toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Huyskens, C. isbn  openurl
  Title Fouling in submerged membrane bioreactors Type Doctoral thesis
  Year 2012 Publication Abbreviated Journal  
  Volume Issue Pages 198 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-5728-374-1 Additional Links (down) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:99492 Serial 7980  
Permanent link to this record
 

 
Author Gardner, G.P.; Go, Y.B.; Robinson, D.M.; Smith, P.F.; Hadermann, J.; Abakumov, A.; Greenblatt, M.; Dismukes, G.C. pdf  doi
openurl 
  Title Structural requirements in lithium cobalt oxides for the catalytic oxidation of water Type A1 Journal article
  Year 2012 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 51 Issue 7 Pages 1616-1619  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000299946400020 Publication Date 2012-01-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 119 Open Access  
  Notes Approved Most recent IF: 11.994; 2012 IF: 13.734  
  Call Number UA @ lucian @ c:irua:99173 Serial 3258  
Permanent link to this record
 

 
Author De Trizio, L.; Figuerola, A.; Manna, L.; Genovese, A.; George, C.; Brescia, R.; Saghi, Z.; Simonutti, R.; van Huis, M.; Falqui, A. pdf  doi
openurl 
  Title Size-tunable, hexagonal plate-like Cu3P and Janus-like Cu-Cu3P nanocrystals Type A1 Journal article
  Year 2012 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 6 Issue 1 Pages 32-41  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We describe two synthesis approaches to colloidal Cu3P nanocrystals using trioctylphosphine (TOP) as phosphorus precursor. One approach is based on the homogeneous nucleation of small Cu3P nanocrystals with hexagonal plate-like morphology and with sizes that can be tuned from 5 to 50 nm depending on the reaction time. In the other approach, metallic Cu nanocrystals are nucleated first and then they are progressively phosphorized to Cu3P. In this case, intermediate Janus-like dimeric nanoparticles can be isolated, which are made of two domains of different materials, Cu and Cu3P, sharing a flat epitaxial interface. The Janus-like nanoparticles can be transformed back to single-crystalline copper particles if they are annealed at high temperature under high vacuum conditions, which makes them an interesting source of phosphorus. The features of the Cu Cu3P Janus-like nanoparticles are compared with those of the Wiped microstructure discovered more than two decades ago in the rapidly quenched Cu Cu3P eutectic of the Cu P alloy, suggesting that other alloy/eutectic systems that display similar behavior might give origin to nanostructures with flat, epitaxial Interface between domains of two diverse materials. Finally, the electrochemical properties of the copper phosphide plates are studied, and they are found to be capable of undergoing lithiation/delithiation through a displacement reaction, while the Janus-like Cu Cu3P particles do not display an electrochemical behavior that would make them suitable for applications in batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000299368300006 Publication Date 2011-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 60 Open Access  
  Notes Approved Most recent IF: 13.942; 2012 IF: 12.062  
  Call Number UA @ lucian @ c:irua:99172 Serial 3039  
Permanent link to this record
 

