|
Record |
Links |
|
Author |
Hu, L.; Amini, M.N.; Wu, Y.; Jin, Z.; Yuan, J.; Lin, R.; Wu, J.; Dai, Y.; He, H.; Lu, Y.; Lu, J.; Ye, Z.; Han, S.-T.; Ye, J.; Partoens, B.; Zeng, Y.-J.; Ruan, S. |
|
|
Title |
Charge transfer doping modulated raman scattering and enhanced stability of black phosphorus quantum dots on a ZnO nanorod |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Advanced Optical Materials |
Abbreviated Journal |
Adv Opt Mater |
|
|
Volume |
6 |
Issue |
15 |
Pages |
1800440 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Black phosphorus (BP) has recently triggered an unprecedented interest in the 2D community. However, many of its unique properties are not exploited and the well-known environmental vulnerability is not conquered. Herein, a type-I mixed-dimensional (0D-1D) van der Waals heterojunction is developed, where three-atomic-layer BP quantum dots (QDs) are assembled on a single ZnO nanorod (NR). By adjusting the indium (In) content in ZnO NRs, the degree and even the direction of surface charge transfer doping within the heterojunction can be tuned, which result in selective Raman scattering enhancements between ZnO and BP. The maximal enhancement factor is determined as 4340 for BP QDs with sub-ppm level. Furthermore, an unexpected long-term ambient stability (more than six months) of BP QDs is revealed, which is ascribed to the electron doping from ZnO:In NRs. The first demonstration of selective Raman enhancements between two inorganic semiconductors as well as the improved stability of BP shed light on this emerging 2D material. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000440815200023 |
Publication Date |
2018-05-18 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2195-1071 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.875 |
Times cited |
37 |
Open Access |
Not_Open_Access |
|
|
Notes |
; L. Hu and M. N. Amini contributed equally to this work. This work was supported by the National Natural Science Foundation of China under Grant Nos. 51502178, 81571763 and 81622026, the Shenzhen Science and Technology Project under Grant Nos. JCYJ20150324141711644, JCYJ20170412105400428, KQJSCX20170727101208249 and JCYJ20170302153853962. Parts of the computational calculations were carried out using the HPC infrastructure at University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, supported financially by the FWO-Vlaanderen and the Flemish Government (EWI Department). L. H. acknowledges the PhD Start-up Fund of Natural Science Foundation of Guangdong Province under Grand No. 2017A030310072. J. Y. acknowledges the funding of Shanghai Jiao Tong University (Nos. YG2016MS51 and YG2017MS54). ; |
Approved |
Most recent IF: 6.875 |
|
|
Call Number |
UA @ lucian @ c:irua:153112UA @ admin @ c:irua:153112 |
Serial |
5082 |
|
Permanent link to this record |