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ABSTRACT Topological insulators (TIs) are renowned for their exotic topological surface states 

(TSS) that reside in the top atomic layers and hence detailed knowledge of the surface top atomic 

layers is of utmost importance. Here we present the remarkable morphology changes of Bi2Te3 

surfaces, which are freshly cleaved in air, upon subsequent systematic annealing in ultra-high vacuum 

and the resulting effects on the local and area-averaging electronic properties of the surface states, 

which are investigated by combining scanning tunneling microscopy (STM), scanning tunneling 

spectroscopy (STS), and Auger electron spectroscopy (AES) experiments with density functional 

theory (DFT) calculations. Our findings demonstrate that the annealing induces the formation of a Bi 

bilayer atop the Bi2Te3 surface. The adlayer results in n-type doping and the atomic defects act as 

scattering centers of the TSS electrons. We investigated the annealing-induced Bi bilayer surface on 

Bi2Te3 also via voltage-dependent quasi-particle-interference (QPI) mapping of the surface local 
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density of states and via comparison with the calculated constant-energy contours and QPI patterns. We 

observed closed hexagonal patterns in the Fourier transform of real-space QPI maps with secondary 

outer spikes. DFT calculations attribute these complex QPI patterns to the appearance of a “second” 

cone due to the surface charge transfer between the Bi bilayer and the Bi2Te3. Annealing in ultra-high 

vacuum offers a facile route for tuning of the topological properties and may yield similar results for 

other topological materials. 

KEYWORDS Topological insulators, Bi2Te3, Bi bilayer, scanning tunneling microscopy, quasi-

particle interference, density functional theory. 

 

Topological insulators (TIs) have much potential for use in practical applications because of their 

unique electronic properties, which are mainly related to two-dimensional (2D) topological surface 

states (TSS) exhibiting Dirac dispersion. Bi2Te3, Bi2Se3, and Sb2Te3 are TIs that have drawn lots of 

attention due to a single topological surface-state Dirac cone.1 They have a layered structure in units of 

quintuple layers (QLs) along the crystal c-axis, where one QL consists of B-A-B-A-B stacking for the 

TIs A2B3. The coupling between the adjacent QLs is dominated by van der Waals interactions, similar 

to graphite. The van der Waals gap between the QLs yields a preferential cleavage between the 

adjacent Te or Se layers,2 yet cleavage within a QL rather than between two successive QLs may also 

occur.3-5 Moreover, TI surfaces appear to be affected by spontaneous reorganization after the cleavage. 

Since the TSS of TIs resides within the topmost atomic layers of the TI surface, its precise 

characteristics depends on surface structure and composition. Hence detailed knowledge of the surface 

top atomic layers is of utmost importance. Recently, Bi2Te3 samples where the surface was obtained 

from ion sputtering and subsequent annealing revealed coexistence of QL-termination and Bi-bilayer 

termination.5 Similarly, it was reported that Bi2Se3 samples cleaved in ultra-high vacuum (UHV) 
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spontaneously form a Bi bilayer on the topmost QL at room temperature.6 Furthermore, Bi 

accumulation may occur at the Bi2Se3 surface via diffusion of Bi7 that can be intercalated in between 

the QLs.8,9 In contrast, Hewitt et al.10 reported that Bi2Se3 crystals cleaved in UHV predominantly 

show the Se surface termination, while those stored in air for a long time have a high probability for Bi 

termination. Despite these previous investigations, it is not yet clear how the morphology and 

composition of the TI surface is modified upon exposure to elevated temperatures without applying ion 

bombardment as in Ref. [5], which can be very invasive for the surface. Moreover, there is a lack of 

studies of local electronic properties of a Bi-bilayer terminated Bi2Te3 surface, especially quasi-particle 

interference (QPI) near surface scatterers. The reported local properties of a Bi bilayer surface on 

Bi2Se3 
11 cannot be directly applied to the Bi2Te3 case because different surface-state and bulk band 

structures of Bi2Te3 and Bi2Se3 influence the Bi bilayer surface differently. 

