, and its variance at
each iteration, making it the optimum (minimum error)
estimator when the noises are Gaussian. However, multi-
modal noises may bring the Kalman filter to instability,
which prevents it from converging to the mean. In order
to handle such multimodal ambiguities as well as non-linear
models, the particle filter method (or sequential Monte
Carlo, SMC) has been developed [124].

The switch between linear and non-linear systems can
even be required when solving a single problem. For exam-
ple, in an investigation of auditory-based prey capture by
the barn owl [24], both linear and non-linear recursive
Bayesian estimations were used to predict a source’s future
direction, given a sequence of sensory observations and a
prior PDF for direction and angular velocity. A linear rela-
tionship between prey direction and ITD was assumed for
prey in the frontal hemisphere allowing for the use of a
Kalman filter. For more lateral sound directions, however,
the linear approximation did not apply and a particle filter
was required to compute the Bayesian prediction. Note that
while that model is a dynamic model, it utilises dynamic
cues from source motion only, not from head movements.

Recursive Bayesian inference was also used to model the
external nucleus of the inferior colliculus [9], which is
thought to be responsible for the transformation from a
frequency-specific code for spatial cues into a topographic
code for space [125]. A similar mechanism was able to
explain how an input with a limited spectrum can improved
elevation estimation after training [25].

In the field of auditory scene analysis [126], recursive
Bayesian estimation has been used to improve the process
of resolving individual sources in a complex acoustic envi-
ronment [127]. That model is based on dynamic ITDs and
uses a simple recursive approach, in which the prior PDF
of sound positions is stored in a spectrospatial map and
the incoming short-time maps constitute new evidence. As
a simplification, the dynamic cues of the head movements
are translated to equivalent inverse changes in the source
position. The model also assumes perfect control of the head
orientation. Thus, it does not reflect a realistic dynamic
listening situation, in which the actual head orientation
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needs to be a random variable with an uncertainty, because
of the inherent error in the sensorimotor system. Still, it can
be considered as a case of “idealised” dynamic listening.

Much can also be learnt from research in robotics, as
there are many existing models for multisensory integration
and motion strategies [14, 128–131]. However, many of
these studies have focused on developing artificial auditory
systems that are less applicable to research on human
binaural listening, such as the use of microphone arrays
[132, 133]. Nonetheless, the techniques applied can prove
useful for more biologically plausible models, especially for
dynamic listening. For example, performance of an
extended Kalman filter has been improved by introducing
additional a priori information verifying the consistency of
location estimation at each time step [89].

5 Modelling active listening in a static
environment

In this section, we propose a state-space model to
describe the problem of active sound localisation, explain
the generative model used in the Bayesian framework,
and derive the posterior PDFs of the head orientation
and source direction. We also demonstrate the feasibility
of our model in two simplified examples.

In our model, we limit the source to be stationary with
respect to the head movements within the considered tem-
poral interval in the model. This is justified by assuming
that our framework is a part of a larger framework of causal
inference, in which the listener tests various hypotheses on
the auditory environment and at the moment of probing
the environment, the most probable assumption is an envi-
ronment consisting of non-moving auditory objects. This
assumption is further upheld by the empirical data support-
ing the “slow-motion prior” in listening [48, 49].

We allow the listener to actively control the head move-
ments. While head rotations can be described in a general
way by using quaternions, in our article, we use a simplified
description by limiting head movements to yaw rotations
only. Finally, we assume a “multiple looks” model whereby
the listener collects information at discrete time steps
during the motion and updates the evidence step by step.

5.1 State-space model

We describe the listener as a dynamic state-space pro-
cess, where in all instances of listening, the listener needs
to determine the posterior PDF of the source direction
and that PDF needs to be updated recursively as more evi-
dence or information becomes available. This recursive esti-
mation process is important in dynamic models including
temporal integration and relies on the Markov assumption:
the future is independent of the past given the present [134].
The state-space representation utilises state variables, of
which the values evolve over time in a way that depends
on their current value (i.e., state) and on the input vari-
ables. Using this definition and the Markov assumption,
we denote the true state of the system asX. This true state

is hidden to the listener, who can only observe the state via
a noisy measurement that we denote as y,

XðtiÞ ¼ gðXðti�1Þ; uðti�1Þ; duðtiÞÞ;
yðtiÞ ¼ hðXðtiÞ; dxðtiÞÞ;

ð1Þ

where g and h are called the system model and the
measurement model, respectively, u is the system control
function, and du and dx are the system and measurement
noise, respectively.

In the context of a sound localisation process with
the source positioned in the far-field, the state informa-
tion required by the listener to localise a source consists of
the head orientation hH(t) and the source direction w a
2D vector defined by the lateral and polar angles of the
source,

XðtÞ ¼ ðhHðtÞ;wÞT ;
with both the head orientation and the source direction
measured relative to the torso that we assume as the link
between the egocentric and allocentric spatial systems.

The control signal u(t) is represented by the speed of
rotating the head, i.e., u(t) = xz(t). Thus, the discrete-time
dynamic state-space model g is formulated as,

Xðtiþ1Þ �XðtiÞ ¼ ðxzðtiÞ�t þ du;wðtiþ1Þ � wðtiÞÞT ; ð2Þ
with Dt the time step of the “multiple looks” model and du
the noise on the self-motion representing the difference
between the intended and the actually executed head
movement. Note that, in a stationary auditory environ-
ment, the difference between the previous and current
sound direction, w(ti+1) and w(ti), respectively, is zero.

The measurement equation of the proposed state-space
model consists of two components,

yðtiÞ ¼ ðyAðtiÞ; yH ðtiÞÞT :
The first component, yA(ti), describes the acoustic features
used by the auditory system in the process of sound locali-
sation, as described in Section 3. For example, when resolv-
ing front–back confusions, the system may rely on dynamic
ITDs only, resulting in yA(ti) = ITD(hH(ti), w) + dA. In that
example, the noise in the acoustic features is modelled as
unbiased Gaussian noise dA � N ð0; ryITDÞ.

The second component, yH(ti), describes the measure-
ment of the head orientation as yH(ti) = hH(ti) + dH and
assumes that the listener knows the head orientation rela-
tive to the torso up to some additive (unbiased) Gaussian
noise dH � N ð0; ryH Þ.

While the aforementioned noise sources are described as
additive, control of movement [135] and stimulus percep-
tion [136] are generally assumed to not only be endowed
with additive but also with multiplicative noise, in which
the standard deviation of the noise is linearly related to
the amplitude of the signal. A possible solution in the case
of our framework can be transforming the signals to a space
of constant variance.

