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ABSTRACT Ultrafine ZnO nanocrystals with a thickness down to 0.25 nm are grown by a 

metalorganic chemical vapor deposition method. Electronic band structures and native point 

defects of ZnO nanocrystals are studied by a combination of scanning tunneling 

microscopy/spectroscopy and first-principles density functional theory calculations. Below a 

critical thickness of about 1 nm ZnO adopts a graphitic-like structure and exhibits a wide band 

gap similar to its wurtzite counterpart. The hexagonal wurtzite structure, with a well-developed 

band gap evident from scanning tunneling spectroscopy, is established for a thickness starting 

from about 1.4 nm. With further increase of the thickness to 2 nm, VO−VZn defect pairs are easily 

produced in ZnO nanocrystals due to the self-compensation effect in highly doped 

semiconductors.  
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INTRODUCTION 

Semiconductor nanocrystals (NCs) or quantum dots are a class of nanomaterials that bridge 

the gap between the atomic limit and the bulk solid state, with significant potential for the next-

generation nanoelectronics and optoelectronics.1-4 Among various semiconductor materials ZnO 

is of particular interest. Its excellent properties, including a direct band gap of 3.37 eV at room 

temperature, a large exciton binding energy of 60 meV, the availability of high-quality bulk 

crystals, and a high electron mobility and high thermal conductivity, have stimulated worldwide 

interest in its bulk and thin-film forms5-7 as well as in one-dimensional ZnO nanowires.8-10 On 

the other hand, considerable research efforts have also been devoted to ZnO NCs.11-14 In spite of 

the rapid developments from three dimensions (3D) down to zero dimension (0D), full 

understanding of the electronic properties of ZnO material remains a major challenge to date. 

Even the cause of the commonly observed unintentional n-type conductivity in ZnO is still under 

debate,6 not to mention the difficulty of reliable p-type doping due to the asymmetric doping 

limitations.15,16 Therefore more detailed investigations on ZnO are obviously required to unravel 

its intrinsic electronic properties. 

In contrast to measuring techniques that provide ensemble averaged information, scanning 

tunneling microscopy (STM) combined with scanning tunneling spectroscopy (STS) allows for 

the local investigation of the morphology as well as the electronic structure of individual 

semiconductor NCs with high spatial and energy resolution. STM/STS has already been applied 

to various semiconductor NCs to study their electronic properties, including InAs,17,18 CdSe,19 

PdSe,20 and PdSe/PdS.21 However, STM/STS investigations of ZnO NCs are very scarce.22 On 

the other hand, most of the reported STS studies of ZnO bulk and thin-film forms turn out to be 

controversial.23-28 The observed tunneling current gaps vary from zero up to above 3 eV, which, 
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to some extent, reflects the complicated conductivity in ZnO materials.6 In this study, we 

investigate the electronic band structures and point defects in ZnO NCs with a thickness ranging 

from about 0.25 nm up to a few nanometers. Detailed STM/STS measurements, in combination 

with first-principles density functional theory (DFT) calculations, reveal that ZnO with a 

thickness of 0.25 nm adopts a hexagonal graphitic-like structure in which the Zn and O atoms are 

coplanar. A hexagonal wurtzite structure is established in ZnO NCs with a thickness around 1.4 

nm. With further increase of the thickness (2 − 3 nm), native point defects start to appear in the 

ZnO NCs, probably in the form of oxygen vacancy – zinc vacancy pairs (Vo−VZn). These novel 

findings considerably improve our understanding of the growth of and defect formation in ZnO 

material. In particular, 2D hexagonal graphitic-like ZnO is expected to have unique electronic 

properties like other 2D materials, such as graphene and MoS2, which are of fundamental 

importance to future ZnO based device development. 