Here we present the remarkable morphology changes of freshly cleaved Bi2Te3 surfaces upon 

systematic annealing in UHV and the resulting effects on the local and area-averaging electronic 

properties of the surface states, by applying scanning tunneling microscopy/spectroscopy (STM/STS) 

and Auger electron spectroscopy (AES) combined with density functional theory (DFT) calculations. 

Our findings demonstrate that without an intentional Bi bilayer adsorption or invasive ion 

bombardment, the annealing itself induces the formation of a Bi bilayer atop the Bi2Te3 surface. We 

investigated the annealing-induced Bi bilayer surface on Bi2Te3 via QPI mapping of the surface local 

density of states (LDOS) and via comparison with the calculated QPI patterns. The Fourier transform 

(FT) of our observed real-space QPI mapping exhibits a completely closed hexagonal shape with layers 

of secondary outer peaks below 150 mV, which is distinct from QPI patterns for a Te-terminated 

Bi2Te3 surface in Refs. [12-14]. Our experimental data are supported by our calculated QPI patterns for 

the Bi-bilayer terminated Bi2Te3 based on DFT.  
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nm, 0.3 nm, and 0.1 nm, respectively. Insets present 3 x 3 nm2 atomically resolved close-up view 

of the corresponding surface. 

Next, annealing in UHV conditions is applied to desorb surface contaminants. After annealing to 200 

°C for about 2 hours (Fig. 1d), surface quality has improved considerably and locally atomically clean 

regions of about 20 x 20 nm2 and larger can be retrieved, implying that surface restructuring has 

occurred. Remarkably, after annealing to 420 °C for about 24 hours (Fig. 1e), the surface shows 

atomically flat terraces that typically exhibit a minute amount of atomic-sized protrusions, referred to 

as “defects” hereafter, that have a random distribution. Height of these defect features is 0.05 ± 0.02 

nm. Locally, regions without defects also exist. Measured in-plane atomic distances are 0.43 ± 0.01 

nm, which agrees with reported values for the pristine Te-terminated (111) surface of Bi2Te3 in Refs. 

[12,15]. Defects are located exclusively at positions of the atomic lattice. Since a clean atomically flat 

surface was obtained after annealing to 200 °C, the observed defects must stem from the substrate and 

hence be either Bi or Te. Our annealing experiments indicate that the defect-type features start to 

appear after annealing to a temperature of 375 ± 10 °C. 

More strikingly, after the annealing at 420 °C we find that the step heights are typically well below that 

of a full QL after the annealing, as illustrated in Figs. 2a and 2b. The higher-lying region on the left 

side of the step edge in Fig. 2a is defect-free and can be assigned to a full QL (QL #1) of the pristine 

Bi2Te3 that is stacked on top of another full QL (QL #2). As indicated above, in the experiments prior 

to annealing it is found that the height of a full QL with respect to the full QL below is 0.95 nm. 

Therefore in Fig. 2b, the height profile is given an offset so that the full QL #1 on the left hand side has 

a height level of 0.95 nm, i.e., the height of a full QL (QL #1) stacked on top of another full QL (QL 

#2). The height of 0 nm hence corresponds to the top of QL #2. The lower-lying region on the right 

side of the step edge in Fig. 2a reveals a high density of defects. In the following we attribute the 

defect-rich regions to an annealing-induced adlayer that is (locally) covering the Bi2Te3 surface. The 
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step height measured in Fig. 2b is about 0.60 ± 0.05 nm as measured from the top of the full QL #1 on 

the left side, i.e., the thickness of the adlayer on QL #2 is 0.35 ± 0.10 nm. The increased occurrence of 

sub-QL step heights indicates considerable surface restructuring and/or partial evaporation of the top 

QL at the annealing temperatures. More STM topographies of two other Bi2Te3 samples annealed at 

different temperatures also show similar features (Figs. SM-3 and SM-4). Te has a lower vapor 

pressure than Bi16 and hence evaporation of Te is most likely to occur.  

