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ABSTRACT Topological insulators (TIs) are renowned for their exotic topological surface states
(TSS) that reside in the top atomic layers and hence detailed knowledge of the surface top atomic
layers is of utmost importance. Here we present the remarkable morphology changes of Bi,Tes
surfaces, which are freshly cleaved in air, upon subsequent systematic annealing in ultra-high vacuum
and the resulting effects on the local and area-averaging electronic properties of the surface states,
which are investigated by combining scanning tunneling microscopy (STM), scanning tunneling
spectroscopy (STS), and Auger electron spectroscopy (AES) experiments with density functional
theory (DFT) calculations. Our findings demonstrate that the annealing induces the formation of a Bi
bilayer atop the Bi,Tes; surface. The adlayer results in n-type doping and the atomic defects act as
scattering centers of the TSS electrons. We investigated the annealing-induced Bi bilayer surface on

Bi,Tes also via voltage-dependent quasi-particle-interference (QPI) mapping of the surface local



density of states and via comparison with the calculated constant-energy contours and QPI patterns. We
observed closed hexagonal patterns in the Fourier transform of real-space QPI maps with secondary
outer spikes. DFT calculations attribute these complex QPI patterns to the appearance of a “second”
cone due to the surface charge transfer between the Bi bilayer and the Bi,Te;. Annealing in ultra-high
vacuum offers a facile route for tuning of the topological properties and may yield similar results for

other topological materials.

KEYWORDS Topological insulators, Bi,Te;, Bi bilayer, scanning tunneling microscopy, quasi-

particle interference, density functional theory.

Topological insulators (TIs) have much potential for use in practical applications because of their
unique electronic properties, which are mainly related to two-dimensional (2D) topological surface
states (TSS) exhibiting Dirac dispersion. Bi,Tes, BixSes, and Sb,Te; are Tls that have drawn lots of
attention due to a single topological surface-state Dirac cone.' They have a layered structure in units of
quintuple layers (QLs) along the crystal c-axis, where one QL consists of B-A-B-A-B stacking for the
TIs A;B;. The coupling between the adjacent QLs is dominated by van der Waals interactions, similar
to graphite. The van der Waals gap between the QLs yields a preferential cleavage between the
adjacent Te or Se layers,” yet cleavage within a QL rather than between two successive QLs may also

occur.> Moreover, TI surfaces appear to be affected by spontaneous reorganization after the cleavage.

Since the TSS of TIs resides within the topmost atomic layers of the TI surface, its precise
characteristics depends on surface structure and composition. Hence detailed knowledge of the surface
top atomic layers is of utmost importance. Recently, Bi;Te; samples where the surface was obtained
from ion sputtering and subsequent annealing revealed coexistence of QL-termination and Bi-bilayer

termination.” Similarly, it was reported that Bi,Se; samples cleaved in ultra-high vacuum (UHV)



spontancously form a Bi bilayer on the topmost QL at room temperature.® Furthermore, Bi
accumulation may occur at the Bi,Se; surface via diffusion of Bi’ that can be intercalated in between
the QLs.*” In contrast, Hewitt et al.'’ reported that Bi,Se; crystals cleaved in UHV predominantly
show the Se surface termination, while those stored in air for a long time have a high probability for Bi
termination. Despite these previous investigations, it is not yet clear how the morphology and
composition of the TI surface is modified upon exposure to elevated temperatures without applying ion
bombardment as in Ref. [5], which can be very invasive for the surface. Moreover, there is a lack of
studies of /ocal electronic properties of a Bi-bilayer terminated Bi,Tes surface, especially quasi-particle
interference (QPI) near surface scatterers. The reported local properties of a Bi bilayer surface on
Bi,Se; ! cannot be directly applied to the Bi,Tes case because different surface-state and bulk band

structures of Bi,Te; and Bi,Se; influence the Bi bilayer surface differently.

Here we present the remarkable morphology changes of freshly cleaved Bi,Te; surfaces upon
systematic annealing in UHV and the resulting effects on the local and area-averaging electronic
properties of the surface states, by applying scanning tunneling microscopy/spectroscopy (STM/STS)
and Auger electron spectroscopy (AES) combined with density functional theory (DFT) calculations.
Our findings demonstrate that without an intentional Bi bilayer adsorption or invasive ion
bombardment, the annealing itself induces the formation of a Bi bilayer atop the Bi,Tes surface. We
investigated the annealing-induced Bi bilayer surface on Bi,Tes; via QPI mapping of the surface local
density of states (LDOS) and via comparison with the calculated QPI patterns. The Fourier transform
(FT) of our observed real-space QPI mapping exhibits a completely closed hexagonal shape with layers
of secondary outer peaks below 150 mV, which is distinct from QPI patterns for a Te-terminated
Bi,Te; surface in Refs. [12-14]. Our experimental data are supported by our calculated QPI patterns for

the Bi-bilayer terminated Bi,Te; based on DFT.



Results

In our experiments, the Bi,Te; sample is exfoliated with an adhesive tape in ambient conditions and
installed within a few minutes in the introduction chamber of the UHV STM setup. Prior to annealing
in UHV, very large flat terraces are retrieved with a lateral size of 10 um or larger (Fig. 1a). The
terraces exhibit a sub-monolayer amount of nanosized species and holes (Fig. lc) attributed to
exfoliation-related damage of the top QL and to contamination due to brief exposure to ambient
conditions (e.g., H,O, O, and N). Steps in between two terraces typically have a height of 0.95 + 0.05

nm, i.e., the height of a full QL.’ or multiples of that.

Figure 1: Modification of the sample topography by annealing. Typical large-scale STM
topographies of (a) the freshly cleaved Bi,Te; surface prior to annealing (1500 x 1500 nm?
setpoint values ¥ = +1.0 V and I = 0.05 nA) and (b) after annealing to 420 °C (500 x 350 nm?;
setpoint values V'=+0.8 V and 7= 0.2 nA). (c)-(¢) 40 x 40 nm” close-up view STM topographies
of the Bi,Te; surface (c) prior to annealing and after annealing to (d) 200 °C and (e) 420 °C,
respectively. Setpoint values are (¢c) V'=+1.0 V and /= 0.05 nA, (d) ¥=+1.0 V and / = 0.03 nA,

and (e) V'=+0.2 V and /= 0.5 nA (Tsmpie = 4.5 K). Color height scales of (c), (d), and (e) are 0.6



nm, 0.3 nm, and 0.1 nm, respectively. Insets present 3 x 3 nm* atomically resolved close-up view

of the corresponding surface.

