toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shaw, P.; Kumar, N.; Privat-Maldonado, A.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Cold Atmospheric Plasma Increases Temozolomide Sensitivity of Three-Dimensional Glioblastoma Spheroids via Oxidative Stress-Mediated DNA Damage Type A1 Journal article
  Year 2021 Publication Cancers Abbreviated Journal Cancers  
  Volume 13 Issue 8 Pages 1780  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Glioblastoma multiforme (GBM) is the most frequent and aggressive primary malignant brain tumor in adults. Current standard radiotherapy and adjuvant chemotherapy with the alkylating agent temozolomide (TMZ) yield poor clinical outcome. This is due to the stem-like properties of tumor cells and genetic abnormalities in GBM, which contribute to resistance to TMZ and progression. In this study, we used cold atmospheric plasma (CAP) to enhance the sensitivity to TMZ through inhibition of antioxidant signaling (linked to TMZ resistance). We demonstrate that CAP indeed enhances the cytotoxicity of TMZ by targeting the antioxidant specific glutathione (GSH)/glutathione peroxidase 4 (GPX4) signaling. We optimized the threshold concentration of TMZ on five different GBM cell lines (U251, LN18, LN229, U87-MG and T98G). We combined TMZ with CAP and tested it on both TMZ-sensitive (U251, LN18 and LN229) and TMZ-resistant (U87-MG and T98G) cell lines using two-dimensional cell cultures. Subsequently, we used a three-dimensional spheroid model for the U251 (TMZ-sensitive) and U87-MG and T98G (TMZ-resistant) cells. The sensitivity of TMZ was enhanced, i.e., higher cytotoxicity and spheroid shrinkage was obtained when TMZ and CAP were administered together. We attribute the anticancer properties to the release of intracellular reactive oxygen species, through inhibiting the GSH/GPX4 antioxidant machinery, which can lead to DNA damage. Overall, our findings suggest that the combination of CAP with TMZ is a promising combination therapy to enhance the efficacy of TMZ towards the treatment of GBM spheroids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000644001200001 Publication Date 2021-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited Open Access OpenAccess  
  Notes We thank the Department of Biomedical Sciences, and the Laboratory of Protein Science, Proteomics & Epigenetic Signalling, at the University of Antwerp, for providing the facilities for the cell experiments. We are also grateful to Peter Ponsaerts from the Laboratory of Experimental Haematology, at the University of Antwerp, for providing the fluorescence microscope. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:177779 Serial 6746  
Permanent link to this record
 

 
Author Logie, E.; Chirumamilla, C.S.; Perez-Novo, C.; Shaw, P.; Declerck, K.; Palagani, A.; Rangarajan, S.; Cuypers, B.; De Neuter, N.; Mobashar Hussain Urf Turabe, F.; Kumar Verma, N.; Bogaerts, A.; Laukens, K.; Offner, F.; Van Vlierberghe, P.; Van Ostade, X.; Berghe, W.V. url  doi
openurl 
  Title Covalent Cysteine Targeting of Bruton’s Tyrosine Kinase (BTK) Family by Withaferin-A Reduces Survival of Glucocorticoid-Resistant Multiple Myeloma MM1 Cells Type A1 Journal article
  Year 2021 Publication Cancers Abbreviated Journal Cancers  
  Volume 13 Issue 7 Pages 1618  
  Keywords A1 Journal article; ADReM Data Lab (ADReM); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Multiple myeloma (MM) is a hematological malignancy characterized by plasma cells’ uncontrolled growth. The major barrier in treating MM is the occurrence of primary and acquired therapy resistance to anticancer drugs. Often, this therapy resistance is associated with constitutive hyperactivation of tyrosine kinase signaling. Novel covalent kinase inhibitors, such as the clinically approved BTK inhibitor ibrutinib (IBR) and the preclinical phytochemical withaferin A (WA), have, therefore, gained pharmaceutical interest. Remarkably, WA is more effective than IBR in killing BTK-overexpressing glucocorticoid (GC)-resistant MM1R cells. To further characterize the kinase inhibitor profiles of WA and IBR in GC-resistant MM cells, we applied phosphopeptidome- and transcriptome-specific tyrosine kinome profiling. In contrast to IBR, WA was found to reverse BTK overexpression in GC-resistant MM1R cells. Furthermore, WA-induced cell death involves covalent cysteine targeting of Hinge-6 domain type tyrosine kinases of the kinase cysteinome classification, including inhibition of the hyperactivated BTK. Covalent interaction between WA and BTK could further be confirmed by biotin-based affinity purification and confocal microscopy. Similarly, molecular modeling suggests WA preferably targets conserved cysteines in the Hinge-6 region of the kinase cysteinome classification, favoring inhibition of multiple B-cell receptors (BCR) family kinases. Altogether, we show that WA’s promiscuous inhibition of multiple BTK family tyrosine kinases represents a highly effective strategy to overcome GC-therapy resistance in MM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000638328000001 Publication Date 2021-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited Open Access OpenAccess  
  Notes The authors thank Eva Lion, Head of Tumor Immunology Group of the Laboratory of Experimental Hematology (University of Antwerp), for kindly providing GC‐resistant U266 cells. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:177781 Serial 6751  
Permanent link to this record
 