 
Author Bertrand, L.; Robinet, L.; Thoury, M.; Janssens, K.; Cohen, S.X.; Schöder, S. pdf  doi
openurl 
  Title Cultural heritage and archaeology materials studied by synchrotron spectroscopy and imaging Type A1 Journal article
  Year 2012 Publication Applied physics A : materials science & processing Abbreviated Journal Appl Phys A-Mater  
  Volume 106 Issue 2 Pages 377-396  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The use of synchrotron radiation techniques to study cultural heritage and archaeological materials has undergone a steep increase over the past 10-15 years. The range of materials studied is very broad and encompasses painting materials, stone, glass, ceramics, metals, cellulosic and wooden materials, and a cluster of organic-based materials, in phase with the diversity observed at archaeological sites, museums, historical buildings, etc. Main areas of investigation are: (1) the study of the alteration and corrosion processes, for which the unique non-destructive speciation capabilities of X-ray absorption have proved very beneficial, (2) the understanding of the technologies and identification of the raw materials used to produce archaeological artefacts and art objects and, to a lesser extent, (3) the investigation of current or novel stabilisation, conservation and restoration practices. In terms of the synchrotron methods used, the main focus so far has been on X-ray techniques, primarily X-ray fluorescence, absorption and diffraction, and Fourier-transform infrared spectroscopy. We review here the use of these techniques from recent works published in the field demonstrating the breadth of applications and future potential offered by third generation synchrotron techniques. New developments in imaging and advanced spectroscopy, included in the UV/visible and IR ranges, could even broaden the variety of materials studied, in particular by fostering more studies on organic and complex organic-inorganic mixtures, while new support activities at synchrotron facilities might facilitate transfer of knowledge between synchrotron specialists and users from archaeology and cultural heritage sciences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000299749000009 Publication Date 2011-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-8396 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.455 Times cited 55 Open Access  
  Notes ; The authors acknowledge the critical reading by B. Berrie (National Gallery of Art, Washington DC, USA). We thank J. Mass (Conservation Department, Winterthur Museum and Country Estate, Winterthur, DE, USA), H. Roemich (Institute of Fine Arts, New York University, USA), J. Hiller (Non-Crystalline Diffraction Beamline, Diamond Light Source, Didcot, UK) and J.-P. Echard (Laboratoire de recherche et de restauration, Musee de la musique, Paris, France) for their comments on the presentation of their work in the manuscript. The IPANEMA platform is jointly developed by CNRS, MNHN, the French Ministry of Culture and Communication and SOLEIL, and benefits from a CPER grant (MESR, Region Ile-de-France). Support by the Access to Research Infrastructures activity in the 7th Framework Programme of the EU (CHARISMA Grant Agreement n. 228330) and the NWO Science4Arts programme are acknowledged. ; Approved Most recent IF: 1.455; 2012 IF: 1.545  
  Call Number UA @ admin @ c:irua:99166 Serial 5561  
Permanent link to this record
 

 
Author Grujić, M.; Zarenia, M.; Tadić, M.; Peeters, F.M. pdf  doi
openurl 
  Title Interband optical absorption in a circular graphene quantum dot Type A1 Journal article
  Year 2012 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume T149 Issue Pages 014056-014056,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the energy levels and optical properties of a circular graphene quantum dot in the presence of an external magnetic field perpendicular to the dot. Based on the Dirac-Weyl equation and assuming zero outward current at the edge of the dot we present the results for two different types of boundary conditions, i.e. infinite-mass (IMBC) and zigzag boundary conditions. We found that the dot with zigzag edges displays a zero-energy state in the energy spectra while this is not the case for the IMBCs. For both boundary conditions, the confinement becomes dominated by the magnetic field, where the energy levels converge to the Landau levels as the magnetic field increases. The effect of boundary conditions on the electron-and hole-energy states is found to affect the interband absorption spectra, where we found larger absorption in the case of IMBCs. The selection rules for interband optical transitions are determined and discussed for both boundary conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000303523500057 Publication Date 2012-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949;1402-4896; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.28 Times cited 5 Open Access  
  Notes ; This work was supported by the EuroGraphene program of the ESF (project CONGRAN), the Ministry of Education and Science of Serbia, the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.28; 2012 IF: 1.032  
  Call Number UA @ lucian @ c:irua:99136 Serial 1688  
Permanent link to this record
 

 
Author Arsoski, V.; Čukarić, N.; Tadić, M.; Peeters, F.M. pdf  doi
openurl 
  Title Exciton states in a nanocup in the presence of a perpendicular magnetic field Type A1 Journal article
  Year 2012 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume T149 Issue Pages 014054-014054,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The exciton states in a strained (In,Ga)As/GaAs nanocup are theoretically determined. We explore how the nanocup bottom thickness (t) affects the magnetic field dependence of the exciton energy. Strain distribution is computed by the continuum mechanical model under the approximation of isotropic elasticity. The exciton wave functions are expanded into products of the electron and hole envelope functions. For small t, the exciton ground state has zero orbital momentum and exhibits small oscillations of the second derivative when the magnetic field increases. When t approaches the value of the cup height, however, the exciton levels exhibit angular momentum transitions, whose behavior is similar to that for type-II quantum dots. Small oscillations of the oscillator strength for exciton recombination are found when the magnetic field increases. An increase in thickness of the nanocup bottom has only a small effect on those oscillations for the optically active exciton states, but the exciton ground state becomes dark when the magnetic field increases. Hence, the results of our calculations show that an increase in thickness of the nanocup bottom transforms the exciton ground energy level dependence on magnetic field from the one characteristic of type-I rings to the one characteristic of type-II dots.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000303523500055 Publication Date 2012-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949;1402-4896; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.28 Times cited 2 Open Access  
  Notes ; This work was supported by the EU Network of Excellence SANDiE, the Ministry of Education and Science of Serbia, the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 1.28; 2012 IF: 1.032  
  Call Number UA @ lucian @ c:irua:99135 Serial 1117  
Permanent link to this record
 