RESULTS AND DISCUSSION 

ZnO NCs were grown by a low-pressure metalorganic chemical vapor deposition (MOCVD) 

method29 on Au (111) substrates. In Figure 1 we present a large area STM topography image as 

well as the corresponding 3D view of the ZnO NCs. It is evident from these images that ZnO 

NCs have different thicknesses ranging from a few angstroms up to more than 2 nm. We will 

demonstrate below that ZnO NCs with different thicknesses have very distinct electronic 

properties. In Figure 2a we present an STM topography image of the thinner ZnO NCs. The 

herringbone reconstruction is resolved on the surrounding atomically flat Au surface,30 

illustrating the cleanliness of the ex-situ growth process and the reliability of the annealing steps 

(see the Experimental Section). There exist two different types of ZnO NCs. The height profile 

along the blue straight line in Figure 2a gives two typical apparent height values of about 0.25 
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results. We note that STM typically underestimates the actual height of ZnO NCs due to the 

reduced conductivity of the oxide as compared to the metallic Au substrates.34,35 The 0.90 nm 

ZnO observed in Figure 2 therefore likely corresponds to the thickness of 1.37 nm indicated in 

Table 1 (or to an even larger thickness). In Figure 2(c) the 0.90 nm ZnO reveals a gap of about 

5.2 eV, which is in agreement with the calculations on wurtzite ZnO (1.37 nm) using the PBE0 

functional (4.8 eV). Here we also demonstrate that in this thickness regime the PBE0 (4.80 eV) 

provides a better estimate of the electron band gap than the HSE functional (3.74 eV, see Table 

1). Concerning the 0.25 nm ZnO, our calculations point out that ZnO adopts a graphitic-like 

structure rather than a wurtzite one in this thickness regime. On the other hand, our calculations 

also point to a wide band gap of 4.98 − 5.30 eV for graphitic-like ZnO using the PBE0 functional, 

which is larger than the gap value inferred from Figure 2c. We assume that the ZnO-Au interface 

local density of states (LDOS) starts to dominate the STS when the thickness of ZnO decreases 

down to a few atomic layers, which is similar to the case of NaCl on a Cu substrate.35 Therefore 

we cannot make a reliable estimate of the band gap based on STS for the thinnest ZnO. Note that 

our results together with previous studies show that graphitic-like ZnO can be grown not only on 

Au (111) substrates34 but also on Ag (111)32 as well as Pd (111)33 substrate, implying an 

universal mechanism to stabilize the polar surface.31 

Table 1. DFT results for the thermodynamically favorable structures of ZnO for different 

thicknesses and the corresponding electron band gaps calculated with different hybrid exchange-

correlation functionals. 

Thickness 
[nm] 

Favorable 
structure 

Eg (HSE) Eg (PBE0)

0.23 graphitic-like 4.23 5.30 

0.70 graphitic-like 4.13 5.15 
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0.98   graphitic-like 3.89 4.98 

1.37      wurtzite  3.74 4.80 

 

Now we move to the thicker ZnO NCs with a thickness around 2.5 nm. In Figure 3a we 

present an STM topography image of an aggregate of multiple ZnO NCs. STS dI/dV spectra 

recorded at different locations are presented in Figure 3b. The STS spectra indicate the presence 

of a band gap around 3 eV, which is in good agreement with that of bulk ZnO. In addition, the 

spectra also reveal energy states inside the band gap on both sides of the Fermi level, which are 

not observed in the thinner ZnO NCs with thickness below 1 nm (Figure 2). In Figure S1 we 

present more results for ZnO NCs with varying thickness (from about 0.8 nm up to 2 nm). 

Consistent with the above-mentioned observations in Figure 2 and Figure 3, a thinner area tends 

to have a larger band gap, while a thicker area typically exhibits a smaller band gap with energy 

states appearing inside the gap. This can be visualized more clearly in a dI/dV(V) grid 

measurement. In Figure 4 we present dI/dV(V) maps at different selected voltages. For each 

voltage the bright area indicates a larger dI/dV value, i.e., a larger LDOS. It can be seen that on 

the ZnO NCs the LDOS becomes completely suppressed at zero voltage (the Fermi level), which 

results from the presence of a band gap of the semiconductor. At certain voltages (± 0.5 V and 

±1 V), there appears a non-zero LDOS on some areas of the NCs, i.e., on the thicker NCs regions 

( 2 nm). The appearance of a non-zero LDOS, in particular at low voltages around ± 0.5 V, can 

be linked to the presence of energy states inside the band gap of the ZnO NCs. On the other hand, 

the LDOS remains suppressed even at a voltage of − 2 V for the thinner areas (0.8 nm), 

indicating a large band gap without energy states inside the gap. Systematic examination of our 

STS data reveals that the energy states inside the band gap of ZnO, if present, always appear 

simultaneously on both sides of the Fermi level (Figure 3b). In other words, we hardly observe a 
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Figure 4. 42 × 42 nm2 STM topography image (upper left, color height scale 2.4 nm, I = 2.5 nA, 

V = 2 V) and corresponding local density of states maps of ZnO NCs recorded at different 

voltages using constant height mode.  