 
Author Fatermans, J.; de Backer, A.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Atom column detection Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume Issue Pages 177-214  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract By combining statistical parameter estimation and model-order selection using a Bayesian framework, the maximum a posteriori (MAP) probability rule is proposed in this chapter as an objective and quantitative method to detect atom columns from high-resolution scanning transmission electron microscopy (HRSTEM) images. The validity and usefulness of this approach is demonstrated to both simulated and experimental annular dark-field (ADF) STEM images, but also to simultaneously acquired annular bright-field (ABF) and ADF STEM image data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor (up) Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177531 Serial 6775  
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Atom counting Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume Issue Pages 91-144  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In this chapter, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high-resolution annular dark-field (ADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. We show that this method can be applied to nanocrystals of arbitrary shape, size, and atom type. The validity of the atom-counting results is confirmed by means of detailed image simulations and it is shown that the high sensitivity of our method enables us to count atoms with single atom sensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor (up) Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177529 Serial 6776  
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Efficient fitting algorithm Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume Issue Pages 73-90  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT)  
  Abstract An efficient model-based estimation algorithm is introduced to quantify the atomic column positions and intensities from atomic-resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for overlap between neighboring columns, enabling the analysis of a large field of view. To provide end-users with this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license. In this chapter, this efficient algorithm is applied to three different nanostructures for which the analysis of a large field of view is required.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor (up) Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177528 Serial 6778  
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title General conclusions and future perspectives Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume Issue Pages 243-253  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract This chapter provides an overview of statistical and quantitative methodologies that have pushed (scanning) transmission electron microscopy ((S)TEM) toward accurate and precise measurements of unknown structure parameters for understanding the relation between the structure of a material and its properties. Hereby, statistical parameter estimation theory has extensively been used which enabled not only measuring atomic column positions, but also quantifying the number of atoms, and detecting atomic columns as accurately and precisely as possible from experimental images. As a general conclusion, it can be stated that advanced statistical techniques are ideal tools to perform quantitative electron microscopy at the atomic scale. In the future, statistical methods will continue to be developed and novel quantification procedures will open up new possibilities for studying material structures at the atomic scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor (up) Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177533 Serial 6781  
Permanent link to this record
 

 
Author Fatermans, J.; de Backer, A.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Image-quality evaluation and model selection with maximum a posteriori probability Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume Issue Pages 215-242  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The maximum a posteriori (MAP) probability rule for atom column detection can also be used as a tool to evaluate the relation between scanning transmission electron microscopy (STEM) image quality and atom detectability. In this chapter, a new image-quality measure is proposed that correlates well with atom detectability, namely the integrated contrast-to-noise ratio (ICNR). Furthermore, the working principle of the MAP probability rule is described in detail showing a close relation to the principles of model-selection methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor (up) Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177532 Serial 6782  
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Introduction Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume Issue Pages 1-28  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor (up) Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177525 Serial 6784  
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Optimal experiment design for nanoparticle atom counting from ADF STEM images Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume Issue Pages 145-175  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In this chapter, the principles of detection theory are used to quantify the probability of error for atom counting from high-resolution scanning transmission electron microscopy (HRSTEM) images. Binary and multiple hypothesis testing have been investigated in order to determine the limits to the precision with which the number of atoms in a projected atomic column can be estimated. The probability of error has been calculated when using STEM images, scattering cross-sections or peak intensities as a criterion to count atoms. Based on this analysis, we conclude that scattering cross-sections perform almost equally well as images and perform better than peak intensities. Furthermore, the optimal STEM detector design can be derived for atom counting using the expression of the probability of error. We show that for very thin objects the low-angle annular dark-field (LAADF) regime is optimal and that for thicker objects the optimal inner detector angle increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor (up) Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177530 Serial 6785  
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Statistical parameter estimation theory : principles and simulation studies Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume Issue Pages 29-72  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In this chapter, the principles of statistical parameter estimation theory for a quantitative analysis of atomic-resolution electron microscopy images are introduced. Within this framework, electron microscopy images are described by a parametric statistical model. Here, parametric models are introduced for different types of electron microscopy images: reconstructed exit waves, annular dark-field (ADF) scanning transmission electron microscopy (STEM) images, and simultaneously acquired ADF and annular bright-field (ABF) STEM images. Furthermore, the Cramér-Rao lower bound (CRLB) is introduced, i.e. a theoretical lower bound on the variance of any unbiased estimator. This CRLB is used to quantify the precision of the structure parameters of interest, such as the atomic column positions and the integrated atomic column intensities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor (up) Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177527 Serial 6788  
Permanent link to this record
 

 
Author Arslan Irmak, E.; Liu, P.; Bals, S.; Van Aert, S. pdf  url
doi  openurl
  Title 3D Atomic Structure of Supported Metallic Nanoparticles Estimated from 2D ADF STEM Images: A Combination of Atom – Counting and a Local Minima Search Algorithm Type A1 Journal article
  Year 2021 Publication Small methods Abbreviated Journal Small Methods  
  Volume Issue Pages 2101150  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Determining the three-dimensional (3D) atomic structure of nanoparticles (NPs) is critical to understand their structure-dependent properties. It is hereby important to perform such analyses under conditions relevant for the envisioned application. Here, we investigate the 3D structure of supported Au NPs at high temperature, which is of importance to understand their behavior during catalytic reactions. To overcome limitations related to conventional high-resolution electron tomography at high temperature, 3D characterization of NPs with atomic resolution has been performed by applying atom-counting using atomic resolution annular darkfield scanning transmission electron microscopy (ADF STEM) images followed by structural relaxation. However, at high temperatures, thermal displacements, which affect the ADF STEM intensities, should be taken into account. Moreover, it is very likely that the structure of a NP investigated at elevated temperature deviates from a ground state configuration, which is difficult to determine using purely computational energy minimization approaches. In this paper, we therefore propose an optimized approach using an iterative local minima search algorithm followed by molecular dynamics (MD) structural relaxation of candidate structures associated with each local minimum. In this manner, it becomes possible to investigate the 3D atomic structure of supported NPs, which may deviate from their ground state configuration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000716511600001 Publication Date 2021-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-9608 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited 12 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 815128 REALNANO to SB, Grant 770887 PICOMETRICS to SVA, Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0267.18N, G.0502.18N, G.0346.21N).; sygmaSB; esteem3jra; esteem3reported Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:183289 Serial 6820  
Permanent link to this record
 