 
Author Barbier, M.; Papp, G.; Peeters, F.M. doi  openurl
  Title Snake states and Klein tunneling in a graphene Hall bar with a pn-junction Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 16 Pages 163121-163121,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Hall (R-H) and bend (R-B) resistances of a graphene Hall bar structure containing a pn-junction are calculated when in the ballistic regime. The simulations are done using the billiard model. Introducing a pn-junction-dividing the Hall bar geometry in two regions-leads to two distinct regimes exhibiting very different physics: (1) both regions are of n-type and (2) one region is n-type and the other p-type. In regime (1), a “Hall plateau”-an enhancement of the resistance-appears for R-H. On the other hand, in regime (2), we found a negative R-H, which approaches zero for large B. The bend resistance is highly asymmetric in regime (2) and the resistance increases with increasing magnetic field B in one direction while it reduces to zero in the other direction. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704667]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000303128500064 Publication Date 2012-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 20 Open Access  
  Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:99129 Serial 3047  
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A. pdf  doi
openurl 
  Title Modeling SiH4/O2/Ar inductively coupled plasmas used for filling of microtrenches in shallow trench isolation (STI) Type A1 Journal article
  Year 2012 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 9 Issue 5 Pages 522-539  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Modeling results are presented to gain a better insight in the properties of a SiH4/O2/Ar inductively coupled plasma (ICP) and how it interacts with a silicon substrate (wafer), as applied in the microelectronics industry for the fabrication of electronic devices. The SiH4/O2/Ar ICP is used for the filling of microtrenches with isolating material (SiO2), as applied in shallow trench isolation (STI). In this article, a detailed reaction set that describes the plasma chemistry of SiH4/O2/Ar discharges as well as surface processes, such as sputtering, oxidation, and deposition, is presented. Results are presented on the plasma properties during the plasma enhanced chemical vapor deposition process (PECVD) for different gas ratios, as well as on the shape of the filled trenches and the surface compositions of the deposited layers. For the operating conditions under study it is found that the most important species accounting for deposition are SiH2, SiH3O, SiH3 and SiH2O, while SiH+2, SiH+3, O+2 and Ar+ are the dominant species for sputtering of the surface. By diluting the precursor gas (SiH4) in the mixture, the deposition rate versus sputtering rate can be controlled for a desired trench filling process. From the calculation results it is clear that a high deposition rate will result in undesired void formation during the trench filling, while a small deposition rate will result in undesired trench bottom and mask damage by sputtering. By varying the SiH4/O2 ratio, the chemical composition of the deposited layer will be influenced. However, even at the highest SiH4/O2 ratio investigated (i.e., 3.2:1; low oxygen content), the bulk deposited layer consists mainly of SiO2, suggesting that low-volatile silane species deposit first and subsequently become oxidized instead of being oxidized first in the plasma before deposition. Finally, it was found that the top surface of the deposited layer contained less oxygen due to preferential sputtering of O atoms, making the top layer more Si-rich. However, this effect is negligible at a SiH4/O2 ratio of 2:1 or lower.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000303858100010 Publication Date 2012-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 5 Open Access  
  Notes Approved Most recent IF: 2.846; 2012 IF: 3.730  
  Call Number UA @ lucian @ c:irua:99127 Serial 2142  
Permanent link to this record
 