Next, annealing in UHV conditions is applied to desorb surface contaminants. After annealing to 200
°C for about 2 hours (Fig. 1d), surface quality has improved considerably and locally atomically clean
regions of about 20 x 20 nm’® and larger can be retrieved, implying that surface restructuring has
occurred. Remarkably, after annealing to 420 °C for about 24 hours (Fig. le), the surface shows
atomically flat terraces that typically exhibit a minute amount of atomic-sized protrusions, referred to
as “defects” hereafter, that have a random distribution. Height of these defect features is 0.05 + 0.02
nm. Locally, regions without defects also exist. Measured in-plane atomic distances are 0.43 + 0.01
nm, which agrees with reported values for the pristine Te-terminated (111) surface of Bi;Tes in Refs.
[12,15]. Defects are located exclusively at positions of the atomic lattice. Since a clean atomically flat
surface was obtained after annealing to 200 °C, the observed defects must stem from the substrate and
hence be either Bi or Te. Our annealing experiments indicate that the defect-type features start to

appear after annealing to a temperature of 375 + 10 °C.

More strikingly, after the annealing at 420 °C we find that the step heights are typically well below that
of a full QL after the annealing, as illustrated in Figs. 2a and 2b. The higher-lying region on the left
side of the step edge in Fig. 2a is defect-free and can be assigned to a full QL (QL #1) of the pristine
Bi,Tes that is stacked on top of another full QL (QL #2). As indicated above, in the experiments prior
to annealing it is found that the height of a full QL with respect to the full QL below is 0.95 nm.
Therefore in Fig. 2b, the height profile is given an offset so that the full QL #1 on the left hand side has
a height level of 0.95 nm, i.e., the height of a full QL (QL #1) stacked on top of another full QL (QL
#2). The height of 0 nm hence corresponds to the top of QL #2. The lower-lying region on the right
side of the step edge in Fig. 2a reveals a high density of defects. In the following we attribute the

defect-rich regions to an annealing-induced adlayer that is (locally) covering the Bi,Te; surface. The
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step height measured in Fig. 2b is about 0.60 &+ 0.05 nm as measured from the top of the full QL #1 on
the left side, i.e., the thickness of the adlayer on QL #2 is 0.35 = 0.10 nm. The increased occurrence of
sub-QL step heights indicates considerable surface restructuring and/or partial evaporation of the top
QL at the annealing temperatures. More STM topographies of two other Bi,Te; samples annealed at
different temperatures also show similar features (Figs. SM-3 and SM-4). Te has a lower vapor

pressure than Bi'® and hence evaporation of Te is most likely to occur.

A step height histogram based on height profiles acquired on the entire sample is presented in Fig. 2e.
The histogram in Fig. 2e reveals maxima around 0.37 &+ 0.05 nm, 0.60 = 0.05 nm and 0.95 £ 0.05 nm.
For regions with a neighboring pristine surface, these step height values are consistent with
interpretation in terms of an annealing induced Bi bilayer atop the pristine Bi,Tes surface, as indicated
in Fig. 2b and as will be discussed in full detail below. We note here that there also exist regions of the
sample that do not have defect-free terraces (i.e., defects exist on every terrace). For these regions no
well-defined reference surface is available that can be used for interpretation of the sub-QL step height
and hence the step height values cannot be unambiguously linked to a specific adlayer thickness or
surface termination (see Fig. SM-5). In the following, we focus on regions that have a neighboring
pristine Bi,Tes terrace that allows us to identify these defect-rich regions as an adlayer with thickness

of 0.35+0.10 nm on top of a complete BirTes; QL, similar to the region discussed in Fig. 2a.

In three series of experiments the same Bi,Te; sample has been exposed to ambient, after which it was
exfoliated in ambient and annealed under UHV conditions. As indicated above, after annealing to about
420 °C step heights well below a full QL are frequently observed. After exfoliating the same sample
back under ambient conditions, again mainly step heights of a full QL are observed. This indicates that
the applied annealing modifies the (top QLs of the) sample surface only and leaves the lower-lying QLs

in the bulk of the sample unaltered.
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Figure 2: Doping effects on the Bi,Te; surface by the adlayer after annealing at 420 °C. (a)
45 x 11 nm®> STM topography of the Bi,Te; surface comprising a step that separates a pristine
defect-free region (left terrace) and an adlayer covered defect-rich region (right terrace) with
about 200 defects per 1000 nm®. (b) Height profile taken along the dotted line in (a). Inset shows
an atomically resolved close-up view of the pristine region in (a). Orientation of the atomic
lattice is the same for the adlayer region. (c) dZ/dV spectra (open feedback loop) recorded on the
two regions in (a). Setpoint values are 0.2 nA and -1.0 V. (d) dZ/dV spectra (closed feedback
loop) recorded on the two regions in (a). Setpoint values are 0.2 nA and +1.0 V. Curves are given
an offset for clarity. Red and blue arrows indicate the energy positions of three weaker electronic
resonances. Isumpie = 4.5 K. (e) Frequency count of the step heights observed prior to annealing
(black histogram) and after annealing to 420°C (red histogram). Prior to annealing, mainly steps
with height of about 0.95 nm are observed and can be assigned to a full QL step. After annealing,

mainly sub-QL steps are resolved.