 
Author Herzog, M.J.; Gauquelin, N.; Esken, D.; Verbeeck, J.; Janek, J. url  doi
openurl 
  Title Increased Performance Improvement of Lithium-Ion Batteries by Dry Powder Coating of High-Nickel NMC with Nanostructured Fumed Ternary Lithium Metal Oxides Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.  
  Volume 4 Issue 9 Pages 8832-8848  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Dry powder coating is an effective approach to protect the surfaces of layered cathode active materials (CAMs) in lithium-ion batteries. Previous investigations indicate an incorporation of lithium ions in fumed Al2O3, ZrO2, and TiO2 coatings on LiNi0.7Mn0.15Co0.15O2 during cycling, improving the cycling performance. Here, this coating approach is transferred for the first time to fumed ternary LiAlO2, Li4Zr3O8, and Li4Ti5O12 and directly compared with their lithium-free equivalents. All materials could be processed equally and their nanostructured small aggregates accumulate on the CAM surfaces to quite homogeneous coating layers with a certain porosity. The LiNixMnyCozO2 (NMC) coated with lithium-containing materials shows an enhanced improvement in overall capacity, capacity retention, rate performance, and polarization behavior during cycling, compared to their lithium-free analogues. The highest rate performance was achieved with the fumed ZrO2 coating, while the best long-term cycling stability with the highest absolute capacity was obtained for the fumed LiAlO2-coated NMC. The optimal coating agent for NMC to achieve a balanced system is fumed Li4Ti5O12, providing a good compromise between high rate capability and good capacity retention. The coating agents prevent CAM particle cracking and degradation in the order LiAlO2 ≈ Al2O3 > Li4Ti5O12 > Li4Zr3O8 > ZrO2 > TiO2. A schematic model for the protection and electrochemical performance enhancement of high-nickel NMC with fumed metal oxide coatings is sketched. It becomes apparent that physical and chemical characteristics of the coating significantly influence the performance of NMC. A high degree of coating-layer porosity is favorable for the rate capability, while a high coverage of the surface, especially in vulnerable grain boundaries, enhances the long-term cycling stability and improves the cracking behavior of NMCs. While zirconium-containing coatings possess the best chemical properties for high rate performances, aluminum-containing coatings feature a superior chemical nature to protect high-nickel NMCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000703338600018 Publication Date 2021-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited 15 Open Access OpenAccess  
  Notes For his support in scanning electron microscopy analysis, the authors thank Erik Peldszus. N. G. and J. V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and from the Flemish Research Fund (FWO) project G0F1320N. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:183949 Serial 6823  
Permanent link to this record
 

 
Author Van Loenhout, J.; Freire Boullosa, L.; Quatannens, D.; De Waele, J.; Merlin, C.; Lambrechts, H.; Lau, H.W.; Hermans, C.; Lin, A.; Lardon, F.; Peeters, M.; Bogaerts, A.; Smits, E.; Deben, C. url  doi
openurl 
  Title Auranofin and Cold Atmospheric Plasma Synergize to Trigger Distinct Cell Death Mechanisms and Immunogenic Responses in Glioblastoma Type A1 Journal Article;oxidative stress
  Year 2021 Publication Cells Abbreviated Journal Cells  
  Volume 10 Issue 11 Pages 2936  
  Keywords A1 Journal Article;oxidative stress; auranofin; cold atmospheric plasma; glioblastoma; cancer cell death; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Targeting the redox balance of malignant cells via the delivery of high oxidative stress unlocks a potential therapeutic strategy against glioblastoma (GBM). We investigated a novel reactive oxygen species (ROS)-inducing combination treatment strategy, by increasing exogenous ROS via cold atmospheric plasma and inhibiting the endogenous protective antioxidant system via auranofin (AF), a thioredoxin reductase 1 (TrxR) inhibitor. The sequential combination treatment of AF and cold atmospheric plasma-treated PBS (pPBS), or AF and direct plasma application, resulted in a synergistic response in 2D and 3D GBM cell cultures, respectively. Differences in the baseline protein levels related to the antioxidant systems explained the cell-line-dependent sensitivity towards the combination treatment. The highest decrease of TrxR activity and GSH levels was observed after combination treatment of AF and pPBS when compared to AF and pPBS monotherapies. This combination also led to the highest accumulation of intracellular ROS. We confirmed a ROS-mediated response to the combination of AF and pPBS, which was able to induce distinct cell death mechanisms. On the one hand, an increase in caspase-3/7 activity, with an increase in the proportion of annexin V positive cells, indicates the induction of apoptosis in the GBM cells. On the other hand, lipid peroxidation and inhibition of cell death through an iron chelator suggest the involvement of ferroptosis in the GBM cell lines. Both cell death mechanisms induced by the combination of AF and pPBS resulted in a significant increase in danger signals (ecto-calreticulin, ATP and HMGB1) and dendritic cell maturation, indicating a potential increase in immunogenicity, although the phagocytotic capacity of dendritic cells was inhibited by AF. In vivo, sequential combination treatment of AF and cold atmospheric plasma both reduced tumor growth kinetics and prolonged survival in GBM-bearing mice. Thus, our study provides a novel therapeutic strategy for GBM to enhance the efficacy of oxidative stress-inducing therapy through a combination of AF and cold atmospheric plasma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000807134000001 Publication Date 2021-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4409 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited Open Access OpenAccess  
  Notes Olivia Hendrickx Research Fund, 21OCL06 ; University of Antwerp, FFB160231 ; The authors would express their gratitude to Hans de Reu for technical assistance with flow cytometry. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:182915 Serial 6826  
Permanent link to this record
 