 
Author Lajevardipour, A.; Neek-Amal, M.; Peeters, F.M. pdf  doi
openurl 
  Title Thermomechanical properties of graphene : valence force field model approach Type A1 Journal article
  Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 24 Issue 17 Pages 175303-175303,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the valence force field model of Perebeinos and Tersoff (2009 Phys. Rev. B 79 241409(R)), different energy modes of suspended graphene subjected to tensile or compressive strain are studied. By carrying out Monte Carlo simulations it is found that: (i) only for small strains (vertical bar epsilon vertical bar (sic) 0.02) is the total energy symmetrical in the strain, while it behaves completely differently beyond this threshold; (ii) the important energy contributions in stretching experiments are stretching, angle bending, an out-of-plane term, and a term that provides repulsion against pi-pi misalignment; (iii) in compressing experiments the two latter terms increase rapidly, and beyond the buckling transition stretching and bending energies are found to be constant; (iv) from stretching-compressing simulations we calculated the Young's modulus at room temperature 350 +/- 3.15 N m(-1), which is in good agreement with experimental results (340 +/- 50 N m(-1)) and with ab initio results (322-353) N m(-1); (v) molar heat capacity is estimated to be 24.64 J mol(-1) K-1 which is comparable with the Dulong-Petit value, i. e. 24.94 J mol(-1) K-1, and is almost independent of the strain; (vi) nonlinear scaling properties are obtained from height-height correlations at finite temperature; (vii) the used valence force field model results in a temperature independent bending modulus for graphene, and (viii) the Gruneisen parameter is estimated to be 0.64.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000303499700012 Publication Date 2012-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 29 Open Access  
  Notes ; We acknowledge helpful comments by V Perebeinos, S Costamagna, A Fasolino and J H Los. This work was supported by the Flemish science foundation (FWO-Vl) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 2.649; 2012 IF: 2.355  
  Call Number UA @ lucian @ c:irua:99123 Serial 3639  
Permanent link to this record
 

 
Author Scarrozza, M.; Pourtois, G.; Houssa, M.; Heyns, M.; Stesmans, A. url  doi
openurl 
  Title Oxidation of the GaAs(001) surface : insights from first-principles calculations Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 19 Pages 195307-195307,8  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We performed a detailed investigation of the oxidation of the technologically relevant GaAs(001)-beta 2(2x4) surface via density functional calculations. The purpose is to gain insights on the atomistic mechanisms and local bondings that underlie the degradation of the surface properties once exposed to oxygen. The study comprises the adsorption of single O atoms, through the sampling of several adsorption sites, and the subsequent formation of the O adsorbate at increasing coverage by taking into account multiple-atom adsorption. Based on the evaluation of the energetics and the structural properties of the atomistic models generated, the results here reported delineate a consistent picture of the initial stage of the surface oxidation: (i) at low coverage, in the limit of single O insertions, oxygen is incorporated on the surface forming a twofold-bridging Ga-O-As bond; (ii) at increasing coverage, as multiple O atoms are involved, this is accompanied by the formation of a threefold-coordinated bond (with two Ga and one As atoms); (iii) the latter has important implications regarding the electronic properties of the adsorbate since this O bonding may result in the formation of As dangling bonds. Moreover, a clear trend of increased energy gain for the incorporation of neighboring O atoms compared to single O insertions indicates that the formation of oxide clusters is favored over a regime of uniform oxidation. Our findings provide a detailed description of the O bonding and stress the importance of modeling the adsorption of multiple O atoms for an accurate description of the surface oxidation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303755700006 Publication Date 2012-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:99122 Serial 2538  
Permanent link to this record
 

 
Author Li, Z.; Covaci, L.; Marsiglio, F. url  doi
openurl 
  Title Impact of Dresselhaus versus Rashba spin-orbit coupling on the Holstein polaron Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 20 Pages 205112-205112,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We utilize an exact variational numerical procedure to calculate the ground-state properties of a polaron in the presence of Rashba and linear Dresselhaus spin-orbit coupling. We find that when the linear Dresselhaus spin-orbit coupling approaches the Rashba spin-orbit coupling, the Van Hove singularity in the density of states will be shifted away from the bottom of the band and finally disappear when the two spin-orbit couplings are tuned to be equal. The effective mass will be suppressed; the trend will become more significant for low phonon frequency. The presence of two dominant spin-orbit couplings will make it possible to tune the effective mass with more varied observables.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303794900003 Publication Date 2012-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), by ICORE (Alberta), by the Flemish Science Foundation (FWO-Vl), and by the Canadian Institute for Advanced Research (CIfAR). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:99121 Serial 1558  
Permanent link to this record
 