Note that we make no assumptions about the linearity
of the acoustic component of the measurement equation.
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Note also that we do assume that the head orientation and
acoustic measurement processes are independent, in partic-
ular that the acoustic features are not used by the listener
to estimate the head orientation. This is directly exploited
in the following sections: in order to translate the acoustic
measurements into source direction, the listener needs infor-
mation about the head orientation and we simplify the
active sound localisation problem considerably by first esti-
mating the head orientation (Sect. 5.3), and subsequently
making use of that information in the process of estimating
the source position (Sect. 5.4). In order to retain the
assumption of independent noise in the underlying measure-
ment processes, we assume the delays involved in the pro-
cess to be broadband.

5.2 Generative model

In the framework of Bayesian inference, we assume that
the listener wants to determine the source direction based on
all prior information about the environment and on all
sensory information collected during the head movement.
To this end, the listener first determines the posterior
PDF of the source direction. The desired posterior PDF,
taking into account all information available at time ti will
be denoted as,

pti ¼ p wjuð0 : i� 1Þ;yð0 : iÞð Þ; ð3Þ

with u(0 : i � 1) denoting the sequence of control signals,
i.e., rotation speed, applied at times t0 until ti�1 with the
time step Dt, and y(0 : i) the sequence of sensor readings,
i.e., acoustic features and head orientation, collected at
times t0 until ti. Figure 5 illustrates the generative model
describing this posterior PDF. Note that, while we assume
the source to be stationary, we make explicit the time
varying nature of our knowledge about the source direc-
tion by taking into account all relevant information avail-
able at time ti. Thus, we refer to this distribution by the
shorthand pti .

In Bayesian decision theory, the posterior PDF is
usually used to minimise a loss function, that describes
the optimal point estimate of the source direction. In
closed-loop listening, the posterior PDF, computed at each
update of the recursive process, can be further used as the
input for a head-movement strategy. An example is the
smooth posterior mean (SPM) strategy [130], which
makes the listener steer the head on a smooth trajectory
towards the posterior mean of the source position during
each iteration. While the definition of a relevant loss func-
tion and its minimisation is both of theoretical interest
and required for practical implementations (see our numer-
ical examples in Sect. 5.5), it is beyond the scope of this arti-
cle having its main focus on the derivation of the posterior
PDF.

5.3 Estimation of head orientation

We model the dynamic process of the head rotation by,
hH ðtiþ1Þ ¼ hH ðtiÞ þ xzðtiÞ�t þ du;

yH ðtiþ1Þ ¼ hH ðtiþ1Þ þ dH ;

with the initial head orientation given by a normally
distributed variable hHðt0Þ � N ðh0; r0Þ representing the
listener’s uncertainty about the initial head orientation.
The additive noise on both the movement equation and
the sensor equation is assumed to be zero-mean white
Gaussian noise du � N ð0; ruÞ and dH � N ð0; ryH Þ.

Making use of Bayes’ rule and taking into account all
head rotations executed as well as all sensor readings
collected so far, the PDF of the head orientation at
time ti+1 during the head movement can be shown to be
Gaussian and given by,

pðhH ðtiþ1ÞjyH ð0 : iþ 1Þ; uð0 : iÞÞ ¼ N ðĥH ðtiþ1Þ; rhH ðtiþ1ÞÞ;
ð4Þ

with mean and variance,

ĥH ðtiþ1Þ ¼ ð1� KÞ � ðĥH ðtiÞ þ xzðtiÞ�tÞ þ K � yH ðtiþ1Þ;
r2
hH ðtiþ1Þ ¼ ð1� KÞ � ðr2

hH ðtiÞ þ r2
uÞ;

and,

K ¼ r2
hH ðtiÞ þ r2

u

r2
hH ðtiÞ þ r2

u þ r2
yH

:

The prior required to initiate the recursive process is
based on two components: the prior knowledge available
to the listener about the sound source direction p(w)
and the prior knowledge p(hH(0) | yH(0)) available to the
listener about the initial head orientation. We assume here
that hH(0) is a Gaussian distribution centred on an ini-
tial head orientation ĥH ð0Þ as described in Equation (6),
but that may depend on the actual experiment being
modelled.

Figure 5. Bayesian network describing the dynamic listening
situation. The white and grey circles represent observed and
hidden variables, respectively. The arrows denote conditional
dependencies. w denotes the stationary sound source direction.
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Note the recursive nature of these equations as well as
their correspondence with a Kalman filter implementation
of the head orientation estimation process.

5.4 Estimation of sound-source direction

Here we derive a recursive expression for Equation (3)
describing the posterior PDF pti at time ti = ti�1 + Dt in
terms of the prior PDF pti�1

derived at time ti�1 combined
with the extra information from the most recent “look” in
the sequence of “multiple looks” collected during the head
movement. We assume the sensor readings and the control
signals to be available to the estimation process as,

yð0 : iÞ¼ ððyAðt0Þ; yH ðt0ÞÞT ; ðyA t1ð Þ; yH t1ð ÞÞT ; � � � yA tið Þ; yH tið ÞÞT� �
;

and,

uð0 : i� 1Þ ¼ ½xzðt0Þ;xzðt1Þ � � �xzðti�1Þ�;
i.e., we assume a varying speed of head rotation around
the yaw-axis (which remains constant during each time-
step Dt).

In the first step, as the source direction is part of the full
stateX = (hH, w)

T, we derive the desired PDF described by
Equation (3) from the joint full-state PDF by marginalisa-
tion over all possible head orientations,

pti ¼ p wjy 0 : ið Þ; u 0 : i� 1ð Þð Þ

¼
Z
hH

pX w; hH tið Þ jy 0 : ið Þ; u 0 : i� 1ð Þð ÞdhH :

This operation allows us to correctly take into account
the effect of the remaining head orientation uncertainty
on the source estimation. The joint PDF pX can be
expanded as,

pX ðw; hH ðtiÞjðyAðtiÞ; yH ðtiÞÞT ;yð0 : i� 1Þ; uð0 : i� 1ÞÞ
¼ pðwjhHðtiÞ; yAðtiÞ;yð0 : i� 1Þ; uð0 : i� 1ÞÞ
� pðhH ðtiÞjyH ðtiÞ;yð0 : i� 1Þ; uð0 : i� 1ÞÞ:

Our knowledge of the head orientation taking into account
all relevant data up until time ti can be described by a refor-
mulation of Equation (4),

pðhH ðtiÞjyH ð0 : iÞ; uð0 : i� 1ÞÞ ¼ N ðĥH ðtiÞ; rhH ðtiÞÞ:

In the second step, by using Bayes’ rule, we rewrite the first
term of pX,

pðwjhH ðtiÞ; yAðtiÞ;yð0 : i� 1Þ; uð0 : i� 1ÞÞ

¼ pðyAðtiÞjhH ðtiÞ;wÞ � pðwjyð0 : i� 1Þ; uð0 : i� 1ÞÞ
pðyAðtiÞjhH ðtiÞ;yð0 : i� 1Þ; uð0 : i� 1ÞÞ ;

and simplify it with,

pðwjyð0 : i� 1Þ; uð0 : i� 1ÞÞ ¼ pti�1
;

i.e., the posterior distribution on the source direction we
determined at time ti�1.