A step height histogram based on height profiles acquired on the entire sample is presented in Fig. 2e. 

The histogram in Fig. 2e reveals maxima around 0.37 ± 0.05 nm, 0.60 ± 0.05 nm and 0.95 ± 0.05 nm. 

For regions with a neighboring pristine surface, these step height values are consistent with 

interpretation in terms of an annealing induced Bi bilayer atop the pristine Bi2Te3 surface, as indicated 

in Fig. 2b and as will be discussed in full detail below. We note here that there also exist regions of the 

sample that do not have defect-free terraces (i.e., defects exist on every terrace). For these regions no 

well-defined reference surface is available that can be used for interpretation of the sub-QL step height 

and hence the step height values cannot be unambiguously linked to a specific adlayer thickness or 

surface termination (see Fig. SM-5). In the following, we focus on regions that have a neighboring 

pristine Bi2Te3 terrace that allows us to identify these defect-rich regions as an adlayer with thickness 

of  0.35 ± 0.10 nm on top of a complete Bi2Te3 QL, similar to the region discussed in Fig. 2a. 

In three series of experiments the same Bi2Te3 sample has been exposed to ambient, after which it was 

exfoliated in ambient and annealed under UHV conditions. As indicated above, after annealing to about 

420 °C step heights well below a full QL are frequently observed. After exfoliating the same sample 

back under ambient conditions, again mainly step heights of a full QL are observed. This indicates that 

the applied annealing modifies the (top QLs of the) sample surface only and leaves the lower-lying QLs 

in the bulk of the sample unaltered. 
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transported in a protective nitrogen environment to the AES setup. Figures 3a and 3b show the 

differentiated AES spectra of the two sample surfaces in the Bi and Te peak regions, respectively. The 

surface of the annealed sample exhibits a significantly higher Bi signal and a lower Te signal compared 

to that of the non-annealed sample, which implies a higher amount of Bi for the annealed sample. As 

the peak-to-peak height in the differentiated spectrum is directly proportional to the amount of that 

element present, this quantity can be used to compare the amount of that element at the surface of 

different samples. From Fig. 3, we infer a Te:Bi ratio of about unity for the non-annealed sample. This 

ratio remains the same after storage of the sample in UHV for one week (data not shown). In contrast, 

the annealed sample shows a Te:Bi ratio of about 0.5, i.e., more Bi is present at the sample surface after 

annealing (our quantitative estimate of the ratios includes the uncertainties of about 20%17). We note 

that we do not know the precise AES probing depth for our samples (typically of the order of 1 nm, 

depending - among other things - on the surface roughness43). Nevertheless, these findings suggest that 

the applied annealing procedure gives rise to a higher Bi concentration close to the top surface, such as 

the formation of a Bi bilayer or a Bi2-Te structure atop the Bi2Te3 surface. Below we will exclude the 

Bi2-Te structure as a possibility. Bi(111) has an in-plane lattice constant which is similar to that of 

Bi2Te3, and so Bi(111) bilayers can adopt the same lattice constant as that of Bi2Te3, as illustrated in 

the inset of Fig.1e. Our observation is consistent with the recent report on the coexistence of small 

Bi(111) bilayer islands on top of Bi2Te3 after sputtering and annealing at 300 °C of the sample in 

UHV.5  
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bilayer region, similar to the vacuum level related resonance. Similar observations are made at lower 

voltages near the Fermi level (Fig. 2c), where the local minimum in the (normalized) dI/dV spectra is 

shifted downward at the bilayer covered terrace. Corresponding non-normalized dI/dV spectra of the 

Bi2Te3 surface are presented in Fig. SM-1 and they are consistent with previously reported spectra in 

Ref. [20]. The observed downward shift of all electronic features can be explained by an n-type doping 

effect of the bilayer due to charge transfer from the Bi bilayer to the Bi2Te3, which gives rise to a lower 

work function and to a lowering of the surface electronic states of Bi2Te3 (i.e., an increased binding 

energy).8,21,22,23 Chen et al. reported a reduction of the work function by about 0.4 eV upon growing Bi 

bilayer islands with uniform height on Bi2Te3 using molecular beam epitaxy,24 which is in good 

agreement with our observations.  