In order to obtain insight into the characteristics of the sub-QL step height, we carried out
complementary UHV AES experiments on two samples that were both freshly cleaved in ambient prior

installation in UHV. One of the samples was annealed in a separate UHV chamber to 420°C and then
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transported in a protective nitrogen environment to the AES setup. Figures 3a and 3b show the
differentiated AES spectra of the two sample surfaces in the Bi and Te peak regions, respectively. The
surface of the annealed sample exhibits a significantly higher Bi signal and a lower Te signal compared
to that of the non-annealed sample, which implies a higher amount of Bi for the annealed sample. As
the peak-to-peak height in the differentiated spectrum is directly proportional to the amount of that
element present, this quantity can be used to compare the amount of that element at the surface of
different samples. From Fig. 3, we infer a Te:Bi ratio of about unity for the non-annealed sample. This
ratio remains the same after storage of the sample in UHV for one week (data not shown). In contrast,
the annealed sample shows a Te:Bi ratio of about 0.5, i.e., more Bi is present at the sample surface after
annealing (our quantitative estimate of the ratios includes the uncertainties of about 20%'"). We note
that we do not know the precise AES probing depth for our samples (typically of the order of 1 nm,
depending - among other things - on the surface roughness*’). Nevertheless, these findings suggest that
the applied annealing procedure gives rise to a higher Bi concentration close to the top surface, such as
the formation of a Bi bilayer or a Bi>-Te structure atop the Bi,Tes surface. Below we will exclude the
Bi,-Te structure as a possibility. Bi(111) has an in-plane lattice constant which is similar to that of
Bi,Tes, and so Bi(111) bilayers can adopt the same lattice constant as that of Bi,Tes, as illustrated in
the inset of Fig.le. Our observation is consistent with the recent report on the coexistence of small
Bi(111) bilayer islands on top of Bi,Tes after sputtering and annealing at 300 °C of the sample in

UHV.?
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Figure 3: AES experiments. Differentiated AES spectra of a non-annealed and an annealed

sample. (a) Bi energy region. (b) Te energy region.

Therefore, we interpret the defect-rich region in Fig. 2a as a Bi(111) bilayer on top of a full QL #2,
while the defect-free region in Fig. 2a is interpreted as a full QL #1 without any cover layer. The
thickness of the adlayer inferred from the height profile in Fig. 2b of around 0.35 + 0.10 nm is
consistent with previously reported values for Bi bilayers.” More evidences of the existence of a Bi

bilayer on Bi,Te; follow below.

Next, we probed the electronic structure of the pristine and the Bi bilayer regions in Fig. 2a by
recording (dZ/dV)(V) spectra that reflect the surface LDOS, as illustrated in Figs. 2c and 2d. Clearly
there exists a large difference between the two surfaces. The highest resonance of the pristine region in
Fig. 2d occurs at about 5.3 eV, which matches a previously reported value of the vacuum level for
pristine Bi,Te; surfaces,'® compared to about 4.7 eV for the bilayer region. This highest resonance
shows only a minor dependence on the density of atomic defects (Fig. SM-8). The second resonance at
higher voltages in Fig. 2d can be fully attributed to a so-called image-potential-state.'” Upon careful
inspection of Fig. 2d, one can resolve three additional characteristic resonances below the vacuum
level, i.e., around 2, 3 and 4 V (for the full QL region). These states can be assigned to higher-lying
conduction bands of the Bi,Te; surface, as we will demonstrate below using band structure

calculations. Remarkably, all these resonances experience a downward shift to lower voltages on the



bilayer region, similar to the vacuum level related resonance. Similar observations are made at lower
voltages near the Fermi level (Fig. 2c), where the local minimum in the (normalized) dZ/dV spectra is
shifted downward at the bilayer covered terrace. Corresponding non-normalized d//dV spectra of the
Bi,Te; surface are presented in Fig. SM-1 and they are consistent with previously reported spectra in
Ref. [20]. The observed downward shift of all electronic features can be explained by an n-type doping
effect of the bilayer due to charge transfer from the Bi bilayer to the Bi,Tes, which gives rise to a lower
work function and to a lowering of the surface electronic states of BiyTe; (i.e., an increased binding
energy).**'*** Chen et al. reported a reduction of the work function by about 0.4 ¢V upon growing Bi
bilayer islands with uniform height on Bi,Te; using molecular beam epitaxy,”* which is in good

agreement with our observations.

To further confirm our interpretation of the surface adlayer as a Bi bilayer, we performed band
structure calculations for different surface adlayer configurations and we determined the work
functions of these configurations. The results are listed in the Table 1 below, together with their height
with respect to the supporting Bi,Te; substrate. The work function of the bare Bi,Te; is in line with
previous reports,” yet it should be kept in mind that the work function is typically underestimated in
DFT-based calculations. From the considered configurations, Te+Bi+Te, Te+Bi,, Bi,+Te, and
Te+Bi+Te+Bi, do not lead to a significant lowering of the work function compared to the bare Bi,Tes.
Moreover, their height (thickness) is significantly higher than the adlayer height (thickness) observed in
the experiments (Fig. 2b) and hence these configurations are ruled out as a possible adlayer. Based on
their height and calculated work function, both a Bi bilayer and a Te+Bi layer remain a possibility.
Considering Te desorption and/or diffusion of intercalated Bi towards the top surface during the
annealing experiments, a Bi bilayer seems more favorable, and the corresponding downward shift of

the calculated work function matches the experimental observations (Fig. 2d).
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Table 1: Work function calculations. Work functions determined from band structure
calculations for different surface adlayers, including a bare Bi,Te; slab of 5 QLs as a reference.
Bare +Bi2 (opt) +Te+Bi Te+Bi+Te +Te+Bi2 Bi2+Te | Te+Bi+Te+Bi2
(5QLs) (opt) (unopt) (unopt) (unopt) (opt)
Height 0Onm 0.446 nm 0.420 nm 0.640 nm 0.585 nm  0.558 nm 1.027 nm
Work function 4.95 eV 4.64 eV 4,50 eV 5.08 eV 4.82 eV 4.89 eV 4.84 eV

Figure 4 presents the calculated density of states (DOS) of the bare Bi,Te; surface and the Bi bilayer
covered Bi,Tes surface, based on band structure calculations (which will be discussed in detail later) of
the respective systems. The calculated DOS results are in qualitative agreement with the experimental
data in Fig. 2. In particular, the local minimum at the Fermi level in the top panel in Fig. 4 shifts to
lower energies for the Bi bilayer covered surface, similar to Fig. 2¢c. At higher energies, the calculations
in the bottom panel of Fig. 4 capture the existence of the higher-lying conduction bands of the BiyTe;
surface® observed in Fig. 2d, as well as the shift of these resonances towards lower energies for the Bi
bilayer covered surface. We note that the shape of the spectra in Fig. 4a differs from that in Fig. 2c.
This may be at least partially accounted for by LDOS contributions of the STM tip apex to the

experimental spectra, which is not considered in the calculations.
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Figure 4: Calculated DOS. Total DOS calculated for the pristine QL-terminated 5 QLs (black
solid curves) and for the Bi-bilayer adsorbed on 5 QLs (red dashed curves). To compare with the
experimental data in Fig. 2, the DOS data is separated into two regions: a region near the Fermi

level (top panel) and a higher-energy region (bottom panel).