 
Author Neyts, E.C.; Thijsse, B.J.; Mees, M.J.; Bal, K.M.; Pourtois, G. doi  openurl
  Title Establishing uniform acceptance in force biased Monte Carlo simulations Type A1 Journal article
  Year 2012 Publication Journal of chemical theory and computation Abbreviated Journal J Chem Theory Comput  
  Volume 8 Issue 6 Pages 1865-1869  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Uniform acceptance force biased Monte Carlo (UFMC) simulations have previously been shown to be a powerful tool to simulate atomic scale processes, enabling one to follow the dynamical path during the simulation. In this contribution, we present a simple proof to demonstrate that this uniform acceptance still complies with the condition of detailed balance, on the condition that the characteristic parameter lambda = 1/2 and that the maximum allowed step size is chosen to be sufficiently small. Furthermore, the relation to Metropolis Monte Carlo (MMC) is also established, and it is shown that UFMC reduces to MMC by choosing the characteristic parameter lambda = 0 [Rao, M. et al. Mol. Phys. 1979, 37, 1773]. Finally, a simple example compares the UFMC and MMC methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305092400002 Publication Date 2012-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1549-9618;1549-9626; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.245 Times cited 20 Open Access  
  Notes Approved Most recent IF: 5.245; 2012 IF: 5.389  
  Call Number UA @ lucian @ c:irua:99090 Serial 1082  
Permanent link to this record
 

 
Author Costamagna, S.; Schulz, A.; Covaci, L.; Peeters, F. doi  openurl
  Title Partially unzipped carbon nanotubes as magnetic field sensors Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 23 Pages 232104-232104,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The conductance through graphene nanoribbons (GNR) connected to a partially unzipped carbon nanotube (CNT) is studied in the presence of an external magnetic field applied parallel to the long axis of the tube by means of non-equilibrium Green's function technique. We consider CNTs that are partially unzipped to form armchair-GNR/zigzag-CNT/armchair-GNR or zigzag-GNR/armchair-CNT/zigzag-GNR junctions. We find that the inclusion of a longitudinal magnetic field affects the electronic states only in the CNT region, leading to the suppression of the conductance at low energies. We demonstrate that both types of junctions can be used as magnetic field sensors. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4726039]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000305089900038 Publication Date 2012-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 10 Open Access  
  Notes ; L.C. acknowledges support from the Flemish Science Foundation (FWO-Vl) and S.C. from the Belgian Science Foundation (BELSPO). This work is supported by the ESF-EuroGRAPHENE Project CONGRAN. ; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:99083 Serial 2556  
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; van Duin, A.C.T.; Neyts, E.C. doi  openurl
  Title Self-limiting oxidation in small-diameter Si nanowires Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 11 Pages 2141-2147  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Recently, core shell silicon nanowires (Si-NWs) have been envisaged to be used for field-effect transistors and photovoltaic applications. In spite of the constant downsizing of such devices, the formation of ultrasmall diameter core shell Si-NWs currently remains entirely unexplored. We report here on the modeling of the formation of such core shell Si-NWs using a dry thermal oxidation of 2 nm diameter (100) Si nanowires at 300 and 1273 K, by means of reactive molecular dynamics simulations using the ReaxFF potential. Two different oxidation mechanisms are discussed, namely a self-limiting process that occurs at low temperature (300 K), resulting in a Si core I ultrathin SiO2 silica shell nanowire, and a complete oxidation process that takes place at a higher temperature (1273 K), resulting in the formation of an ultrathin SiO2 silica nanowire. The oxidation kinetics of both cases and the resulting structures are analyzed in detail. Our results demonstrate that precise control over the Si-core radius of such NWs and the SiOx (x <= 2.0) oxide shell is possible by controlling the growth temperature used during the oxidation process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000305092600021 Publication Date 2012-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 45 Open Access  
  Notes Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:99079 Serial 2976  
Permanent link to this record
 

 
Author Dendooven, J.; Goris, B.; Devloo-Casier, K.; Levrau, E.; Biermans, E.; Baklanov, M.R.; Ludwig, K.F.; van der Voort, P.; Bals, S.; Detavernier, C. pdf  doi
openurl 
  Title Tuning the pore size of ink-bottle mesopores by atomic layer deposition Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 11 Pages 1992-1994  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000305092600002 Publication Date 2012-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 52 Open Access  
  Notes Fwo Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:99078 Serial 3760  
Permanent link to this record
 