 
Author Kelly, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Nitrogen fixation in an electrode-free microwave plasma Type A1 Journal Article
  Year 2021 Publication Joule Abbreviated Journal Joule  
  Volume 5 Issue 11 Pages 3006-3030  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma-based gas conversion has great potential for enabling carbon-free fertilizer production powered by renewable electricity. Sustaining an energy-efficient plasma process without eroding the containment vessel is currently a significant challenge, limiting scaling to higher powers and throughputs. Isolation of the plasma from contact with any solid surfaces is an advantage, which both limits energy loss to the walls and prevents material erosion that could lead to disastrous soil contamination. This paper presents highly energy-efficient nitrogen fixation from air into NOx by microwave plasma, with the plasma filament isolated at the center of a quartz tube using a vortex gas flow. NOx production is found to scale very efficiently when increasing both gas flow rate and absorbed power. The lowest energy cost recorded of ~2 MJ/mol, for a total NOx production of ~3.8%, is the lowest reported up to now for atmospheric pressure plasmas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000723010700018 Publication Date 2021-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4351 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited Open Access OpenAccess  
  Notes We acknowledge financial support by the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 810182 – SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. We thank Dr. Waldo Bongers and Dr. Floran Peeters of the DIFFER institute for their help and advice in the initial phase of the project, as well as Mr. Luc van‘t Dack, Dr. Karen Leyssens and Ing. Karel Venken for their technical assistance. We thank Dr. Klaus Werner, executive director of the RF Energy Alliance, for his extensive expertise and helpful discourse regarding solid-state MW technology. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:184250 Serial 6835  
Permanent link to this record
 

 
Author Abakumov, A.M.; Li, C.; Boev, A.; Aksyonov, D.A.; Savina, A.A.; Abakumova, T.A.; Van Tendeloo, G.; Bals, S. pdf  doi
openurl 
  Title Grain boundaries as a diffusion-limiting factor in lithium-rich NMC cathodes for high-energy lithium-ion batteries Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal  
  Volume 4 Issue 7 Pages 6777-6786  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract High-energy lithium-rich layered transition metal oxides are capable of delivering record electrochemical capacity and energy density as positive electrodes for Li-ion batteries. Their electrochemical behavior is extremely complex due to sophisticated interplay between crystal structure, electronic structure, and defect structure. Here we unravel an extra level of this complexity by revealing that the most typical representative Li1.2Ni0.13Mn0.54Co0.13O2 material, prepared by a conventional coprecipitation technique with Na2CO3 as a precipitating agent, contains abundant coherent (001) grain boundaries with a Na-enriched P2-structured block due to segregation of the residual sodium traces. The trigonal prismatic oxygen coordination of Na triggers multiple nanoscale twinning, giving rise to incoherent (104) boundaries. The cationic layers at the (001) grain boundaries are filled with transition metal cations being Mn-depleted and Co-enriched; this makes them virtually not permeable for the Li+ cations, and therefore they negatively influence the Li diffusion in and out of the spherical agglomerates. These results demonstrate that besides the mechanisms intrinsic to the crystal and electronic structure of Li-rich cathodes, their rate capability might also be depreciated by peculiar microstructural aspects. Dedicated engineering of grain boundaries opens a way for improving inherently sluggish kinetics of these materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000678382900042 Publication Date 2021-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited 4 Open Access Not_Open_Access  
  Notes We thank Dr. M. V. Berekchiian (MSU) for assisting in ICPMS measurements. We acknowledge Russian Science Foundation (Grant 20-43-01012) and Research Foundation Flanders (FWO Vlaanderen, Project No. G0F1320N) for financial support. Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180556 Serial 6841  
Permanent link to this record
 

 
Author Biswas, A.N.; Winter, L.R.; Loenders, B.; Xie, Z.; Bogaerts, A.; Chen, J.G. pdf  url
doi  openurl
  Title Oxygenate Production from Plasma-Activated Reaction of CO2and Ethane Type A1 Journal article
  Year 2021 Publication Acs Energy Letters Abbreviated Journal Acs Energy Lett  
  Volume Issue Pages 236-241  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Upgrading ethane with CO2 as a soft oxidant represents a desirable means of obtaining oxygenated hydrocarbons. This reaction is not thermodynamically feasible under mild conditions and has not been previously achieved as a one-step process. Nonthermal plasma was implemented as an alternative means of supplying energy to overcome activation barriers, leading to the production of alcohols, aldehydes, and acids as well as C1−C5+ hydrocarbons under ambient pressure, with a maximum total oxygenate selectivity of 12%. A plasma chemical kinetic computational model was developed and found to be in good agreement with the experimental trends. Results from this study illustrate the potential to use plasma for the direct synthesis of value-added alcohols, acids, and aldehydes from ethane and CO2 under mild conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000732435700001 Publication Date 2021-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited Open Access OpenAccess  
  Notes Basic Energy Sciences, DE-SC0012704 ; Fonds Wetenschappelijk Onderzoek, S001619N ; H2020 European Research Council, 810182 ; National Science Foundation, DGE 16-44869 ; This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Catalysis Science Program (grant no. DE-SC0012704). L.R.W. acknowledges the U.S. National Science Foundation Graduate Research Fellowship Program grant number DGE 16-44869. B.L. and A.B. acknowledge support from the FWO-SBO project PLASMA240 Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:184812 Serial 6897  
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Green, R.J.; Verbeeck, J.; Rijnders, G.; Koster, G. url  doi
openurl 
  Title Asymmetric Interfacial Intermixing Associated Magnetic Coupling in LaMnO3/LaFeO3 Heterostructures Type A1 Journal article
  Year 2021 Publication Frontiers in physics Abbreviated Journal Front. Phys.  
  Volume 9 Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structural and magnetic properties of LaMnO<sub>3</sub>/LaFeO<sub>3</sub>(LMO/LFO) heterostructures are characterized using a combination of scanning transmission electron microscopy, electron energy-loss spectroscopy, bulk magnetometry, and resonant x-ray reflectivity. Unlike the relatively abrupt interface when LMO is deposited on top of LFO, the interface with reversed growth order shows significant cation intermixing of Mn<sup>3+</sup>and Fe<sup>3+</sup>, spreading ∼8 unit cells across the interface. The asymmetric interfacial chemical profiles result in distinct magnetic properties. The bilayer with abrupt interface shows a single magnetic hysteresis loop with strongly enhanced coercivity, as compared to the LMO plain film. However, the bilayer with intermixed interface shows a step-like hysteresis loop, associated with the separate switching of the “clean” and intermixed LMO sublayers. Our study illustrates the key role of interfacial chemical profile in determining the functional properties of oxide heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000745284500001 Publication Date 2021-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424X ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) Times cited 1 Open Access OpenAccess  
  Notes This work is supported by the international M-ERA.NET project SIOX (project 4288) and H2020 project ULPEC (project 732642). The X-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government. NG and JV acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. RG was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). Part of the research described in this paper was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), NSERC, the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:185176 Serial 6901  
Permanent link to this record
 