To further confirm our interpretation of the surface adlayer as a Bi bilayer, we performed band 

structure calculations for different surface adlayer configurations and we determined the work 

functions of these configurations. The results are listed in the Table 1 below, together with their height 

with respect to the supporting Bi2Te3 substrate. The work function of the bare Bi2Te3 is in line with 

previous reports,23 yet it should be kept in mind that the work function is typically underestimated in 

DFT-based calculations. From the considered configurations, Te+Bi+Te, Te+Bi2, Bi2+Te, and 

Te+Bi+Te+Bi2 do not lead to a significant lowering of the work function compared to the bare Bi2Te3. 

Moreover, their height (thickness) is significantly higher than the adlayer height (thickness) observed in 

the experiments (Fig. 2b) and hence these configurations are ruled out as a possible adlayer. Based on 

their height and calculated work function, both a Bi bilayer and a Te+Bi layer remain a possibility. 

Considering Te desorption and/or diffusion of intercalated Bi towards the top surface during the 

annealing experiments, a Bi bilayer seems more favorable, and the corresponding downward shift of 

the calculated work function matches the experimental observations (Fig. 2d).  
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elastic scattering, an atomic defect scatters the incident wave with a wave vector ki into kf = ki + q, with 

ki and kf being on the same constant-energy contour (CEC), of which an example is shown in Fig. 6d. 

The quantum interference between the initial and final states results in a standing wave pattern whose 

spatial period is given by 2π/q. Our experimental FT-QPI patterns show much more features than the 

FT-QPI patterns reported for pristine Bi2Te3,
12,13,20,27 especially at voltages between -50 mV and +125 

mV in Fig. 5. Typically, for scattering on pristine Bi2Te3 surfaces (except at very high voltages), the 

observed FT-QPI patterns show features only in the ߁ത-ܯഥ  direction, e.g., compare our data with Fig. 2 

in Refs. [12, 20]. In the indicated voltage range however, we observe closed hexagonal patterns in the 

FT of real-space QPI including scattering peaks along the ߁ത-ܭഥ direction and secondary outer spikes. 

Some of these extra features along the ߁ത-ܭഥ direction are much more pronounced than those reported 

for pristine Bi2Te3 at much higher voltages (several 100 mV higher), e.g., compare our data with Fig. 2f 

in Ref. [20]. The outer spikes have not been observed for pristine Bi2Te3. The scatterings via q1 

(indicated in the CEC in Fig. 6d) along the ߁ത-ܭഥ direction are forbidden due to time-reversal symmetry. 

Therefore, our observed features along the ߁ത-ܭഥ direction in Figs. 5d-h require new scattering channels 

that will be discussed below based on DFT calculations. As the voltage increases, our QPI mapping at 

200-300 mV shows interference patterns only along the ߁ത-ܯഥ  direction (referred to as open hexagonal 

patterns in order to differentiate from the features at lower voltages) without apparent secondary outer 

spikes. 
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center of the reciprocal lattice of the hexagonal lattice. The length of the 2D reciprocal lattice vectors is 

inferred as π·5.4 nm-1. Based on the FT-QPI images in Figs. 5d-k and SM-7, we determined the energy 

dispersion of the surface states. Values of the wave vector are determined as half of the length of the 

bars along the ߁ത-ܯഥ  direction, as indicated in Figs. 5e and 5i. Since STM measurements map the square 