Next, we investigated in detail the local electronic structure of the sample surface by using LDOS
mapping referred to as a QPI mapping. Pristine regions remain featureless and reveal clear QPI patterns
only near step edges (data not shown).”® In contrast, bilayer regions reveal complex QPI patterns all
across their terraces, as illustrated in the LDOS maps in Figs. 5b and 5c recorded on the bilayer region
in Fig. 5a. To achieve clear QPI mapping, adatoms or surface dopants are often intentionally deposited
and they become scattering centers of the surface electrons.'*" In our case, the atomic defects scatter
the TSS electrons and create electron interference depending on the energy. Since the QPI maps exhibit
a highly periodic character, they are better resolved in the FT image. Figures 5d-k present a series of
voltage-dependent FT-QPI images recorded on the bilayer region in Fig. 5a. The FT-QPI images can be

understood considering the allowed scattering wave vectors in the surface Brillouin zone. During
12



elastic scattering, an atomic defect scatters the incident wave with a wave vector K; into k= k; + q, with
ki and k¢ being on the same constant-energy contour (CEC), of which an example is shown in Fig. 6d.
The quantum interference between the initial and final states results in a standing wave pattern whose
spatial period is given by 2n/q. Our experimental FT-QPI patterns show much more features than the

1213:2027 egpecially at voltages between -50 mV and +125

FT-QPI patterns reported for pristine BiyTes,
mV in Fig. 5. Typically, for scattering on pristine Bi;Tes surfaces (except at very high voltages), the
observed FT-QPI patterns show features only in the I'-M direction, e.g., compare our data with Fig. 2
in Refs. [12, 20]. In the indicated voltage range however, we observe closed hexagonal patterns in the
FT of real-space QPI including scattering peaks along the I'-K direction and secondary outer spikes.
Some of these extra features along the I'-K direction are much more pronounced than those reported
for pristine Bi,Te; at much higher voltages (several 100 mV higher), e.g., compare our data with Fig. 2f
in Ref. [20]. The outer spikes have not been observed for pristine BiTe;. The scatterings via Q;
(indicated in the CEC in Fig. 6d) along the I'-K direction are forbidden due to time-reversal symmetry.
Therefore, our observed features along the I'-K direction in Figs. 5d-h require new scattering channels
that will be discussed below based on DFT calculations. As the voltage increases, our QPI mapping at
200-300 mV shows interference patterns only along the I'-M direction (referred to as open hexagonal

patterns in order to differentiate from the features at lower voltages) without apparent secondary outer

spikes.
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Figure 5: QPI mapping. (a) 60 x 60 nm® STM topography of a Bi bilayer covered Bi,Te; region
(with about 300 defects per 1000 nm?) at +50 mV. (b)-(c) Corresponding LDOS maps and (d)-(k)
corresponding FT-QPI maps acquired at the indicated voltages. In (k) the distance between two
opposing green dotted circles is 5.4 nm™, and the two blue dotted lines indicate the ['-K and I'-M
directions. (1) Energy dispersion of the surface state determined from the FT-QPI images,

together with a linear fitting result. Tsmpie = 4.5 K.

We now estimate the energy dispersion of the TSS electrons from the measured FT-QPI patterns. The
prominent scatterings along the I'-M direction shown in Figs. 5d-k and in Refs. [12,13,20,27] are
attributed to ¢ in the CEC of Fig. 6d. The involved k; and K are wave vectors that point along the I'-K
direction because a higher density of surface states is found along this direction (Fig. 6d). Considering
the scattering geometry in the CEC, ¢ and K are related by g = |q,| = V3 k. Green dotted circles in Fig.
Sk highlight the six maxima obtained from the atomic structure of the Bi,Tes;(111) surface. From the

maxima we identified the I'-K and I'-M directions. The center of the FT-QPI map corresponds to the
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center of the reciprocal lattice of the hexagonal lattice. The length of the 2D reciprocal lattice vectors is
inferred as 7-5.4 nm™'. Based on the FT-QPI images in Figs. 5d-k and SM-7, we determined the energy
dispersion of the surface states. Values of the wave vector are determined as half of the length of the
bars along the I'-M direction, as indicated in Figs. 5e and 5i. Since STM measurements map the square
of the electron (standing) wave function,” the value obtained from the FT-QPI images is in fact twice
the quasiparticle wave vector (. Note that we treated our FT-QPI images with a minor smoothing filter
only, without symmetrizing operations.” The results are presented in Fig. 51. The electronic features in
the FT-QPI images clearly exhibit a linear dependence on the tunneling voltage. Its slope can be
obtained by fitting the data points to a linear energy dispersion E(k) = Ep + hvek.'**® We find the Dirac
point energy Ep = -380 + 20 meV and the Fermi velocity ve = (6.3 = 0.3) x 10° m/s. Note that the
energy dispersion shows only minor dependence on the density of atomic defects (Fig. SM-9), similar

to the above discussed vacuum level related resonance (Fig. SM-8).