 
Author Zheng, Y.-R.; Vernieres, J.; Wang, Z.; Zhang, K.; Hochfilzer, D.; Krempl, K.; Liao, T.-W.; Presel, F.; Altantzis, T.; Fatermans, J.; Scott, S.B.; Secher, N.M.; Moon, C.; Liu, P.; Bals, S.; Van Aert, S.; Cao, A.; Anand, M.; Nørskov, J.K.; Kibsgaard, J.; Chorkendorff, I. url  doi
openurl 
  Title Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts Type A1 Journal article
  Year 2021 Publication Nature Energy Abbreviated Journal Nat Energy  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Development of low-cost and high-performance oxygen evolution reaction catalysts is key to implementing polymer electrolyte membrane water electrolyzers for hydrogen production. Iridium-based oxides are the state-of-the-art acidic oxygen evolution reactio catalysts but still suffer from inadequate activity and stability, and iridium's scarcity motivates the discovery of catalysts with lower iridium loadings. Here we report a mass-selected iridium-tantalum oxide catalyst prepared by a magnetron-based cluster source with considerably reduced noble-metal loadings beyond a commercial IrO2 catalyst. A sensitive electrochemistry/mass-spectrometry instrument coupled with isotope labelling was employed to investigate the oxygen production rate under dynamic operating conditions to account for the occurrence of side reactions and quantify the number of surface active sites. Iridium-tantalum oxide nanoparticles smaller than 2 nm exhibit a mass activity of 1.2 ± 0.5 kA “g” _“Ir” ^“-1” and a turnover frequency of 2.3 ± 0.9 s-1 at 320 mV overpotential, which are two and four times higher than those of mass-selected IrO2, respectively. Density functional theory calculations reveal that special iridium coordinations and the lowered aqueous decomposition free energy might be responsible for the enhanced performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000728458000001 Publication Date 2021-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2058-7546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited 95 Open Access OpenAccess  
  Notes Y.-R.Z. and Z.W acknowledge funding from the Toyota Research Institute. This project has received funding from VILLUM FONDEN (grant no. 9455) and the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grants no. 741860-CLUNATRA, no. 815128−REALNANO and no. 770887−PICOMETRICS). S.B. and S.V.A. acknowledge funding from the Research Foundation Flanders (FWO, G026718N and G050218N). T.A. acknowledges the University of Antwerp Research Fund (BOF). STEM measurements were supported by the European Union's Horizon 2020 Research Infrastructure-Integrating Activities for Advanced Communities under grant agreement No 823717 – ESTEEM3.; sygmaSB Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:184794 Serial 6903  
Permanent link to this record
 

 
Author Bollen, E.; Pagan, B.R.; Kuijpers, B.; Van Hoey, S.; Desmet, N.; Hendrix, R.; Dams, J.; Seuntjens, P. url  doi
openurl 
  Title A database system for querying of river networks : facilitating monitoring and prediction applications Type A1 Journal article
  Year 2021 Publication Water Science And Technology-Water Supply Abbreviated Journal Water Sci Tech-W Sup  
  Volume Issue Pages  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The increasing availability of real-time in situ measurements and remote sensing observations have the potential to contribute to the optimization of water resources management. Global challenges such as climate change, intensive agriculture and urbanization put a high pressure on our water resources. Due to recent innovations in measuring both water quantity and quality, river systems can now be monitored in real time at an unprecedented spatial and temporal scale. To interpret the sensor measurements and remote sensing observations additional data for example on: the location of the measurement, upstream and downstream catchment characteristics, horizontal ellipsis are required. In this paper, we present a data management system to support flow-path related functionality for decision making and prediction modelling. Adding meta data sets and facilitating (near) real-time processing of sensor data questions are key concepts for the systems. The potential of the database framework for hydrological applications is demonstrated using different applications for the river system of Flanders. In one, the database framework is used to simulate the daily discharge for each segment within a catchment using a simple data-driven approach. The presented system is useful for numerous applications including pollution tracking, alerting and inter-sensor validation in river systems, or related networks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000729755100001 Publication Date 2021-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1606-9749 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) 0.573 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 0.573  
  Call Number UA @ admin @ c:irua:184814 Serial 7387  
Permanent link to this record
 

 
Author Penders, A.; Konstantinovic, M.J.; Van Renterghem, W.; Bosch, R.W.; Schryvers, D. url  doi
openurl 
  Title TEM investigation of SCC crack tips in high Si stainless steel tapered specimens Type A1 Journal article
  Year 2021 Publication Corrosion Engineering Science And Technology Abbreviated Journal Corros Eng Sci Techn  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The stress corrosion cracking (SCC) mechanism is investigated in high Si duplex stainless steel in a simulated PWR environment based on TEM analysis of FIB-extracted SCC crack tips. The microstructural investigation in the near vicinity of SCC crack tips illustrates a strain-rate dependence in SCC mechanisms. Detailed analysis of the crack tip morphology, that includes crack tip oxidation and surrounding deformation field, indicates the existence of an interplay between corrosion- and deformation-driven failure as a function of the strain rate. Slow strain-rate crack tips exhibit a narrow cleavage failure which can be linked to the film-induced failure mechanism, while rounded shaped crack tips for faster strain rates could be related to the strain-induced failure. As a result, two nominal strain-rate-dependent failure regimes dominated either by corrosion or deformation-driven cracking mechanisms can be distinguished.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000695956400001 Publication Date 2021-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-422x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 0.879 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 0.879  
  Call Number UA @ admin @ c:irua:181533 Serial 6892  
Permanent link to this record
 