of the electron (standing) wave function,28 the value obtained from the FT-QPI images is in fact twice 

the quasiparticle wave vector q. Note that we treated our FT-QPI images with a minor smoothing filter 

only, without symmetrizing operations.29 The results are presented in Fig. 5l. The electronic features in 

the FT-QPI images clearly exhibit a linear dependence on the tunneling voltage. Its slope can be 

obtained by fitting the data points to a linear energy dispersion E(k) = ED + ħvFk.12,30 We find the Dirac 

point energy ED = -380 ± 20 meV and the Fermi velocity vF = (6.3 ± 0.3) × 105 m/s. Note that the 

energy dispersion shows only minor dependence on the density of atomic defects (Fig. SM-9), similar 

to the above discussed vacuum level related resonance (Fig. SM-8). 

To further investigate whether our experimental QPI features are compatible with a Bi bilayer covered 

Bi2Te3 system, we performed DFT-based calculations of the QPI patterns. Also, we identified the 

scattering channels giving rise to the aforementioned unique interference patterns at low voltages, when 

compared to the FT of QPI patterns for pristine Bi2Te3. The band structure of pristine Bi2Te3 and the Bi 

bilayer covered Bi2Te3 system is presented in Fig. 6a and Fig. 6b, respectively. The cone corresponding 

to the TSS state near the top of the valence band is indicated in red for Bi2Te3 and in blue for the Bi 

bilayer covered Bi2Te3 system. The Fermi level is chosen as the zero of energy in each case. One can 

clearly see that the Bi bilayer has resulted in a downward band bending, which is responsible for the 

shift in vacuum energy discussed above. This band bending shifts the TSS to higher binding energies, 

but a new (“second”) cone-like band structure at the ߁ത point close to the top of valence band can be 

observed.  This new Dirac cone was also mentioned in Refs. [31-33]. We identify that the new Dirac 

cone originates from the lowest conduction band state of the pristine system. We refer to Fig. SM-10 
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band structure is marked in blue. (c) and (d) represent the CEC and the QPI pattern of the Bi 

bilayer covered Bi2Te3 surface, respectively, obtained at 120 meV above the Fermi level (i.e., 

135 meV above the blue Dirac point in (b)). (e) and (f) represent the CEC and the QPI pattern of 

the bare Bi2Te3 surface, respectively, obtained at 20 meV above the Fermi level (i.e., 135 meV 

above the red Dirac point in (a)). (g) and (h) represent the CEC and the QPI pattern of the bare 

Bi2Te3 surface, respectively, obtained at 155 meV above the Fermi level (i.e., 270 meV above the 

red Dirac cone in (a)). (i) and (j) CEC and QPI pattern of the Bi bilayer covered Bi2Te3 surface, 

obtained at 150 meV above the Fermi level. The red arrows indicate the schematic spin structure. 

(k) QPI pattern of the bare Bi2Te3 surface, obtained at 185 meV above the Fermi level. 

As noted earlier, the fitted energy dispersion in Fig. 5l is based on the length of vector q2 = kf - ki that is 

oriented along the ߁ത-ܯഥ  direction (Figs. 5i and 6d), while the constituting ki and kf are oriented along 

the ߁ത-ܭഥ direction. Therefore, the energy dispersion in Fig. 5l should correspond to the energy branch in 

the ߁ത-ܭഥ direction of the Bi bilayer covered Bi2Te3 system, indicated by the arrow in the band structure 

of Fig. 6b. The calculated slope of the band at E = 120 meV leads to a Fermi velocity of about 4.3 105 

m/s. Note that this velocity is similar to the calculated Fermi velocity of the red Dirac cone of pure 

Bi2Te3. Extrapolating this (blue) band further down, it crosses the ߁ത point around Ee = -150 meV. Thus, 

the energy of 120 meV at which the QPI and CEC were calculated (Figs. 6c-d) corresponds to an 

energy of 270 meV above Ee. The energy at which the experimental QPI was obtained, -50 meV, is 

equivalent to 330 meV ± 20 meV above the fitted Dirac point ED, which is in reasonable agreement 

with the calculated result. 