By combining these results we obtain the recursive
expression for the posterior PDF,

p wjy 0 : ið Þ; u 0 : i� 1ð Þð Þ

¼ pti ¼ C � pti�1
�
Z
hH

p hH tið Þ j yH 0 : ið Þ; u 0 : i� 1ð Þð Þ

� p yA tið Þ j hH tið Þ;wð ÞdhH ; ð5Þ
with the normalisation constant C derived from the poste-
rior PDF,Z

w
pðwjyð0 : iÞ; uð0 : i� 1ÞÞdw ¼ 1:

The recursive process in Equation (5) is comparable to
[127] and expresses our new state of knowledge about
the source direction pti based on the previous state of knowl-
edge pti�1

with the extra knowledge obtained in the most
recent “look”. This extra knowledge takes into account not
only the acoustic measurement but also the current head
orientation estimate.

The recursive processes is initiated with the source
direction PDF from Equation (3) derived from the initial
acoustic measurement performed at time t0,

pt0 ¼ pwðwjðyAðt0Þ; yH ðt0ÞÞT Þ:

This PDF, following a similar derivation as the one
described for Equation (5), is given by,

pt0 ¼ C � pðwÞ �
Z
hH

pðhH ðt0ÞjyH ðt0ÞÞ

� pðyAðt0ÞjhH ðt0Þ;wÞdhH ; ð6Þ

with pðhH ðt0ÞjyH ðt0ÞÞ ¼ N ðĥH ðt0Þ; rhH ðt0ÞÞ representing the
initial (uncertain) head orientation and p(w) being the
prior PDF on the source direction. Note that at this very
first moment t0 the head motion is not made use of, as at
that moment only the current head orientation is known
(up to some uncertainty). As with Equation (5), the con-
stant C can be derived from the normalisation of this pos-
terior PDF.

Depending on the behavioural task and listener’s priors
on the environment, this prior information p(w) (in Eq. (6))
may substantially modify the model predictions. For
example, it may constrain the possible source directions
to a sub-region of the full sphere around the listener’s head,
e.g., the frontal hemisphere or the horizontal plane. This
can be modelled by choosing p(w) accordingly.

5.5 Numerical examples

The presented concept is mathematically consistent, yet
its complete numerical evaluation is not trivial: it depends
on the considered acoustic features and needs to consider
many listening situations. Thus, it deserves separate discus-
sions in future articles. In this article, we illustrate the
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explanatory power of the concept by numerically applying
it to two examples in a simplified setting, using an MAP
estimator to convert the posterior PDF into a point esti-
mate. The corresponding code was implemented in the
auditory modeling toolbox (AMT) version 1.0 (Majdak
et al. [137]). Note that the MAP estimator is just one of
the possibilities to obtain a point estimate from the PDF.

In the first example, we simplify our concept to the
sound localisation with head oriented straight ahead and
without any head movements (not even noise), i.e., u = 0,
and yH = 0, respectively. This simplifies Equation (2) to
X(ti+1) = X(ti) and Equation (3) to p = pw(w|yA). The
resulting model corresponds to the ideal-observer model
by Reijniers et al. [11]. Results from that model were
replicated by using our implementation of the simplified
concept. To replicate the results from the original study,
we used the same acoustic features yA: ITDs, the summed
binaural spectral information, and the interaural spectral
information. We also used the same noise parameters tuned
to the ITD thresholds and absolute hearing thresholds. For
the input signal, we used Gaussian white noise filtered with
HRTFs from Section 3.1, which were also used as templates
in the model. 2354 target directions on the spherical grid
were considered. Per target sound direction, 10 trials were
simulated and averaged to obtain polar errors and front–
back confusion rates. Figure 6 shows the polar errors and
front–back confusion rates obtained with that simplified
model. The polar errors are largest above and below the
listener, which is qualitatively in line with the observations
obtained from actual localisation experiments [138]. The
large polar errors near the interaural axis can be attributed
to the disproportional changes in polar angles even for small
changes of the source direction [26].

The second example demonstrates the recursive nature
of the estimation process in our concept. We reduce the

concept to head rotations that are small (i.e., up to 10�),
open-loop, and at a constant speed (i.e., u = xz), so we
can assume a linear relationship between ITD and head-
rotation angle [24]. Head position is assumed to be exactly
known, i.e., a deterministic yH not confounded by any noise.
Further, we used the broadband ITD as acoustic feature,
i.e., yA(ti) = ITD(hH(ti), w) + dA and used a uniform distri-
bution for the prior PDF. Taking into account these simpli-
fications, Equation (3) reduces to pti ¼ pðw j yð0 : iÞÞ with
y(ti) = (yA(ti), hH(ti)). The predictions were calculated for
yaw, roll, and pitch separately, with identical simulation
parameters from the first example. Figures 7 and 8 show
the polar errors and front–back confusion rates, respec-
tively. The results show that head yaw significantly reduces
front–back confusions, though roll also shows a slight
improvement. Head yaw and roll also reduced polar errors,
with most of the reduction for sources located at the eye
level. All these findings are in line with empirical data
[6, 38]. Head pitch, on the other hand, did not show much
improvement, neither in reducing the localisation errors nor
the front–back confusions, both being in line with the
observation of small ITD rates when tilting the head (see
Fig. 3c).

These two examples demonstrate the feasibility of the
concept.

Figure 6. Example 1: Predictions obtained from 10 simulated
trials of the simplified concept without head movements, head
orientation straight ahead. (a) Polar angle errors (in degrees).
(b) Front–back confusion rates (in %); rates for target directions
near the frontal plane are not shown for clarity.

Figure 7. Example 2: Polar angle errors (in degrees) obtained
from 10 simulated trials of the simplified concept with a 10� turn
and perfectly determinable head orientation. (a) Head yaw
rotations. (b) Head pitch turns. (c) Head roll tilts. Left and right
panels represent source locations in the front and back of the
head, respectively.
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6 Conclusions

This article briefly reviews the recent literature on
modelling active dynamic sound localisation, which comple-
ments the well-documented sound localisation based on
static acoustic features with cues from self-motion or source
motion. The review focuses on Bayesian inference because
of its prominent role in recent multimodal cognitive models
and high potential in modelling dynamic cognitive pro-
cesses. We have defined the term of active dynamic sound
localisation, describing the localisation process in which
the listener actively updates the head orientation to facili-
tate the localisation process.