 
Author Gezahegn, T.W.; Van Passel, S.; Berhanu, T.; D'Haese, M.; Maertens, M. url  doi
openurl 
  Title Structural and institutional heterogeneity among agricultural cooperatives in Ethiopia : does it matter for farmers' welfare? Type A1 Journal article
  Year 2021 Publication Journal Of Agricultural And Resource Economics Abbreviated Journal J Agr Resour Econ  
  Volume 46 Issue 2 Pages 325-342  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract This paper analyzes how structural and institutional heterogeneity among irrigation cooperatives shapes the impact of membership on farmers' welfare in northern Ethiopia, using a novel heteroskedasticity-based identification strategy. More specifically, we estimate how cooperative characteristics influence members' income and poverty level. We find that stricter water use regulations have income-enhancing and poverty-reducing effects for farmers. We also find that farmers benefit more from membership in larger, younger, and bottom-up cooperatives initiated through grassroots collective action. Our findings have implications for irrigation development in Ethiopia and call for a better deliberation of organizational heterogeneity in cooperative impact studies  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000656121100010 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1068-5502; 2327-8285 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) 1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1  
  Call Number UA @ admin @ c:irua:179190 Serial 6945  
Permanent link to this record
 

 
Author Pietanza, L.D.; Guaitella, O.; Aquilanti, V.; Armenise, I.; Bogaerts, A.; Capitelli, M.; Colonna, G.; Guerra, V.; Engeln, R.; Kustova, E.; Lombardi, A.; Palazzetti, F.; Silva, T. pdf  url
doi  openurl
  Title Advances in non-equilibrium $$\hbox {CO}_2$$ plasma kinetics: a theoretical and experimental review Type A1 Journal Article
  Year 2021 Publication European Physical Journal D Abbreviated Journal Eur Phys J D  
  Volume 75 Issue 9 Pages 237  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Numerous applications have required the study of CO2 plasmas since the 1960s, from CO2 lasers to spacecraft heat shields. However, in recent years, intense research activities on the subject have restarted because of environmental problems associated with CO2 emissions. The present review provides a synthesis of the current state of knowledge on the physical chemistry of cold CO2 plasmas. In particular, the different modeling approaches implemented to address specific aspects of CO2 plasmas are presented. Throughout the paper, the importance of conducting joint experimental, theoretical and modeling studies to elucidate the complex couplings at play in CO2 plasmas is emphasized. Therefore, the experimental data that are likely to bring relevant constraints to the different modeling approaches are first reviewed. Second, the calculation of some key elementary processes obtained with semi-empirical, classical and quantum methods is presented. In order to describe the electron kinetics, the latest coherent sets of cross section satisfying the constraints of “electron swarm” analyses are introduced, and the need for self-consistent calculations for determining accurate electron energy distribution function (EEDF) is evidenced. The main findings of the latest zero-dimensional (0D) global models about the complex chemistry of CO2 and its dissociation products in different plasma discharges are then given, and full state-to-state (STS) models of only the vibrational-dissociation kinetics developed for studies of spacecraft shields are described. Finally, two important points for all applications using CO2 containing plasma are discussed: the role of surfaces in contact with the plasma, and the need for 2D/3D models to capture the main features of complex reactor geometries including effects induced by fluid dynamics on the plasma properties. In addition to bringing together the latest advances in the description of CO2 non-equilibrium plasmas, the results presented here also highlight the fundamental data that are still missing and the possible routes that still need to be investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000692394800001 Publication Date 2021-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6060 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.288 Times cited Open Access OpenAccess  
  Notes Russian Science Foundation, project 19-11-00041 ; Marie Skłodowska-Curie Actions, grant agreement 813393 grant agreement 813393 ; H2020 Marie Skłodowska-Curie Actions, grant agreement 813393 grant agreement 813393 ; Fundação para a Ciência e a Tecnologia, UIDB/50010/2020 and UIDP/50010/2020 UIDB/50010/2020 and UIDP/50010/2020 ; Università degli Studi di Perugia, AMIS project (Dipartimenti di Eccellenza-2018-2022) Dipartimento di Chimica, Biologia e Biotecnologie (Fondo Ricerca di Base 2019 program)) ; agenzia spaziale italiana, ASI N. 2019-3-U.0 ; The work of Kustova is supported by the Russian Science Foundation, project 19-11-00041. The work of Guerra, Bogaerts, Engeln and Guaitella has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SklodowskaCurie grant agreement No 813393, Guerra and Silva were partially funded by the Portuguese FCT – Fundação para Approved Most recent IF: 1.288  
  Call Number PLASMANT @ plasmant @c:irua:181081 Serial 6809  
Permanent link to this record
 

 
Author Hasnat, A. pdf  doi
openurl 
  Title Performance optimization of the nano-sized pick-up loop of a dc-SQUID Type A1 Journal article
  Year 2021 Publication Physica C-Superconductivity And Its Applications Abbreviated Journal Physica C  
  Volume 583 Issue Pages 1353852  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A flux transformer, consisting of a superconducting primary loop (pick-up loop) in series with a superconducting secondary loop on which measurement is done, is considered to optimize the approach and sensitivity of the Superconducting QUantum Interference Device (SQUID). Performance of such a pick-up loop placed above a magnetic particle is investigated using the numerical Ginzburg-Landau (GL) simulations. By solving 3D GL equations, static properties of the device such as the distribution of Cooper-pair density and the screening current in the secondary coil have been investigated as a function of the dimensions of the primary loop. Dynamic properties, such as current-voltage characteristics and flux-dependent critical current of the device have also been addressed, all leading to conclusion that smaller size pick-up loop is the first requirement for its optimal sensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000636420000010 Publication Date 2021-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.404 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.404  
  Call Number UA @ admin @ c:irua:177725 Serial 7008  
Permanent link to this record
 