Our ZnO NCs are nominally undoped semiconductors. The most probable candidates for the 

observed donor and acceptor states are native point defects in ZnO. The fact that the energy 

states are only present in the thicker regions (more than 2 nm) indicates that the probability for 

the appearance of native point defects increases with increasing ZnO thickness (or volume), 

which seems very reasonable. However, the question remains why the defects always appear as 

donor-acceptor pairs.  It has been reported that the addition of 1.4×1021 cm−3 Ga donors in ZnO 

causes the lattice to spontaneously form 1.7×1020 cm−3 VZn acceptors,36 which is explained by the 

so-called self-compensation effect that tends to occur in highly doped semiconductors, i.e., the 

tendency of a crystal to lower its energy by forming point defects to counter the effects of doping. 

Assuming one ZnO NC contains 1000 Zn (or O) atoms, only one point defect already results in a 

concentration up to 4×1019 cm-3. Therefore, the here observed formation of defect pairs can be 

ascribed to the above mentioned self-compensation effect in our ZnO NCs, which appear to be 

highly doped by native point defects.  

To clarify the origin of the energy states inside the band gap of ZnO, we perform first-

principles DFT calculations with the hybrid HSE06 functional. Among all the native point 

defects, VO (donor) and VZn (acceptor) defects have the lowest formation energy.6 However, their 

combination has not been studied in detail. Here we considered three different configurations (P1, 

P2 or P3) for a VO−VZn pair in the bulk ZnO supercell consisting of 108 atoms (Figure S3). 

Comparing the total energy after relaxation, we find the most stable configuration (P1) for the 

defect pair in ZnO. We then calculate the formation energy as a function of the Fermi level 
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position for the VO−VZn pairs, as illustrated in Figure 5. The kinks in the curves indicate 

transitions between different charge states. Note that in the neutral state for a donor-acceptor pair, 

the electrons of the donor level are transferred to the acceptor level, resulting in an empty donor 

level and an occupied acceptor level. Therefore, the positive and negative charge state of a 

donor-acceptor pair corresponds to the acceptor level and the donor level, respectively, which is 

opposite to the case of a single donor and a single acceptor level. In Figure 5 one can see that 

there exist 1+ and 2+ charge states close to the valence band maximum, which both stem from 

the VZn acceptor level. On the other hand, only a 2− charge state is allowed close to the 

conduction band minimum, which stems from the VO donor level. Our calculations reveal a good 

candidate to explain the experimental observations. In the three curves in Figure 3(b) we do 

observe two peaks in the negative voltage range, which can be attributed to the occupied VZn in 

the VO − VZn pair. The single feature in the positive voltage range (peak in the red and blue curve; 

a bump in the green curve) can be ascribed to the empty VO in the VO−VZn pair. The variation in 

the peak position is believed to be the result of the different tip-induced band bending due to the 

different shapes of the NCs.  
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Figure 5. Formation energy as a function of Fermi level position for a VO−VZn pair. The zero of 

Fermi level corresponds to the valence band maximum. Only segments corresponding to the 

lowest energy charge states are shown. 

Finally we want to stress that the presence of VO−VZn pairs is universal in the thicker ZnO NCs 

above 2 nm. In fact we hardly find regions without the defect pairs, indicating an important 

compensation effect in the ZnO material. We suggest that such donor-acceptor pairs are also 

present in bulk p-type doped ZnO. Due to the relatively deep acceptor level in ZnO,15,16 a high 

concentration of acceptors is required to achieve a sufficient hole concentration. On the other 

hand, a high concentration of acceptors will result in the formation of donor-acceptor pairs due to 

the self-compensation effect in highly doped ZnO. In the case of p-type doping, such donor-

acceptor pairs consist of an oxygen vacancy and an extrinsic p-type dopant, for example a 

VO−NO pair, which might be one of the important causes for the bottleneck in p-type doping of 

ZnO. 