Interestingly, this closed hexagonal shape of the calculated QPI already appears only 135 meV above 

the Dirac point of the blue cone, Eb = -15 meV. It is now instructive to see how the QPI and CEC 

would look for pure Bi2Te3 at 135 meV above the red Dirac point, Er = -115 meV. The QPI pattern and 

corresponding CEC are shown in Figs. 6e-f, respectively. It is clear that the QPI and CEC for the TSS 
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of the pristine Bi2Te3 evolve much more slowly with increasing energy than for the “second” cone of 

the Bi bilayer covered Bi2Te3 system. Finally, we show the QPI pattern and CEC for pure Bi2Te3 at 270 

meV above the Er value in Fig. 6g and in Fig. 6h, respectively. This corresponds to E = 155 meV from 

the Fermi level. Some features along the ߁ത-ܭഥ direction are found, but less pronounced. Furthermore, a 

truly closed hexagonal shape is never found for the pure Bi2Te3 system, while it clearly exists for the Bi 

bilayer covered Bi2Te3 system. As an example, Fig. 6j and Fig. 6k present the QPIs for the Bi bilayer 

covered Bi2Te3 system and Bi2Te3, respectively, at an extra 30 meV above the ones shown in Fig. 6c 

and Fig. 6g: for E = 120 meV + 30 meV = 150 meV for the Bi bilayer covered Bi2Te3 system, and for E 

= 155 meV + 30 meV = 185 meV for Bi2Te3. For the Bi bilayer covered Bi2Te3 system, the closed 

hexagonal structure is very pronounced, even a second outer shape can be identified, as in the 

experimental QPI patterns (Fig. 5e). This second outer shape is caused by scattering processes like q4, 

indicated in the CEC of the Bi bilayer covered Bi2Te3 at 150 meV in Fig. 6i . The red arrows indicate 

schematically the spin texture based on DFT calculations. The vector q4 is slightly off from the tips of 

the contour. Due to the extremely sharp contour shape, the tangential spin texture shows that scattering 

by the q4 vector is enhanced, while scattering by the q5 vector (from one tip to the opposite tip) is 

forbidden by time-reversal symmetry. It could be tempting to identify the calculated QPI for pure 

Bi2Te3 in Fig. 6j with the QPI measured at a tunneling voltage of +250 mV. However, the Fermi level 

of this calculated QPI at E = 185 meV is only 300 meV above the Er value, while the measured one is 

estimated to be 380 + 250 meV = 630 meV above the ED value. Furthermore, at a voltage of +250 mV, 

the length of the q2 vector is measured to be aroud 2.6 nm-1 (Fig. 5l), while in the calculated QPI it is 

still below 2.0 nm-1 (Fig. 6k). 

Based on the DFT calculations of the QPI patterns, we conclude that the experimental QPI patterns are 

consistent with a system in which a Bi bilayer is located on top of Bi2Te3 and that there is a better 

match between the calculations and the experiment for the Bi bilayer covered Bi2Te3 system than for a 
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pure Bi2Te3 system. All the observations based on the DFT calculations discussed above are a 

consequence of the different shape of the CEC and corresponding spin texture for Bi bilayer covered 

Bi2Te3 and pure Bi2Te3: The CEC of Bi bilayer covered Bi2Te3 is smoother along the ߁ത-ܭഥ	direction and 

at the same time stronger hexagonal warping exists along the ߁ത-ܯഥ	direction. We could not retrieve the 

QPI patterns observed in the experiments at 200-300 mV (Figs. 5g-i) because at such high energies it 

becomes very difficult to select the states from the band structure calculation that are probed in the 

STM measurement. 