To further investigate whether our experimental QPI features are compatible with a Bi bilayer covered
Bi,Tes system, we performed DFT-based calculations of the QPI patterns. Also, we identified the
scattering channels giving rise to the aforementioned unique interference patterns at low voltages, when
compared to the FT of QPI patterns for pristine Bi,Tes. The band structure of pristine Bi;Tes and the Bi
bilayer covered Bi,Te; system is presented in Fig. 6a and Fig. 6b, respectively. The cone corresponding
to the TSS state near the top of the valence band is indicated in red for Bi;Te; and in blue for the Bi
bilayer covered Bi,Tes system. The Fermi level is chosen as the zero of energy in each case. One can
clearly see that the Bi bilayer has resulted in a downward band bending, which is responsible for the
shift in vacuum energy discussed above. This band bending shifts the TSS to higher binding energies,
but a new (“second”) cone-like band structure at the I point close to the top of valence band can be
observed. This new Dirac cone was also mentioned in Refs. [31-33]. We identify that the new Dirac
cone originates from the lowest conduction band state of the pristine system. We refer to Fig. SM-10

15



for details of the characteristics of the bands. This mechanism is similar to what was found for a Bi
bilayer on top of Bi,Se; studied in Ref. [8]. Our QPI calculations based on this cone-like band structure
(indicated in blue in Fig. 6b) do show closed hexagonal QPI patterns starting from energy £ = 120
meV, as shown in Fig. 6¢. Furthermore, the length of the Q, vector in the corresponding CEC (Fig. 6d)
is about 1.5 nm’, in agreement with the experimental QPI at -50 mV. The scattering processes
responsible for the QPI feature along the I'-K direction occur via 03 in Fig. 6d. These processes are
more pronounced in the Bi bilayer covered Bi,Tes than in the pristine Bi,Tes;, when we consider the
peculiar curvature of the CEC, such as stronger hexagonal warping (sharply peaked in the I'-M
direction) and smoothly curved in the I'-K direction, in combination with the fact that the spin is still

approximately tangential to this CEC (see discussion of Fig. 61 below).
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Figure 6: Theoretical study of the Bi bilayer on Bi,Te; system versus pristine Bi,Tes. (a)
DFT-calculated band structure of the QL-terminated Bi,Te;, where the TSSs are indicated in red.

(b) DFT-calculated band structure of the Bi-bilayer adsorbed on Bi,Te;, where the new cone-like
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band structure is marked in blue. (c¢) and (d) represent the CEC and the QPI pattern of the Bi
bilayer covered Bi,Te; surface, respectively, obtained at 120 meV above the Fermi level (i.e.,
135 meV above the blue Dirac point in (b)). (¢) and (f) represent the CEC and the QPI pattern of
the bare Bi,Te; surface, respectively, obtained at 20 meV above the Fermi level (i.e., 135 meV
above the red Dirac point in (a)). (g) and (h) represent the CEC and the QPI pattern of the bare
Bi, Te; surface, respectively, obtained at 155 meV above the Fermi level (i.e., 270 meV above the
red Dirac cone in (a)). (i) and (j) CEC and QPI pattern of the Bi bilayer covered Bi,Te; surface,
obtained at 150 meV above the Fermi level. The red arrows indicate the schematic spin structure.

(k) QPI pattern of the bare Bi,Te; surface, obtained at 185 meV above the Fermi level.

As noted earlier, the fitted energy dispersion in Fig. 51 is based on the length of vector g, = K¢- k; that is
oriented along the I'-M direction (Figs. 5i and 6d), while the constituting k; and Ky are oriented along
the I'-K direction. Therefore, the energy dispersion in Fig. 51 should correspond to the energy branch in
the I'-K direction of the Bi bilayer covered Bi,Tes system, indicated by the arrow in the band structure
of Fig. 6b. The calculated slope of the band at £ = 120 meV leads to a Fermi velocity of about 4.3 10°
m/s. Note that this velocity is similar to the calculated Fermi velocity of the red Dirac cone of pure
Bi,Te;. Extrapolating this (blue) band further down, it crosses the I" point around E, = -150 meV. Thus,
the energy of 120 meV at which the QPI and CEC were calculated (Figs. 6¢c-d) corresponds to an
energy of 270 meV above E.. The energy at which the experimental QPI was obtained, -50 meV, is
equivalent to 330 meV + 20 meV above the fitted Dirac point Ep, which is in reasonable agreement

with the calculated result.

Interestingly, this closed hexagonal shape of the calculated QPI already appears only 135 meV above
the Dirac point of the blue cone, E, = -15 meV. It is now instructive to see how the QPI and CEC
would look for pure Bi;Tes at 135 meV above the red Dirac point, £, =-115 meV. The QPI pattern and

corresponding CEC are shown in Figs. 6e-f, respectively. It is clear that the QPI and CEC for the TSS
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of the pristine Bi;Te; evolve much more slowly with increasing energy than for the “second” cone of
the Bi bilayer covered Bi,Te; system. Finally, we show the QPI pattern and CEC for pure Bi,Te; at 270
meV above the E, value in Fig. 6g and in Fig. 6h, respectively. This corresponds to £ = 155 meV from
the Fermi level. Some features along the I'-K direction are found, but less pronounced. Furthermore, a
truly closed hexagonal shape is never found for the pure Bi,Tes system, while it clearly exists for the Bi
bilayer covered Bi,Tes system. As an example, Fig. 6] and Fig. 6k present the QPIs for the Bi bilayer
covered Bi,Tes system and Bi,Tes, respectively, at an extra 30 meV above the ones shown in Fig. 6¢
and Fig. 6g: for £ =120 meV + 30 meV = 150 meV for the Bi bilayer covered Bi,Te; system, and for £
= 155 meV + 30 meV = 185 meV for Bi,Te;. For the Bi bilayer covered Bi,Te; system, the closed
hexagonal structure is very pronounced, even a second outer shape can be identified, as in the
experimental QPI patterns (Fig. 5e). This second outer shape is caused by scattering processes like a4,
indicated in the CEC of the Bi bilayer covered Bi,Tes; at 150 meV in Fig. 61 . The red arrows indicate
schematically the spin texture based on DFT calculations. The vector g4 is slightly off from the tips of
the contour. Due to the extremely sharp contour shape, the tangential spin texture shows that scattering
by the g4 vector is enhanced, while scattering by the gs vector (from one tip to the opposite tip) is
forbidden by time-reversal symmetry. It could be tempting to identify the calculated QPI for pure
Bi,Tes in Fig. 6j with the QPI measured at a tunneling voltage of +250 mV. However, the Fermi level
of this calculated QPI at £ = 185 meV is only 300 meV above the E, value, while the measured one is
estimated to be 380 + 250 meV = 630 meV above the Ep value. Furthermore, at a voltage of +250 mV,
the length of the g, vector is measured to be aroud 2.6 nm™ (Fig. 51), while in the calculated QPI it is

still below 2.0 nm™ (Fig. 6k).