 
Author Baly, L.; Quesada, I.; Murray, A.S.; Martin, G.; van Espen, P.; Arteche, R.; Jain, M. pdf  doi
openurl 
  Title Modeling the charge deposition in quartz grains during natural irradiation and its influence on the optically stimulated luminescence signal Type A1 Journal article
  Year 2021 Publication Radiation Measurements Abbreviated Journal Radiat Meas  
  Volume 142 Issue Pages 106564  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The rate of charge deposition in quartz grains irradiated in natural conditions is computed by radiation transport modeling. Quartz luminescence models are modified with the addition of the resulting charge deposition term, and the influence of this process on the optically stimulated luminescence (OSL) signal is analyzed. The results indicate that the charge deposition occurring in the quartz grain during the time of residence within rock could lead to the depletion of trapped holes in the recombination centres. For the two different quartz models investigated here, complete depletion is expected to occur for rock ages between 500 Ma and 1100 Ma. It is predicted that for sedimentary quartz derived from such rocks, the OSL signal is dominated by the slow component. It was also found that the shape and saturation level of the natural sensitivity-corrected dose response curve (DRC) of quartz is affected by the charge deposition; specifically, a linear reduction of the saturation level with the age of the rock is observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000639160300003 Publication Date 2021-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1350-4487 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.442 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.442  
  Call Number UA @ admin @ c:irua:178307 Serial 8265  
Permanent link to this record
 

 
Author Quintelier, M.; Perkisas, T.; Poppe, R.; Batuk, M.; Hendrickx, M.; Hadermann, J. url  doi
openurl 
  Title Determination of spinel content in cycled Li1.2Ni0.13Mn0.54Co0.13O2 using three-dimensional electron diffraction and precession electron diffraction Type A1 Journal article
  Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue 11 Pages 1989-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Electron microscopy for materials research (EMAT)  
  Abstract Among lithium battery cathode materials, Li1.2Ni0.13Mn0.54Co0.13O2 (LR-NMC) has a high theoretical capacity, but suffers from voltage and capacity fade during cycling. This is partially ascribed to transition metal cation migration, which involves the local transformation of the honeycomb layered structure to spinel-like nano-domains. Determination of the honeycomb layered/spinel phase ratio from powder X-ray diffraction data is hindered by the nanoscale of the functional material and the domains, diverse types of twinning, stacking faults, and the possible presence of the rock salt phase. Determining the phase ratio from transmission electron microscopy imaging can only be done for thin regions near the surfaces of the crystals, and the intense beam that is needed for imaging induces the same transformation to spinel as cycling does. In this article, it is demonstrated that the low electron dose sufficient for electron diffraction allows the collection of data without inducing a phase transformation. Using calculated electron diffraction patterns, we demonstrate that it is possible to determine the volume ratio of the different phases in the particles using a pair-wise comparison of the intensities of the reflections. Using this method, the volume ratio of spinel structure to honeycomb layered structure is determined for a submicron sized crystal from experimental three-dimensional electron diffraction (3D ED) and precession electron diffraction (PED) data. Both twinning and the possible presence of the rock salt phase are taken into account. After 150 charge-discharge cycles, 4% of the volume in LR-NMC particles was transformed irreversibly from the honeycomb layered structure to the spinel structure. The proposed method would be applicable to other multi-phase materials as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000815310500001 Publication Date 2021-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) 1.457 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.457  
  Call Number UA @ admin @ c:irua:189468 Serial 7080  
Permanent link to this record
 

 
Author Tessema, G.A.; van der Borg, J.; Minale, A.S.; Van Rompaey, A.; Adgo, E.; Nyssen, J.; Asrese, K.; Van Passel, S.; Poesen, J. pdf  url
doi  openurl
  Title Inventory and assessment of geosites for geotourism development in the eastern and southeastern Lake Tana Region, Ethiopia Type A1 Journal article
  Year 2021 Publication Geoheritage Abbreviated Journal Geoheritage  
  Volume 13 Issue 2 Pages 43  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract Geotourism is a niche form of sustainable tourism that focuses on the geological and geomorphological features of an area, and the associated culture and biodiversity. Geosites are important resources for geotourism development. The eastern and southeastern Lake Tana region in Ethiopia has several geosites with a potential for geotourism development. Despite the diversity of potential geosites and the strategic location of the area in the Northern Tourist Circuit of Ethiopia, only a few attractions such as Lake Tana and the Blue Nile Falls are currently being visited. The objective of this paper is twofold: to inventory geosites in the eastern and southeastern Lake Tana region and assess their potential for geotourism development; and to propose a geosite inventory and assessment methodology for geotourism purposes with adaptations from previous studies. Several studies were reviewed and finally nine of them used as the main references to prepare the criteria, indicators, and sub-indicators for this study. The indicators used for assessing the potential of geosites relate to scientific, educational, scenic, recreational, protection, functional, and ecological values. This research presents the first inventory of geosites in the Lake Tana basin. A first list of 120 geosites has been inventoried. Further screening and clustering resulted in 61 geosites, of which 17 are viewpoints. Among the major geosites are waterfalls, a lake with islands and island monasteries, a flood plain, caves and cave churches, lava tubes, a mountain (shield volcano), volcanic plugs, volcanic cones, rock-hewn churches, and viewpoints. Quantitative assessment of the geotouristic potential of these geosites revealed that clustered (complex area) geosites received higher scientific, scenic, and recreational value scores.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000646574000002 Publication Date 2021-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1867-2477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.472 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.472  
  Call Number UA @ admin @ c:irua:178962 Serial 6933  
Permanent link to this record
 