Further, we described a theoretical Bayesian modelling
framework based on the independent estimation of acoustic
features and head rotations. In order to show the feasibility
of the concept, we provide two short examples of simplified
versions of the concept, for which numeric implementations
are available. While these two examples do not fully
validate the concept in all its aspects, they demonstrate
the potential of the proposed concept towards a general
dynamic sound localisation model.

Future work will involve model extensions along
different directions. First, model parameters will need to

be fine-tuned through sensitivity analyses and comparisons
to empirical data in order to quantitatively fit the predic-
tions to the sound localisation performance of humans.
Second, an implementation of a closed-loop version of the
model will be required to completely test the concept. Here
questions related to listening strategies will become rele-
vant. Additionally, our current concept considers stationary
sources only. It can be extended to dynamic auditory envi-
ronments by integrating e.g., a multiscale network [139],
expanding our concept to a general framework of active
sound localisation in dynamic auditory environments.

Conflict of interest

Author declared no conflict of interests.

Acknowledgments

This research was supported by the Research Founda-
tion Flanders (FWO) under Grant no. G023619N, the
Agency for Innovation and Entrepreneurship (VLAIO),
and the European Union (EU, project “SONICOM”, grant
number 101017743, RIA action of Horizon 2020).

References

1. P. Avan, F. Giraudet, B. Büki: Importance of binaural
hearing. Audiology and Neurotology 20, Suppl. 1 (2015) 3–6.

2. J. Blauert, J. Braasch, eds.: The technology of binaural
understanding, Modern acoustics and signal processing.
Springer International Publishing, 2020. https://www.
springer.com/gp/book/9783030003852.

3. J. Blauert: Spatial hearing: The psychophysics of human
sound localization. MIT Press, 1997.

4. J. Tobias: Foundations of modern auditory theory. Elsevier,
2012.

5. F.L. Wightman, D.J. Kistler: Monaural sound localization
revisited. The Journal of the Acoustical Society of America
101, 2 (1997) 1050–1063.

6. S. Perrett, W. Noble: The contribution of head motion cues
to localization of low-pass noise. Perception & Psychophysics
59, 7 (1997) 1018–1026.

7. C. Kim, R. Mason, T. Brookes: Head movements made by
listeners in experimental and real-life listening activities.
Journal of the Audio Engineering Society 61 (2013) 425–438.

8. E.A. Macpherson: A computer model of binaural localiza-
tion for stereo imaging measurement. Journal of the Audio
Engineering Society 39, 9 (1991) 604–622.

9.V. Willert, J. Eggert, J. Adamy, R. Stahl, E. Korner: A
probabilistic model for binaural sound localization. IEEE
Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 36, 5 (2006) 982–994.

10. R. Baumgartner, P. Majdak, B. Laback: Modeling sound-
source localization in sagittal planes for human listeners.
The Journal of the Acoustical Society of America 136, 2
(2014) 791–802.

11. J. Reijniers, D. Vanderelst, C. Jin, S. Carlile, H. Peremans:
An ideal-observer model of human sound localization.
Biological Cybernetics 108, 2 (2014) 169–181.

12. J. Braasch: Localization in the presence of a distracter and
reverberation in the frontal horizontal plane: II. Model
algorithms. Acta Acustica United with Acustica 88, 6 (2002)
956–969.

Figure 8. Example 2: Front–back confusion rates (in %)
obtained from the simplified concept with a 10� turn and
perfectly determinable head orientation. (a) Head yaw rotations.
(b) Head pitch turns. (c) Head roll tilts. For clarity rates for
target directions near the frontal plane are not shown. Left and
right panels represent source locations in the front and back of
the head, respectively.

G. McLachlan et al.: Acta Acustica 2021, 5, 4512

https://www.springer.com/gp/book/9783030003852
https://www.springer.com/gp/book/9783030003852


13.T. May, S. Van De Par, A. Kohlrausch: A probabilistic
model for robust localization based on a binaural auditory
front-end”. IEEE Transactions on Audio, Speech, and
Language Processing 19, 1 (2010) 1–13.

14.N. Ma, T. May, G.J. Brown: Exploiting deep neural
networks and head movements for robust binaural localiza-
tion of multiple sources in reverberant environments. IEEE/
ACM Transactions on Audio, Speech, and Language
Processing 25, 12 (2017) 2444–2453.

15.A. Kothig, M. Ilievski, L. Grasse, F. Rea, M. Tata: A
bayesian system for noise-robust binaural sound localisation
for humanoid robots, in 2019 IEEE International Sympo-
sium on Robotic and Sensors Environments (ROSE), IEEE.
2019, pp. 1–7.

16.D. Alais, D. Burr: The ventriloquist effect results from near-
optimal bimodal integration. Current Biology 14, 3 (2004)
257–262.

17. P.W. Battaglia, R.A. Jacobs, R.N. Aslin: Bayesian integra-
tion of visual and auditory signals for spatial localization.
The Journal of the Optical Society of America A 20, 7
(2003) 1391–1397.

18.M.O. Ernst, M.S. Banks: Humans integrate visual and
haptic information in a statistically optimal fashion. Nature
415, 6870 (2002) 429–433.

19.D.C. Knill, A. Pouget: The bayesian brain: The role of
uncertainty in neural coding and computation. TRENDS in
Neurosciences 27, 12 (2004) 712–719.

20. L. Shams, W.J. Ma, U. Beierholm: Sound-induced flash
illusion as an optimal percept. Neuroreport 16, 17 (2005)
1923–1927.

21. R.A. Jacobs: Optimal integration of texture and motion
cues to depth. Vision Research 39, 21 (1999) 3621–3629.

22.H.H. Bülthoff, H.A. Mallot: Integration of stereo, shading
and texture, in 11th European Conference on Visual
Perception (ECVP 1988), Wiley. 1990, pp. 119–146.

23.M.S. Landy, L.T. Maloney, E.B. Johnston, M. Young:
Measurement and modeling of depth cue combination: in
defense of weak fusion. Vision Research 35, 3 (1995) 389–412.

24.W. Cox, B.J. Fischer: Optimal prediction of moving sound
source direction in the owl. PLoS Computational Biology
11, 7 (2015) e1004360.

25. B. Zonooz, E. Arani, A.J. Van Opstal: Learning to localise
weakly-informative sound spectra with and without feed-
back. Scientific Reports 8, 1 (2018) 1–14.