Based on the DFT calculations of the QPI patterns, we conclude that the experimental QPI patterns are
consistent with a system in which a Bi bilayer is located on top of Bi,Tes; and that there is a better
match between the calculations and the experiment for the Bi bilayer covered Bi,Tes system than for a
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pure BirTes; system. All the observations based on the DFT calculations discussed above are a
consequence of the different shape of the CEC and corresponding spin texture for Bi bilayer covered
Bi,Te; and pure Bi,Tes: The CEC of Bi bilayer covered Bi,Tes is smoother along the I'-K direction and
at the same time stronger hexagonal warping exists along the I'-M direction. We could not retrieve the
QPI patterns observed in the experiments at 200-300 mV (Figs. 5g-i) because at such high energies it
becomes very difficult to select the states from the band structure calculation that are probed in the

STM measurement.

Conclusions

Relying on STM and AES experiments and on DFT-based calculations we demonstrated that the
surface electronic band structure of BiTes; crystals can be modified by an effective annealing
procedure under UHV conditions. The annealing gives rise to restructuring of the Bi,Tes surface,
yielding a Bi(111) bilayer at the otherwise atomically flat terraces. The adlayer results in n-type doping
and the atomic defects act as scattering centers of the TSS electrons, allowing to probe the modified
TSS dispersion via QPI mapping. Our experimental FT-QPI patterns reveal considerably more features
than FT-QPI patterns reported for pristine BiTe;: we observe closed hexagonal QPI patterns and
secondary outer spikes. DFT calculations capture the experimental findings and can attribute the
complex FT-QPI patterns to a modified constant-energy contour for the Bi bilayer covered surface.
Due to charge transfer from the Bi bilayer towards the surface of BirTes, a “second” cone was probed
in the QPI mapping instead of the original TSS cone. The observed annealing-induced doping may be
applicable to other topological materials and may offer a facile route for tuning of the topological

properties.
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Methods

Sample preparation. Crystals of Bi,Te; were prepared by melting high-purity Bi and Te powders (5N,
all from Alfa Aesar) and annealing in sealed quartz ampoules, as described in Ref. [34]. The
temperature was rapidly increased to 850°C, which was kept for two days, and the mixture was stirred
continuously to avoid ingredients segregation. After that, the temperature was decreased to 500°C to
allow the crystalline nucleation in 5 days. A 5 days annealing from 500°C to 420°C finalized the
preparation before dropping down to room temperature. The temperature-dependent resistivity of the
pristine Bi,Te; sample that is discussed in the main text is presented in the Supplemental Material (SM)
in Fig. SM-2 and reveals a metallic resistance versus temperature dependence, both prior to and after
UHV annealing treatment. All measurements presented in the main text are obtained on the same

sample. The SM also includes data obtained on two other samples (Figs. SM-3 and SM-4).

STM experiments. Annealing experiments were conducted in a UHV system (base pressure in the low
10" mbar range) that is connected to a low-temperature STM (Omicron Nanotechnology) operated at
4.5 K (base pressure in the 10" mbar range). (dZ/dV)(V) spectra and dZ/dV maps (referred to as LDOS
maps) were acquired by lock-in detection with open and closed feedback loop, respectively (unless
mentioned otherwise), at 800Hz (amplitude is typically about 20 mV). STM data in this work were
obtained with mechanically cut Ptlr (10% Ir) STM tips, and with polycrystalline W tips that were
electrochemically etched and cleaned in sifu by thermal treatment. All bias voltages mentioned are with
respect to the sample, and the STM tip was virtually grounded. The STM images were analyzed using
the Nanotec WSxM software.*”> The annealing experiments presented in Fig. SM-3 are obtained in
another UHV STM (Unisoku — Nanoscore gmbh) that is operated at room temperature (base pressure in

the 10™"! mbar range).
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AES experiments. The AES equipment (Thermofisher, Alpha 110 Channeltron Assembly) was used
with an electron voltage of 8 kV and a filament current of 2 A. The pressure in the chamber was 4 x 10°
? mbar. The step size for data collection was 1 eV and the spot size is estimated to be 1 mm®. Avantage
v5.951 (Thermo) software was applied to obtain a quantitative analysis of the composition of the

surface as described in Ref. [36].

P,*"% within the

Calculations. DFT calculations on Bi,Te; were carried out by using DFT code, VAS
generalized gradient approximation (GGA)* for an exchange-correlation functional and with projector-
augmented wave (PAW) pseudopotentials.*’ Spin-orbit coupling was considered self-consistently
within the DFT calculations. For the QL-terminated Bi,Te; slab, we considered 5 QLs, while for the
adlayer covered BiyTes slabs, we considered adlayers on 5 QLs. Regarding the DFT calculations to
obtain the work functions and DOS, we used the experimental lattice constants.”’ For the sub-QL
terminated slabs (5 QLs with adlayers), only the vertical distances near the interface are relaxed with an
energy cutoff of 250 eV and k-mesh of 11x11x1 points. For the computation of the QPI patterns, we
relaxed the whole structure including van der Waals interaction by applying the optB86b-vdW density
functional.*' In this case, we used an energy cutoff of 300 eV and a 16x16x1 k-mesh grid. For all the
DFT calculations, a thick vacuum layer of 20-30 A was included in the supercell. The QPI patterns
were obtained based on the DFT band structure and joint DOS approximation,* as explained in Ref.