 

Conclusions 

Relying on STM and AES experiments and on DFT-based calculations we demonstrated that the 

surface electronic band structure of Bi2Te3 crystals can be modified by an effective annealing 

procedure under UHV conditions. The annealing gives rise to restructuring of the Bi2Te3 surface, 

yielding a Bi(111) bilayer at the otherwise atomically flat terraces. The adlayer results in n-type doping 

and the atomic defects act as scattering centers of the TSS electrons, allowing to probe the modified 

TSS dispersion via QPI mapping. Our experimental FT-QPI patterns reveal considerably more features 

than FT-QPI patterns reported for pristine Bi2Te3: we observe closed hexagonal QPI patterns and 

secondary outer spikes. DFT calculations capture the experimental findings and can attribute the 

complex FT-QPI patterns to a modified constant-energy contour for the Bi bilayer covered surface. 

Due to charge transfer from the Bi bilayer towards the surface of Bi2Te3, a “second” cone was probed 

in the QPI mapping instead of the original TSS cone. The observed annealing-induced doping may be 

applicable to other topological materials and may offer a facile route for tuning of the topological 

properties. 
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Methods  

Sample preparation. Crystals of Bi2Te3 were prepared by melting high-purity Bi and Te powders (5N, 

all from Alfa Aesar) and annealing in sealed quartz ampoules, as described in Ref. [34].  The 

temperature was rapidly increased to 850°C, which was kept for two days, and the mixture was stirred 

continuously to avoid ingredients segregation. After that, the temperature was decreased to 500°C to 

allow the crystalline nucleation in 5 days. A 5 days annealing from 500°C to 420°C finalized the 

preparation before dropping down to room temperature. The temperature-dependent resistivity of the 

pristine Bi2Te3 sample that is discussed in the main text is presented in the Supplemental Material (SM) 

in Fig. SM-2 and reveals a metallic resistance versus temperature dependence, both prior to and after 

UHV annealing treatment. All measurements presented in the main text are obtained on the same 

sample. The SM also includes data obtained on two other samples (Figs. SM-3 and SM-4).  

STM experiments. Annealing experiments were conducted in a UHV system (base pressure in the low 

10-9 mbar range) that is connected to a low-temperature STM (Omicron Nanotechnology) operated at 

4.5 K (base pressure in the 10-11 mbar range). (dI/dV)(V) spectra and dI/dV maps (referred to as LDOS 

maps) were acquired by lock-in detection with open and closed feedback loop, respectively (unless 

mentioned otherwise), at 800Hz (amplitude is typically about 20 mV). STM data in this work were 

obtained with mechanically cut PtIr (10% Ir) STM tips, and with polycrystalline W tips that were 

electrochemically etched and cleaned in situ by thermal treatment. All bias voltages mentioned are with 

respect to the sample, and the STM tip was virtually grounded. The STM images were analyzed using 

the Nanotec WSxM software.35 The annealing experiments presented in Fig. SM-3 are obtained in 

another UHV STM (Unisoku – Nanoscore gmbh) that is operated at room temperature (base pressure in 

the 10-11 mbar range). 
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AES experiments. The AES equipment (Thermofisher, Alpha 110 Channeltron Assembly) was used 

with an electron voltage of 8 kV and a filament current of 2 A. The pressure in the chamber was 4 × 10-

9 mbar. The step size for data collection was 1 eV and the spot size is estimated to be 1 mm2. Avantage 

v5.951 (Thermo)  software was applied to obtain a quantitative analysis of the composition of the 

surface as described in Ref. [36]. 