26. P. Majdak, M.J. Goupell, B. Laback: 3-d localization of
virtual sound sources: Effects of visual environment, point-
ing method, and training. Attention, Perception, & Psy-
chophysics 72, 2 (2010) 454–469.

27. R. Barumerli, P. Majdak, J. Reijniers, R. Baumgartner, M.
Geronazzo, F. Avanzini: Predicting directional sound-
localization of human listeners in both horizontal and
vertical dimensions, in Audio Engineering Society Conven-
tion 148, Audio Engineering Society. 2020.

28. E.A. Shaw: Transformation of sound pressure level from the
free field to the eardrum in the horizontal plane. The Journal
of the Acoustical Society of America 56, 6 (1974) 1848–1861.

29. L. Rayleigh: Xii. on our perception of sound direction. The
London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science 13, 74 (1907) 214–232.

30. E.A. Macpherson, J.C. Middlebrooks: Listener weighting of
cues for lateral angle: The duplex theory of sound localiza-
tion revisited. The Journal of the Acoustical Society of
America 111, 5 (2002) 2219–2236.

31. J.C. Middlebrooks: Virtual localization improved by scaling
nonindividualized external-ear transfer functions in fre-
quency. The Journal of the Acoustical Society of America
106, 3 (1999) 1493–1510.

32.M. Morimoto, H. Aokata: Localization cues of sound sources
in the upper hemisphere. Journal of the Acoustical Society
of Japan (E) 5, 3 (1984) 165–173.

33. R.B. King, S.R. Oldfield: The impact of signal bandwidth
on auditory localization: Implications for the design of
three-dimensional audio displays. Human Factors 39, 2
(1997) 287–295.

34. B. Zonooz, E. Arani, K.P. Körding, P.R. Aalbers, T. Celikel,
A.J. Van Opstal: Spectral weighting underlies perceived
sound elevation. Scientific Reports 9, 1 (2019) 1–12.

35. J. Hebrank, D. Wright: Spectral cues used in the localiza-
tion of sound sources on the median plane. The Journal of
the Acoustical Society of America 56, 6 (1974) 1829–1834.

36. J. Jiang, B. Xie, H. Mai, L. Liu, K. Yi, C. Zhang: The role of
dynamic cue in auditory vertical localisation. Applied
Acoustics 146 (2019) 398–408.

37. E.M. Wenzel, M. Arruda, D.J. Kistler, F.L. Wightman:
Localization using nonindividualized head-related transfer
functions. The Journal of the Acoustical Society of America
94, 1 (1993) 111–123.

38.K.I. McAnally, R.L. Martin: Sound localization with head
movement: Implications for 3-d audio displays. Frontiers in
Neuroscience 8 (2014) 210.

39. P. Zahorik, D.S. Brungart, A.W. Bronkhorst: Auditory
distance perception in humans: A summary of past and
present research. ACTA Acustica United with Acustica 91,
3 (2005) 409–420.

40. B.G. Shinn-Cunningham, S. Santarelli, N. Kopco: Tori of
confusion: Binaural localization cues for sources within
reach of a listener. The Journal of the Acoustical Society of
America 107, 3 (2000) 1627–1636.

41.D. Genzel, M. Schutte, W.O. Brimijoin, P.R. MacNeilage, L.
Wiegrebe: Psychophysical evidence for auditory motion
parallax. Proceedings of the National Academy of Sciences
115, 16 (2018) 4264–4269.

42. R. Ege, A.J. Van Opstal, M.M. Van Wanrooij: Accuracy-
precision trade-off in human sound localisation. Scientific
Reports 8, 1 (2018) 1–12.

43. B.J. Fischer, J.L. Peña: Owl’s behavior and neural repre-
sentation predicted by bayesian inference. Nature Neuro-
science 14, 8 (2011) 1061–1066.

44. C.V. Parise, K. Knorre, M.O. Ernst: Natural auditory scene
statistics shapes human spatial hearing. Proceedings of the
National Academy of Sciences 111, 16 (2014) 6104–6108.

45. R. Ege, A.J. Van Opstal, M.M. Van Wanrooij: A.W. Mills:
On the minimum audible angle. The Journal of the
Acoustical Society of America 30, 4 (1958) 237-246; S.R.
Oldfield, S.P. Parker: Acuity of sound localisation: a
topography of auditory space. i. normal hearing conditions.
Perception 13, 5 (1984) 581-600. Eneuro 6, 2 (2019).

46.U. Beierholm, S. Quartz, L. Shams: Bayesian priors are
encoded independently from likelihoods in human multi-
sensory perception. Journal of Vision 9 (2009) 23.

47.Y. Weiss, E.P. Simoncelli, E.H. Adelson: Motion illusions as
optimal percepts. Nature Neuroscience 5, 6 (2002) 598–604.

48. I. Senna, C.V. Parise, M.O. Ernst: Hearing in slow-motion:
Humans underestimate the speed of moving sounds. Scien-
tific Reports 5, 1 (2015) 1–5.

49. T.C. Freeman, J.F. Culling, M.A. Akeroyd, W.O. Brimi-
join: Auditory compensation for head rotation is incom-
plete. Journal of Experimental Psychology: Human
Perception and Performance 43, 2 (2017) 371.

50. S. Carlile, J. Leung: The perception of auditory motion.
Trends in Hearing 20 (2016) 2331216516644254.

51.M. Barnett-Cowan, L.R. Harris: Temporal processing of
active and passive head movement. Experimental Brain
Research 214, 1 (2011) 27–35.

G. McLachlan et al.: Acta Acustica 2021, 5, 45 13



52.M. Cooke, Y.-C. Lu, Y. Lu, R. Horaud: Active hearing,
active speaking, in ISAAR 2007-International Symposium
on Auditory and Audiological Research. 2007, pp. 33–46.

53.K. van der Heijden, J.P. Rauschecker, E. Formisano, G.
Valente, B. de Gelder: Active sound localization sharpens
spatial tuning in human primary auditory cortex. Journal of
Neuroscience 38, 40 (2018) 8574–8587.

54.A. Portello, G. Bustamante, P. Danès, J. Piat, J. Manhes:
Active localization of an intermittent sound source from a
moving binaural sensor, in European Acoustics Association
Forum Acusticum. 2014, 12 p.

55.Y.-C. Lu, M. Cooke: Motion strategies for binaural local-
isation of speech sources in azimuth and distance by
artificial listeners. Speech Communication 53, 5 (2011)
622–642.

56.H. Wallach: The role of head movements and vestibular and
visual cues in sound localization. Journal of Experimental
Psychology 27, 4 (1940) 339.