[11]. The electron spin was approximated from the calculated expectation values projected onto

individual atoms implemented in VASP.
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Graphical Table of Contents entry:

Description: Atomically resolved topography after annealing of Bi,Te; under ultra-high-vacuum conditions. The
annealing leads to the formation of a Bi bilayer atop the pristine Bi,Te; surface. In the image a quintuple layer step separates
a pristine region from a Bi bilayer-covered region. The obtained surfaces are investigated via quasi-particle interference
mapping (insets), revealing complex star-shaped features for the bilayer region. Image size is 25 x 10 nm’. The image

contrast was optimized using Fourier filtering techniques.
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Figure SM-1: Spectroscopy near the Fermi level. (a) Area-averaged dl/dV spectrum (including
about 100 single spectra) of the pristine Bi,Te; surface shown in Fig. 2a. The spectrum is
consistent with previously reported spectra in Refs. [1-3]. Assignment of the valence band
maximum, conduction band minimum and Dirac point is done following Ref. [1], i.e., by the
minimum in the dI/dV curve, the shoulder at 180 meV, and the (small) change of the slope in the
dl/dV curve below the Fermi level, respectively. In Ref. [1], the authors attribute the small shift
in the dl/dV curve with respect to the curve reported in Ref. [3] to different sample doping.
Setpoint values used are V =-1.0 V and | = 0.2 nA. Lock-in modulation amplitude is 20 mV. (b)
Red spectrum is the same spectrum as in (a), yet taken in a larger voltage range. Black dotted
spectrum is taken on the neighboring Bi bilayer covered Bi,Te; region shown in Fig. 2a and
reveals a broad minimum in the -0.2 to -0.4 V range. (c) dl/dV spectra of the same regions at
different setpoint values: V=+0.6 V and | = 0.6 nA. Insets in (b) and (c) show the corresponding
I(V) spectra. The (V) spectra show clear non-linear behavior, implying that for comparison of the
two regions normalized (d1/dV)*(1/V)" spectra are preferred (see Fig. 2c). Lock-in modulation

amplitude is 30 mV. Tgmpie = 4.5 K.
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Figure SM-2: Temperature-dependent resistivity. Temperature-dependent resistivity of the
Bi,Te; sample that is discussed in the main text. This measurement allows to check the bulk
conductivity and reveals a metallic resistance versus temperature dependence, both prior to
(shown in figure) and after the annealing sessions (data not shown) that are discussed in the
manuscript. The crystalline order of the Bi,Te; crystal was verified by X-ray powder diffraction

and transmission electron microscopy and has been previously reported in Ref. [4].
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Figure SM-3: Detailed annealing session. Series of STM topographies of another Bi,Te;
surface (different from the one discussed in the main text) after annealing in UHV to the
indicated temperatures. The surface topography changes gradually with increasing annealing
temperature: Small defects/protrusions/depressions aggregate [(b)-(d)] and the QL steps
reorganize [(e)-(f)]. At higher temperatures atomic defects appear and step heights are typically
below that of a QL. These changes are attributed to surface restructuring and desorption of Te
from the top QL. The annealing effects can be expected to take place first at regions of the
sample that have a high density of (sub-QL) steps, which may explain the local variations of the
sample topography observed after annealing as illustrated in (g) and (h). Step edges typically are
subject the most to structural changes during annealing or manipulation experiments.’ In general,
the annealing behavior is similar for all investigated samples (6 in total). Differences between
different samples are attributed to the different initial quality of the sample surface prior to
annealing, which is determined by the mechanical exfoliation and adsorption of contamination

during the brief exposure to air. Tgmpie = 300 K.



Figure SM-4: Annealing of another sample. 50 x 50 nm* STM topographies of the surface of
another Bi,Te; sample. The topographies of this sample (a) prior to and (b) after annealing to
about 230°C are similar to that of the sample that is discussed in the main manuscript (see Figs.
1c and 1d). Surface cleanliness has improved considerably by annealing. Typical depth of the
vacancy islands in (b) is 0.2-0.3 nm. The increased lateral size of the vacancy islands is attributed
to surface restructuring and desorption of Te from the top QL. Setpoint values used are (a) V =

+0.9 Vand | =0.3 nA and (b) (a) V=+1.0 Vand | = 0.2 nA. Tempie =4.5 K.
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Figure SM-5: Step height profiles. (a) STM topography of a fully Bi bilayer covered region of
the Bi,Te; surface (sample that is discussed in the main text) with a high density of sub-QL steps
after annealing to 433°C. Atomic defects are present everywhere in (a), from which we conclude
that the entire surface in (a) is covered by a Bi bilayer. Image size is 600 x 600 nm”. Setpoint
values are V =+1.0 V and | = 0.05 nA. Regions of the sample that have a high-density of sub-QL
steps such as that in (a) typically do not show defect-free terraces (i.e., pristine Bi,Tes terraces
that have a vacuum level of 5.3 eV, see Fig. 2) and hence they have no well-defined reference
surface. In the main text, we focus on regions that have a neighboring pristine Bi,Te; terrace that
allows us to identify the defect regions as Bi bilayer on top of a complete Bi,Te; QL, similar to
the region discussed in Fig. 2. (b) Calculated heights of the Bi and Te intralayers within a QL.
Superscripts (1) and (3) on one hand, and superscript (2) on the other hand, denote two different
chemical states for the anions:® The outmost atoms Te(1) [Te(3)] are strongly bound (covalently
or partially ionic) to three planar Te(1) [Te(3)] and three Bi metal atoms of the same quintuple
layers, while they are weakly bound (mainly van der Waals) to three Te(3) [Te(1)] atoms of the
next QL below (above). The van der Waals gap between the QLs yields a preferential cleavage
between the adjacent Te(1)-Te(3) layers. (¢) Three height profiles taken along the paths at the

locations indicated in (a). As indicated above, for regions that do not have a neighboring pristine



surface, such as that in (a), these step height values in (c) cannot be unambiguously linked to a
specific adlayer thickness or surface termination. For example, based on the values in (b), a step
height of around 0.37 nm may be assigned to the height of a Te(3)-Bi(2) layer on Te(2), or to the
height of a Te(2)-Bi(1) layer on Te(1). Note that the occurrence of intralayer QL terminations
may have increased upon Te desorption as recently shown for Bi,Te; films that were grown with
varying Te concentration.” In addition, the high density of sub-QL steps may point to the

existence of multiple Bi bilayers, which are known to have a height of about 0.39 nm.*