CONCLUSION 

In conclusion, we investigated the electronic band structures and native point defects of 

ultrafine ZnO nanocrystals by a combination of scanning tunneling microscopy/spectroscopy and 

first-principles density functional theory calculations. We find that below a critical thickness of 

about 1 nm ZnO adopts a graphitic-like structure. The hexagonal wurtzite structure is established 

in ZnO NCs with a thickness starting from about 1.4 nm. With further increase of the thickness 

to 2 nm, VO−VZn defect pairs are easily produced in ZnO NCs due to the self-compensation effect 

in highly doped semiconductors. Our experimental and theoretical results shed light on the 

remarkable structure as well as on point defects formation in ZnO and may help to understand 
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the long-time unsettled p-type doping issues. Graphitic-like ZnO may combine the unique 

electronic properties associated with 2D materials and the excellent optical properties of wurtzite 

ZnO. 

METHODS 

Experimental ZnO NCs were grown by a catalyst-free, low-pressure MOCVD method. 

Diethylzinc (DEZn) and O2 were used as the zinc source and oxygen source, respectively. N2 was 

used as the carrier gas. The growth temperature was 450 ºC. The chamber pressure was 

maintained at 2 Pa during the growth of the ZnO. Clean atomically flat Au (111) films37 were 

used as the substrates. By carefully controlling the growth time as well as the source gas flow, 

we were able to deposit ultrafine ZnO NCs on the Au substrate, with a thickness ranging from a 

few angstroms up to more than 2 nm. An annealing treatment at 450 ºC in vacuum was always 

performed prior to ZnO deposition and prior to STM/STS measurements in order to remove the 

adsorbed contaminants (e.g., water) due to exposure of the sample to ambient conditions. 

STM/STS measurements were performed with an ultra-high vacuum (base pressure in the 10−11 

mbar range) STM setup (Omicron Nanotechnology) at 4.5 K using mechanically cut PtIr (10 % 

Ir) tips. Spectra of the tunneling current I and of the tunneling conductance dI/dV versus the 

tunneling voltage V (V is the voltage applied to the sample, while the STM tip is virtually 

grounded) are acquired with open feedback loop. dI/dV spectra, which directly reflect the LDOS, 

are obtained by lock-in detection at a modulation frequency of 840 Hz and with a sample voltage 

modulation amplitude in the 10 to 50 mV range. I(V) spectra can also be acquired in a grid of 

typically 200×200 points. From such grids, spatial dI/dV maps can be obtained at selected 

voltages V by numerical differentiation. Image processing is performed by Nanotec WSxM.38  
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Computational Details First-principles total-energy calculations were performed using DFT 

with the screened hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE06)39 and the Perdew, 

Burke and Ernzerhof (PBE0) hybrid functional,40,41 as implemented in the Vienna ab initio 

simulation package.42,43 The accuracy of the semilocal PBE approach was improved by mixing 

its exchange energy with a fraction of the exact nonlocal Hartree-Fock exchange energy, leading 

to hybrid functionals such as PBE0. Moreover, the electron-electron interaction was further 

separated into short- and long-range parts. Considering only short-range Fock exchange resulted 

in a decrease in computational time while preserving the accuracy of the calculations such as in 

HSE06. Using these methods substantially improved the band gaps and electronic properties. We 

used the HSE06 functional in all our calculations, except for the determination of the band gap 

value of different ZnO layers, for which we applied PBE0 as well. It has been found that for 

small-gap semiconductors, HSE results in better band gap values compared to the PBE0, while 

the latter works better for large-gap semiconductors.44  We used an optimized 37.5% Hartree-

Fock exchange mixing in the HSE06 functional. This mixing correctly reproduced the 

experimental value of the band gap in ZnO.45 Electron-ion interactions were treated using 

projector augmented wave potentials.46,47 The Zn (4s23d10) and O (2s22p6) electrons were treated 

as valence electrons. The electron wave functions were expanded with a plane wave basis set up 

to a cutoff energy of 400 eV, and the Brillouin zone was sampled with a k-point grid of 222 in 

case of bulk calculations and 441 for slab calculations. Note that the convergence with respect 

to self-consistent iterations was assumed when the total energy difference between cycles was 

less than 10-4 eV and the geometry relaxation for different charge states continued until the 

transition level position differences were less than 10 meV. For the defect pair calculations, three 

different configurations were considered for a VO−VZn pair in the bulk ZnO supercell consisting 
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of 108 atoms. Comparing the total energy after relaxation, we find the most stable configuration 

for the defect pair in ZnO. 
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