Calculations. DFT calculations on Bi2Te3 were carried out by using DFT code, VASP,37,38 within the 

generalized gradient approximation (GGA)39 for an exchange-correlation functional and with projector-

augmented wave (PAW) pseudopotentials.40 Spin-orbit coupling was considered self-consistently 

within the DFT calculations. For the QL-terminated Bi2Te3 slab, we considered 5 QLs, while for the 

adlayer covered Bi2Te3 slabs, we considered adlayers on 5 QLs. Regarding the DFT calculations to 

obtain the work functions and DOS, we used the experimental lattice constants.15 For the sub-QL 

terminated slabs (5 QLs with adlayers), only the vertical distances near the interface are relaxed with an 

energy cutoff of 250 eV and k-mesh of 11x11x1 points. For the computation of the QPI patterns, we 

relaxed the whole structure including van der Waals interaction by applying the optB86b-vdW density 

functional.41 In this case, we used an energy cutoff of 300 eV and a 16x16x1 k-mesh grid. For all the 

DFT calculations, a thick vacuum layer of 20-30 Å was included in the supercell. The QPI patterns 

were obtained based on the DFT band structure and joint DOS approximation,42 as explained in Ref. 

[11]. The electron spin was approximated from the calculated expectation values projected onto 

individual atoms implemented in VASP. 
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surface, such as that in (a), these step height values in (c) cannot be unambiguously linked to a 

specific adlayer thickness or surface termination. For example, based on the values in (b), a step 

height of around 0.37 nm may be assigned to the height of a Te(3)-Bi(2) layer on Te(2), or to the 

height of a Te(2)-Bi(1) layer on Te(1). Note that the occurrence of intralayer QL terminations 

may have increased upon Te desorption as recently shown for Bi2Te3 films that were grown with 

varying Te concentration.7 In addition, the high density of sub-QL steps may point to the 

existence of multiple Bi bilayers, which are known to have a height of about 0.39 nm.8 
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defined reference surface, which may at least partially explain the scattered data in Fig. SM-8. In the 

main text, we focus on regions that have a neighboring pristine Bi2Te3 terrace that allows us to identify 

the defect regions as Bi bilayer on top of a complete Bi2Te3 QL, similar to the region discussed in Fig. 

2. The density of defects is always determined from an area of 40 x 40 nm2. The experimental x-error 

value is taken as “density2 * 0.0025” to reflect the increasing uncertainty of the density determination 

with increasing density of defects. At high densities, defects that are in very close proximity cannot be 

discerned and are counted as one defect in our analysis using the WSxM software.9 The (systematic) 

experimental y-error value reflects the observed variation of the vacuum level when determined from 

different STS spectra taken within the same region. Each color in Fig. SM-8 represents a different “data 

set”. Each data set (when consisting of two or more data points) reveals a lowering of the vacuum level 

with increasing density of defects. Each data set is obtained with the same STM tip, i.e., no so-called 

tip change occurred in between measurements of one data set. A change of the tip apex leads to a 

different electric field between tip and sample (even when using the same setpoint values), which may 

additionally explain the scatter between the different data sets. The data point at zero density of defects 

(the pristine surface) is verified in three independent experiments.  
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q are determined as indicated in Fig. SM-7 (see the maps at +50 mV and + 200 mV) following the 

sixfold symmetric scattering vector in the  direction. The results are presented in Fig. SM-9. Two 

data points of a pristine region could be obtained at a QL step and are added as a reference. We find ED 

= -380 ± 30 meV and vF = 7.1 +/- 0.3 105 m/s for the 100 defects region, and ED = -380 ± 20 meV and 

vF = 6.3 ± 0.3 105 m/s for the 300 defects region. These Dirac point values are well below the Fermi 

level and are in line with the downward shifts of the electronic resonances. Fermi velocities are in 

reasonable agreement with previously reported values.1,10 As mentioned above, a different value of the 

Dirac point is expected for regions with a different density of defects. From our STS results (see Fig. 

SM-8), these differences are expected to be rather small and are within the experimental error of our 

Dirac point determination relying on the linear dispersion relation. Nevertheless, it can be observed that 

the energy dispersion curve of the region with 300 defects per 1000 nm2 is shifted to lower energies (by 

about 100 meV) with respect to that for a region with 100 defects per 1000 nm2, consistent with our 

discussions above. 
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