Figure SM-6: QP1 mapping and Fourier transform. (a) 40 x 30 nm> STM topography of a Bi
bilayer covered Bi,Te; region (with about 100 defects per 1000 nm?”) recorded at +100 mV and

(b) the corresponding QPI map. (c) Fourier-transform image of (b).
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Figure SM-7: Series of FT-QPI maps. 60 x 60 nm*> STM topography of the Bi bilayer covered
Bi, Te; region shown in Fig. 5a (with about 300 defects per 1000 nm?) recorded at +50 mV, and
corresponding series of Fourier-transform images of QPI maps acquired at the indicated voltages.
The distance between two sets of maxima indicated by the green dotted circle in the +300 mV

image is 5.4 nm.
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Figure SM-8: Dependence of the vacuum level on the density of defects. Vacuum level values
obtained from STS spectra taken at different regions of the same Bi bilayer covered Bi,Te;
sample with a different density of defects. Setpoint values used are V = +0.2 V and | = 0.5 nA
(Tsampie = 4.5 K.). The (lock-in) modulation amplitude was 20 mV. Densities ranging from 10 to
400 defects per 1000 nm” are retrieved. The density does not vary significantly within one
terrace, and mainly shows variation from terrace to terrace. Data can be interpreted as a
downward shift that is mainly caused by the presence of the Bi bilayer, as discussed in the main
text. In addition, there exists a small yet significant correlation between the observed vacuum
level and the density of defects: the vacuum level shifts further to lower energies with increasing

density of defects.

Figure SM-8 mainly includes data obtained on regions that have a high density of sub-QL steps and
that exhibit defects everywhere. As indicated in the caption of Fig. SM-5, regions of the sample that
have a high-density of sub-QL steps such as that in (a) typically do not show defect-free terraces (i.e.

pristine Bi,Tes terraces that have a vacuum level of 5.3 eV, see Fig. 2) and hence they have no well-



defined reference surface, which may at least partially explain the scattered data in Fig. SM-8. In the
main text, we focus on regions that have a neighboring pristine Bi,Tes terrace that allows us to identify
the defect regions as Bi bilayer on top of a complete Bi,Te; QL, similar to the region discussed in Fig.
2. The density of defects is always determined from an area of 40 x 40 nm*. The experimental X-error
value is taken as “density” * 0.0025” to reflect the increasing uncertainty of the density determination
with increasing density of defects. At high densities, defects that are in very close proximity cannot be
discerned and are counted as one defect in our analysis using the WSxM software.” The (systematic)
experimental y-error value reflects the observed variation of the vacuum level when determined from
different STS spectra taken within the same region. Each color in Fig. SM-8 represents a different “data
set”. Each data set (when consisting of two or more data points) reveals a lowering of the vacuum level
with increasing density of defects. Each data set is obtained with the same STM tip, i.e., no so-called
tip change occurred in between measurements of one data set. A change of the tip apex leads to a
different electric field between tip and sample (even when using the same setpoint values), which may
additionally explain the scatter between the different data sets. The data point at zero density of defects

(the pristine surface) is verified in three independent experiments.
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Figure SM-9: Dispersion for regions with different defect densities. Energy dispersion of the
surface state of Bi,Te; determined from Fourier-transform images of a region with 100 defects
per 1000 nm’ (topo shown in Fig. SM-6) and a region with 300 defects per 1000 nm” (see Fig.
SM-7), together with a linear fitting result. Two data points of a pristine region were obtained at a

QL step. Tgampe = 4.5 K.

In the main text we showed that the vacuum level and other electronic features shift to lower energies
due to the Bi bilayer. In Fig. SM-8, we showed that there exists also a small dependence on the density
of defects in the Bi bilayer. In that view, one can expect that there exist differences in the surface state
dispersion of regions with a different density of defects. We determined the energy-dispersion behavior
of the QPI patterns in the Fourier-transform images for a region with 100 defects per 1000 nm” (one
Fourier-transform image is presented in Fig. SM-6) and a region with 300 defects per 1000 nm?
(Fourier-transform images are shown in Fig. SM-7). The Bi bilayer in Fig. SM-6 and in Fig. SM-7 both

have a thickness around 0.4 nm, similar to the case of Fig. 2a. Values of the quasiparticle wave vector



q are determined as indicated in Fig. SM-7 (see the maps at +50 mV and + 200 mV) following the
sixfold symmetric scattering vector in the M direction. The results are presented in Fig. SM-9. Two
data points of a pristine region could be obtained at a QL step and are added as a reference. We find Ep
=-380 + 30 meV and Vg = 7.1 +/- 0.3 10° m/s for the 100 defects region, and Ep, = -380 + 20 meV and
Vi = 6.3 £ 0.3 10° m/s for the 300 defects region. These Dirac point values are well below the Fermi
level and are in line with the downward shifts of the electronic resonances. Fermi velocities are in

L10°As mentioned above, a different value of the

reasonable agreement with previously reported values.
Dirac point is expected for regions with a different density of defects. From our STS results (see Fig.
SM-8), these differences are expected to be rather small and are within the experimental error of our
Dirac point determination relying on the linear dispersion relation. Nevertheless, it can be observed that
the energy dispersion curve of the region with 300 defects per 1000 nm? is shifted to lower energies (by

about 100 meV) with respect to that for a region with 100 defects per 1000 nm?, consistent with our

discussions above.
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Figure SM-10: DFT-calculated band structure of the Bi-bilayer adsorbed on Bi,Tes. The
Fermi level has been chosen as the zero of energy. The Bi bilayer is positioned on top of 5 QLs
of Bi,Te;. The blue and red colors in the band structure indicate that most of the electron density
corresponding with this level comes from the topmost or bottommost QL, respectively. The
yellow color indicates the levels mainly located in the Bi bilayer. Due to the charge transfer from
the Bi bilayer towards Bi,Te;, the original surface Dirac cone has shifted downwards (its binding
energy has increased). This original Dirac cone is indicated by the full blue arrow. A new
‘second’ cone has appeared around the Fermi level, indicated by the dotted blue arrow. It
originates from the lowest conduction band state of pristine Bi,Te;. This mechanism is similar to

what was observed for the adsorption of a Bi bilayer on top of Bi,Se; in Ref. [11].
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