 
Author Shi, R.; Choudhuri, D.; Kashiwar, A.; Dasari, S.; Wang, Y.; Banerjee, R.; Banerjee, D. doi  openurl
  Title α phase growth and branching in titanium alloys Type A1 Journal article
  Year 2021 Publication Philosophical magazine Abbreviated Journal Philos Mag  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The morphology and spatial distribution of alpha (α) precipitates have been mapped as a function of Mo content in Ti-Mo binary alloys employing a combinatorial approach. Heat-treatments were carried out on compositionally graded Ti-xMo samples processed using a rapid throughput laser engineered net shape (LENS) process. The composition space spans 1.5 at% to 6 at% Mo with ageing at 750°C, 650°C and 600°C following a β solution treatment. Three distinct regimes of α morphology and distribution were observed. These are colony-dominated microstructures originating from grain boundary α allotriomorphs, bundles of intragranular α laths, and homogeneously distributed individual fine-scale α laths. Branching of the α precipitates was observed in all these domains in a manner reminiscent of solid-state dendritic growth. The phenomenon is particularly apparent at low volume fractions of α. Similar features are present in a wide variety of alloy compositions. 3-dimensional features of such branched structures have been analysed. Simulation of the branching process by phase field methods incorporating anisotropy in the α/β interface energy and elasticity suggests that it can be initiated at growth ledges present at broad faces of the α laths, driven by the enhancement of the diffusion flux at these steps. The dependence of branching on various parameters such as supersaturation and diffusivity, and microstructural features like ledge height and distribution and the presence of adjacent α variants has been evaluated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000722082700001 Publication Date 2021-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-6435 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) 1.505 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.505  
  Call Number UA @ admin @ c:irua:183616 Serial 6849  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Khalilov, U.; Hamoudi, H.; Neyts, E.C. url  doi
openurl 
  Title Effect of chemical modification on electronic transport properties of carbyne Type A1 Journal article
  Year 2021 Publication Journal Of Computational Electronics Abbreviated Journal J Comput Electron  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Using density functional theory in combination with the Green’s functional formalism, we study the effect of surface functionalization on the electronic transport properties of 1D carbon allotrope—carbyne. We found that both hydrogenation and fluorination result in structural changes and semiconducting to metallic transition. Consequently, the current in the functionalization systems increases significantly due to strong delocalization of electronic states along the carbon chain. We also study the electronic transport in partially hydrogenated carbyne and interface structures consisting of pristine and functionalized carbyne. In the latter case, current rectification is obtained in the system with rectification ratio up to 50%. These findings can be useful for developing carbyne-based structures with tunable electronic transport properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000617664900001 Publication Date 2021-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.526 Times cited Open Access OpenAccess  
  Notes Computational resources were provided by the research computing facilities of Qatar Environment and Energy Research Institute. Calculations are also conducted using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. U. Khalilov gratefully acknowledges financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant number 12M1315N. Approved Most recent IF: 1.526  
  Call Number PLASMANT @ plasmant @c:irua:176169 Serial 6708  
Permanent link to this record
 

 
Author Saniz, R.; Bekaert, J.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-principles study of defects at Σ3 grain boundaries in CuGaSe2 Type A1 Journal article
  Year 2021 Publication Solid State Communications Abbreviated Journal Solid State Commun  
  Volume Issue Pages 114263  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract We present a first-principles computational study of cation–Se 3 (112) grain boundaries in CuGaSe. We discuss the structure of these grain boundaries, as well as the effect of native defects and Na impurities on their electronic properties. The formation energies show that the defects will tend to form preferentially at the grain boundaries, rather than in the grain interiors. We find that in Ga-rich growth conditions Cu vacancies as well as Ga at Cu and Cu at Ga antisites are mainly responsible for having the equilibrium Fermi level pinned toward the middle of the gap, resulting in carrier depletion. The Na at Cu impurity in its +1 charge state contributes to this. In Ga-poor growth conditions, on the other hand, the formation energies of Cu vacancies and Ga at Cu antisites are comparatively too high for any significant influence on carrier density or on the equilibrium Fermi level position. Thus, under these conditions, the Cu at Ga antisites give rise to a -type grain boundary. Also, their formation energy is lower than the formation energy of Na at Cu impurities. Thus, the latter will fail to act as a hole barrier preventing recombination at the grain boundary, in contrast to what occurs in CuInSe grain boundaries. We also discuss the effect of the defects on the electronic properties of bulk CuGaSe, which we assume reflect the properties of the grain interiors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000652668500013 Publication Date 2021-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.554 Times cited 1 Open Access OpenAccess  
  Notes Fwo; We acknowledge the financial support of FWO-Vlaanderen, Belgium through project G.0150.13. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 1.554  
  Call Number EMAT @ emat @c:irua:176544 Serial 6703  
Permanent link to this record
 

 
Author Chaves, A.; Peeters, F.M. pdf  doi
openurl 
  Title Tunable effective masses of magneto-excitons in two-dimensional materials Type A1 Journal article
  Year 2021 Publication Solid State Communications Abbreviated Journal Solid State Commun  
  Volume 334 Issue Pages 114371  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Excitonic properties of Ge2H2 and Sn2H2, also known as Xanes, are investigated within the effective mass model. A perpendicularly applied magnetic field induces a negative shift on the exciton center-of-mass kinetic energy that is approximately quadratic with its momentum, thus pushing down the exciton dispersion curve and flattening it. This can be interpreted as an increase in the effective mass of the magneto-exciton, tunable by the field intensity. Our results show that in low effective mass two-dimensional semiconductors, such as Xanes, the applied magnetic field allows one to tune the magneto-exciton effective mass over a wide range of values.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670329600003 Publication Date 2021-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) 1.554 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.554  
  Call Number UA @ admin @ c:irua:179762 Serial 7037  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: