|
Abstract |
A flux transformer, consisting of a superconducting primary loop (pick-up loop) in series with a superconducting secondary loop on which measurement is done, is considered to optimize the approach and sensitivity of the Superconducting QUantum Interference Device (SQUID). Performance of such a pick-up loop placed above a magnetic particle is investigated using the numerical Ginzburg-Landau (GL) simulations. By solving 3D GL equations, static properties of the device such as the distribution of Cooper-pair density and the screening current in the secondary coil have been investigated as a function of the dimensions of the primary loop. Dynamic properties, such as current-voltage characteristics and flux-dependent critical current of the device have also been addressed, all leading to conclusion that smaller size pick-up loop is the first requirement for its optimal sensitivity. |
|