57. E.A. Macpherson: Cue weighting and vestibular mediation of
temporal dynamics in sound localization via head rotation, in
Proceedings of Meetings on Acoustics ICA2013, Vol. 19,
Acoustical Society of America. 2013, 050131 p.

58. F.L. Wightman, D.J. Kistler: Resolution of front–back
ambiguity in spatial hearing by listener and source move-
ment. The Journal of the Acoustical Society of America 105,
5 (1999) 2841–2853.

59.W.R. Thurlow, P.S. Runge: Effect of induced head move-
ments on localization of direction of sounds. The Journal of
the Acoustical Society of America 42, 2 (1967) 480–488.

60.D.R. Begault, E.M. Wenzel, M.R. Anderson: Direct com-
parison of the impact of head tracking, reverberation, and
individualized head-related transfer functions on the spatial
perception of a virtual speech source, Journal of the Audio
Engineering Society 49, 10 (2001) 904–916.

61. T. Ashby, T. Brookes, R. Mason: Towards a head-
movement-aware spatial localisation model: Elevation, in
21st International Congress on Sound and Vibration 2014,
ICSV 2014, Vol. 4. 2014, pp. 2808–2815.

62.D. Morikawa, Y. Toyoda, T. Hirahara: Head movement
during horizontal and median sound localization experi-
ments in which head-rotation is allowed, in Proceedings of
Meetings on Acoustics ICA2013, Vol. 19, Acoustical Society
of America. 2013, 050141 p.

63. J. Burger: Front-back discrimination of the hearing systems.
Acta Acustica United with Acustica 8, 5 (1958) 301–302.

64. R. Pavão, E.S. Sussman, B.J. Fischer, J.L. Peña: Natural
itd statistics predict human auditory spatial perception.
eLife 9 (2020) e51927. https://doi.org/10.7554/eLife.51927.

65. B. Bernschütz: Spherical Far-Field HRIR Compilation of
the Neumann KU100. Zenodo, 2020. https://doi.org/
10.5281/zenodo.3928297.

66. T. Hirahara, D. Kojima, D. Morikawa, P. Mokhtari: The
effect of head rotation on monaural sound-image localiza-
tion in the horizontal plane. Applied Acoustics 178 (2021)
108008. https://www.sciencedirect.com/science/article/pii/
S0003682X21001018.

67. J. Leung, D. Alais, S. Carlile: Compression of auditory space
during rapid head turns. Proceedings of the National
Academy of Sciences 105, 17 (2008) 6492–6497.

68.A. Honda, K. Ohba, Y. Iwaya, Y. Suzuki: Detection of
sound image movement during horizontal head rotation.
i-Perception 7, 5 (2016) 2041669516669614.

69. J. Cooper, S. Carlile, D. Alais: Distortions of auditory space
during rapid head turns. Experimental Brain Research 191,
2 (2008) 209–219.

70.G.M. Gerken, V.K. Bhat, M. Hutchison-Clutter: Auditory
temporal integration and the power function model. The

Journal of the Acoustical Society of America 88, 2 (1990)
767–778.

71. S. Carlile, V. Best: Discrimination of sound source velocity
in human listeners. The Journal of the Acoustical Society of
America 111, 2 (2002) 1026–1035.

72. S. Carlile, K. Balachandar, H. Kelly: Accommodating to
new ears: the effects of sensory and sensory-motor feedback.
The Journal of the Acoustical Society of America 135, 4
(2014) 2002–2011.

73. T.C. Freeman, J. Leung, E. Wufong, E. Orchard-Mills, S.
Carlile, D. Alais: Discrimination contours for moving
sounds reveal duration and distance cues dominate auditory
speed perception. PLoS One 9, 7 (2014) e102864.

74. J.A.G.-U. Calvo, M.M. van Wanrooij, A.J. Van Opstal:
Adaptive response behavior in the pursuit of unpredictably
moving sounds. Eneuro 8, 3 (2021).

75.Y.A. Al’tman, I. Kudryavtseva, E. Radionova: The pattern
of response of the inferior colliculus of the cat during the
movement of a sound source. Neuroscience and Behavioral
Physiology 15, 4 (1985) 318–324.

76.G.D. Pollak: Circuits for processing dynamic interaural
intensity disparities in the inferior colliculus. Hearing
Research 288, 1–2 (2012) 47–57.

77.N.J. Ingham, H.C. Hart, D. McAlpine: Spatial receptive fields
of inferior colliculus neurons to auditory apparent motion in
free field. Journal of Neurophysiology 85, 1 (2001) 23–33.

78.H. Wagner, T. Takahashi: Influence of temporal cues on
acoustic motion-direction sensitivity of auditory neurons in
the owl. Journal of Neurophysiology 68, 6 (1992) 2063–2076.

79.D. McAlpine, D. Jiang, T.M. Shackleton, A.R. Palmer:
Responses of neurons in the inferior colliculus to dynamic
interaural phase cues: evidence for a mechanism of binaural
adaptation. Journal of Neurophysiology 83, 3 (2000) 1356–
1365.

80. L. Boucher, A. Lee, Y.E. Cohen, H.C. Hughes: Ocular
tracking as a measure of auditory motion perception.
Journal of Physiology-Paris 98, 1–3 (2004) 235–248.

81. J. Kreitewolf, J. Lewald, S. Getzmann: Effect of attention
on cortical processing of sound motion: An eeg study.
NeuroImage 54, 3 (2011) 2340–2349.

82. J.C. Middlebrooks: Sound localization. Handbook of
Clinical Neurology 129 (2015) 99–116.

83.N. Loveless, S. Levänen, V. Jousmäki, M. Sams, R. Hari:
Temporal integration in auditory sensory memory: Neuro-
magnetic evidence. Electroencephalography and Clinical
Neurophysiology/Evoked Potentials Section 100, 3 (1996)
220–228.

84.X. Teng, X. Tian, D. Poeppel: Testing multi-scale processing
in the auditory system. Scientific Reports 6, 1 (2016) 34390.
https://www.nature.com/articles/srep34390.

85.N.F. Viemeister, G.H. Wakefield: Temporal integration and
multiple looks. The Journal of the Acoustical Society of
America 90, 2 (1991) 858–865.

86. P.M. Hofman, A.J. Van Opstal: Spectro-temporal factors
in two-dimensional human sound localization. The Journal
of the Acoustical Society of America 103, 5 (1998) 2634–
2648.

87. J. Vliegen, T.J. Van Grootel, A.J. Van Opstal: Dynamic
sound localization during rapid eye-head gaze shifts. Jour-
nal of Neuroscience 24, 42 (2004) 9291–9302.

88. C. Baumann, C. Rogers, F. Massen: Dynamic binaural
sound localization based on variations of interaural time
delays and system rotations. The Journal of the Acoustical
Society of America 138, 2 (2015) 635–650.

89.M. Kumon, S. Uozumi: Binaural localization for a mobile
sound source. Journal of Biomechanical Science and Engi-
neering 6, 1 (2011) 26–39.

G. McLachlan et al.: Acta Acustica 2021, 5, 4514

https://doi.org/10.7554/eLife.51927
https://doi.org/10.5281/zenodo.3928297
https://doi.org/10.5281/zenodo.3928297
https://www.sciencedirect.com/science/article/pii/S0003682X21001018
https://www.sciencedirect.com/science/article/pii/S0003682X21001018
https://www.nature.com/articles/srep34390


90.R.A. Lutfi, W. Wang: Correlational analysis of acoustic cues
for the discrimination of auditory motion. The Journal of
the Acoustical Society of America 106, 2 (1999) 919–928.

91. E. Schechtman, T. Shrem, L.Y. Deouell: Spatial localization
of auditory stimuli in human auditory cortex is based on
both head-independent and head-centered coordinate sys-
tems. Journal of Neuroscience 32, 39 (2012) 13501–13509.
http://www.jneurosci.org/content/32/39/13501.
https://doi.org/10.1523/JNEUROSCI.1315-12.2012.

92. J. Lewald, H.-O. Karnath: Vestibular influence on human
auditory space perception. Journal of Neurophysiology 84, 2
(2000) 1107–1111.

93. I. Viaud-Delmon, O. Warusfel: From ear to body: The
auditory-motor loop in spatial cognition. Frontiers in
Neuroscience 8 (2014) 283. https://www.frontiersin.org/
articles/10.3389/fnins.2014.00283/full. https://doi.org/10.
3389/fnins.2014.00283.

94.W.A. Yost, X. Zhong, A. Najam: Judging sound rotation when
listeners and sounds rotate: Sound source localization is a
multisystem process. The Journal of the Acoustical Society of
America 138, 5 (2015) 3293–3310. https://asa.scitation.org/
doi/10.1121/1.4935091. https://doi.org/10.1121/1.4935091.

95.H. Goossens, A. Van Opstal: Influence of head position on
the spatial representation of acoustic targets. Journal of
Neurophysiology 81, 6 (1999) 2720–2736.

96.W.O. Brimijoin, M.A. Akeroyd: The moving minimum
audible angle is smaller during self motion than during
source motion. Frontiers in Neuroscience 8 (2014) 273.

97.H.-O. Karnath, D. Sievering, M. Fetter: The interactive
contribution of neck muscle proprioception and vestibular
stimulation to subjective “straight ahead” orientation in
man. Experimental Brain Research 101, 1 (1994) 140–146.

98. J. Kim, M. Barnett-Cowan, E.A. Macpherson: Integration of
auditory input with vestibular and neck proprioceptive
information in the interpretation of dynamic sound localiza-
tion cues, in Proceedings of Meetings on Acoustics ICA2013,
Vol. 19, Acoustical Society of America. 2013, 050142 p.

99.D. Genzel, U. Firzlaff, L. Wiegrebe, P.R. MacNeilage:
Dependence of auditory spatial updating on vestibular,
proprioceptive, and efference copy signals. Journal of
Neurophysiology 116, 2 (2016) 765–775.

100. J. Lewald, W.H. Ehrenstein: The effect of eye position on
auditory lateralization. Experimental Brain Research 108, 3
(1996) 473–485.

101.D.C. Van Barneveld, A. John Van Opstal: Eye position deter-
mines audiovestibular integration during whole-body rota-
tion. European Journal of Neuroscience 31, 5 (2010) 920–930.

102.H.H. Goossens, A.J. Van Opstal: Human eye-head coordina-
tion in two dimensions under different sensorimotor condi-
tions. Experimental Brain Research 114, 3 (1997) 542–560.

103.W.R. Thurlow, J.W. Mangels, P.S. Runge: Head move-
ments during sound localization. The Journal of the
Acoustical society of America 42, 2 (1967) 489–493.

104.D. Muir, J. Field: Newborn infants orient to sounds. Child
Development 50 (1979) 431–436.

105. J.H. Fuller: Head movement propensity. Experimental
Brain Research 92, 1 (1992) 152–164.

106.W.O. Brimijoin, D. McShefferty, M.A. Akeroyd: Auditory
and visual orienting responses in listeners with and without
hearing-impairment. The Journal of the Acoustical Society
of America 127, 6 (2010) 3678–3688.

107.A.W. Mills: On the minimum audible angle. The Journal of
the Acoustical Society of America 30, 4 (1958) 237–246.

108. S.R. Oldfield, S.P. Parker: Acuity of sound localisation: A
topography of auditory space. I. Normal hearing conditions.
Perception 13, 5 (1984) 581–600.

109. J.A. Grange, J.F. Culling: The benefit of head orientation to
speech intelligibility in noise. The Journal of the Acoustical
Society of America 139, 2 (2016) 703–712.

110. J.C. Middlebrooks: Narrow-band sound localization related
to external ear acoustics. The Journal of the Acoustical
Society of America 92, 5 (1992) 2607–2624.

111.K.P. Körding, U. Beierholm, W.J. Ma, S. Quartz, J.B.
Tenenbaum, L. Shams: Causal inference in multisensory
perception. PLoS One 2, 9 (2007) e943.

112.Y. Gu, D.E. Angelaki, G.C. DeAngelis: Neural correlates of
multisensory cue integration in macaque MSTd. Nature
Neuroscience 11, 10 (2008) 1201–1210.

113.M. Ursino, A. Crisafulli, G. Di Pellegrino, E. Magosso, C.
Cuppini: Development of a bayesian estimator for audio-
visual integration: a neurocomputational study. Frontiers in
Computational Neuroscience 11 (2017) 89.

114.K.P. Körding, D.M. Wolpert: Bayesian integration in
sensorimotor learning. Nature 427, 6971 (2004) 244–247.

115.A.A. Stocker, E.P. Simoncelli: Noise characteristics and
prior expectations in human visual speed perception. Nature
Neuroscience 9, 4 (2006) 578–585.

116. T.E. Hudson, L.T. Maloney, M.S. Landy: Movement
planning with probabilistic target information. Journal of
Neurophysiology 98, 5 (2007) 3034–3046.

117. L. Bahl, J. Cocke, F. Jelinek, J. Raviv: Optimal decoding of
linear codes for minimizing symbol error rate (corresp.).
IEEE Transactions on Information Theory 20, 2 (1974)
284–287.

118. P.M. Hofman, A.J. Van Opstal: Bayesian reconstruction of
sound localization cues from responses to random spectra.
Biological Cybernetics 86, 4 (2002) 305–316.

119. J. Nix, V. Hohmann: Sound source localization in real sound
fields based on empirical statistics of interaural parameters.
The Journal of the Acoustical Society of America 119, 1
(2006) 463–479.

120.D. Barber, A.T. Cemgil, S. Chiappa: Bayesian time series
models. Cambridge University Press, 2011.

121. C. Mark, C. Metzner, L. Lautscham, P.L. Strissel, R.
Strick, B. Fabry: Bayesian model selection for complex
dynamic systems. Nature Communications 9, 1 (2018) 1803.
https://www.nature.com/articles/s41467-018-04241-5. https://
doi.org/10.1038/s41467-018-04241-5.

122. S. Särkkä: Bayesian filtering and smoothing, Institute of
Mathematical Statistics Textbooks. Cambridge University
Press, Cambridge, 2013. https://www.cambridge.org/core/
books/bayesian-filtering-and-smoothing/C372FB31C5D9A
100F8476C1B23721A67.

123. E.A. Wan, R. Van Der Merwe, S. Haykin: The unscented
kalman filter. Kalman Filtering and Neural Networks 5,
2007 (2001) 221–280.

124.H. Li: A Brief Tutorial On Recursive Estimation: Exam-
ples From Intelligent Vehicle Applications. 2014. ffhal-
01011733v2f.

125.Y.E. Cohen, E.I. Knudsen: Maps versus clusters: Different
representations of auditory space in the midbrain and
forebrain. Trends in Neurosciences 22, 3 (1999) 128–135.

126.A.S. Bregman; Auditory scene analysis: The perceptual
organization of sound. MIT Press, 1994.

127.D.A. Hambrook, M. Ilievski, M. Mosadeghzad, M. Tata: A
bayesian computational basis for auditory selective atten-
tion using head rotation and the interaural time-difference
cue. PLoS One 12, 10 (2017) e0186104.

128.R.C. Luo, C.-C. Chang: Multisensor fusion and integration:
A review on approaches and its applications in mechatron-
ics. IEEE Transactions on Industrial Informatics 8, 1 (2011)
49–60.

G. McLachlan et al.: Acta Acustica 2021, 5, 45 15

http://www.jneurosci.org/content/32/39/13501
https://doi.org/10.1523/JNEUROSCI.1315-12.2012
https://www.frontiersin.org/articles/10.3389/fnins.2014.00283/full
https://www.frontiersin.org/articles/10.3389/fnins.2014.00283/full
https://doi.org/10.3389/fnins.2014.00283
https://doi.org/10.3389/fnins.2014.00283
https://asa.scitation.org/doi/10.1121/1.4935091
https://asa.scitation.org/doi/10.1121/1.4935091
https://doi.org/10.1121/1.4935091
https://www.nature.com/articles/s41467-018-04241-5
https://doi.org/10.1038/s41467-018-04241-5
https://doi.org/10.1038/s41467-018-04241-5
https://www.cambridge.org/core/books/bayesian-filtering-and-smoothing/C372FB31C5D9A100F8476C1B23721A67
https://www.cambridge.org/core/books/bayesian-filtering-and-smoothing/C372FB31C5D9A100F8476C1B23721A67
https://www.cambridge.org/core/books/bayesian-filtering-and-smoothing/C372FB31C5D9A100F8476C1B23721A67


129.C. Schymura, T. Walther, D. Kolossa, N. Ma, G.J. Brown:
Binaural sound source localisation using a Bayesian-
network-based blackboard system and hypothesis-driven
feedback, in Fourm Acusticum, European Acoustics Associ-
ation. 2014.

130. C. Schymura, F. Winter, D. Kolossa, S. Spors: Binaural
sound source localisation and tracking using a dynamic
spherical head model, in Sixteenth Annual Conference of
the International Speech Communication Association. 2015.

131. T. May, N. Ma, G.J. Brown: Robust localisation of multiple
speakers exploiting head movements and multi-conditional
training of binaural cues, in 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE. 2015, pp. 2679–2683.

132. P. Aarabi: The fusion of distributed microphone arrays for
sound localization. EURASIP Journal on Advances in
Signal Processing 2003, 4 (2003) 1–10.

133. J.-M. Valin, F. Michaud, J. Rouat: Robust localization and
tracking of simultaneous moving sound sources using
beamforming and particle filtering. Robotics and Autono-
mous Systems 55, 3 (2007) 216–228.

134. E. Fosler-Lussier: Markov models and hidden markov
models: A brief tutorial. International Computer Science
Institute, 1998.

135. E. Todorov: Stochastic optimal control and estimation
methods adapted to the noise characteristics of the sensori-
motor system. Neural Computation 17, 5 (2005) 1084–1108.

136.M.K. Stern, J.H. Johnson: Just noticeable difference, in The
Corsini Encyclopedia of Psychology, John Wiley & Sons,
Inc, Hoboken, NJ, USA. 2010, pp. 1–2.

137. P. Majdak, C. Hollomey, R. Baumgartner: AMT 1.0: The
toolbox for reproducible research in auditory modeling,
submitted to Acta Acustica. 2021.

138.V. Best, D. Brungart, S. Carlile, C. Jin, E. Macpherson, R.
Martin, K. McAnally, A. Sabin, B. Simpson: A meta-
analysis of localization errors made in the anechoic free field,
in Principles and applications of spatial hearing, World
Scientific. 2011, pp. 14–23.

139.M.A.R. Ferreira, H. Lee: Multiscale modeling: A Bayesian
perspective, Springer Series in Statistics. Springer-Verlag,
New York, 2007. https://www.springer.com/gp/book/
9780387708973.

Cite this article as: McLachlan G. Majdak P. Reijniers J. & Peremans H. 2021. Towards modelling active sound localisation
based on Bayesian inference in a static environment. Acta Acustica, 5, 45.

G. McLachlan et al.: Acta Acustica 2021, 5, 4516

https://www.springer.com/gp/book/9780387708973
https://www.springer.com/gp/book/9780387708973

	Introduction
	Static listening
	Acoustic features and perceptual cues
	Ill-posed problem and prior information

	Dynamic listening
	Acoustic features and perceptual cues
	Integration of sensorimotor information
	Active-listening strategies

	Bayesian models
	Bayesian estimation
	Recursive Bayesian estimation

	Modelling active listening in a static environment
	State-space model
	Generative model
	Estimation of head orientation
	Estimation of sound-source direction
	Numerical examples

	Conclusions
	Conflict of interest
	Acknowledgements
	References