 
Author Zarenia, M.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Magnetotransport in periodically modulated bilayer graphene Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 24 Pages 245426-245426,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magnetotransport in bilayer graphene in the presence of a weak and periodic potential is investigated in the presence of a perpendicular magnetic field B. The modulation broadens the Landau levels into bands and for weak magnetic fields leads to the well-known Weiss oscillations in their bandwidth and their transport coefficients at very low B and to the Shubnikov-de Haas oscillations at larger B. The amplitude of the Weiss oscillations is severely reduced if the periodic potentials applied to the two layers oscillate out of phase. We also contrast some results with those corresponding to single-layer graphene. Relative to them the flat-band condition and the oscillation amplitude differ substantially, due to the interlayer coupling, and agree only when this coupling is extremely weak. We further show that the Hall conductivity exhibits the well-known steps at half-integer and integer multiples of 4e(2)/h in single-layer and bilayer graphene, respectively, even for very weak magnetic fields. The results are pertinent to weak and periodic corrugations when the potential modulation dominates the strain-induced magnetic modulation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305253600012 Publication Date 2012-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CON-GRAN), and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:99077 Serial 1934  
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Peeters, F.M. url  doi
openurl 
  Title Superconducting transition temperature of Pb nanofilms : impact of thickness-dependent oscillations of the phonon-mediated electron-electron coupling Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 22 Pages 224517-224517,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract To date, several experimental groups reported measurements of the thickness dependence of T-c of atomically uniform single-crystalline Pb nanofilms. The reported amplitude of the T-c oscillations varies significantly from one experiment to another. Here we propose that the reason for this unresolved issue is an interplay of the quantum-size variations in the single-electron density of states with thickness-dependent oscillations in the phonon-mediated electron-electron coupling. Such oscillations in the coupling depend on the substrate material, the quality of the interface, the protection cover, and other details of the fabrication process, changing from one experiment to another. This explains why the available data do not exhibit one-voice consistency about the amplitude of the T-c oscillations. Our analyses are based on a numerical solution of the Bogoliubov-de Gennes equations for a superconducting slab.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305251300006 Publication Date 2012-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 24 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:99076 Serial 3368  
Permanent link to this record
 

 
Author Tytgat, T.; Lenaerts, S. isbn  openurl
  Title Immobilisation of TiO2 into self-supporting photocatalytic foam : influence of acidity on porosity and light penetration Type P3 Proceeding
  Year 2012 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-989-97667-4-7 Additional Links (down) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:99066 Serial 5959  
Permanent link to this record
 

 
Author Tarakina, N.V.; Verberck, B. doi  openurl
  Title Tubular fullerenes in carbon nanotubes Type A1 Journal article
  Year 2012 Publication Fullerenes, nanotubes, and carbon nanostructures Abbreviated Journal Fuller Nanotub Car N  
  Volume 20 Issue 4-7 Pages 538-542  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We investigate the optimal orientations and positions of tubular fullerene molecules C-70, C-80 and C-90 encapsulated in single-walled carbon nanotubes (SWCNTs). We find that increasing the tube radius leads to the following succession of energetically stable regimes: 1) lying molecules positioned on the tube's long axis, 2) tilted molecules on the tube's long axis and 3) lying molecules shifted away from the tube's long axis. In the case of C-70 and C-80 molecules, standing on-axis configurations also occur. Our findings are relevant for the possible application of molecular-orientation-dependent electronic properties of fullerene nanopeapods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304297500045 Publication Date 2012-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1536-383X;1536-4046; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.35 Times cited Open Access  
  Notes ; This work was financially supported by the Research Foundation – Flanders (FWO-Vl). B. V. is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO-Vl). ; Approved Most recent IF: 1.35; 2012 IF: 0.764  
  Call Number UA @ lucian @ c:irua:99004 Serial 3737  
Permanent link to this record
 

 
Author Verberck, B.; Cambedouzou, J.; Vliegenthart, G.A.; Gompper, G.; Launois, P. doi  openurl
  Title Monte Carlo studies of C60- and C70-peapods Type A1 Journal article
  Year 2012 Publication Fullerenes, nanotubes, and carbon nanostructures Abbreviated Journal Fuller Nanotub Car N  
  Volume 20 Issue 4/7 Pages 371-377  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We present results of Monte Carlo simulations of chains of C-60 and chains of C-70 molecules encapsulated in a single-walled carbon nanotube (SWCNT). We observe the changes in the configuration of the fullerene molecules when varying tube radius and temperature. In particular, the evolution of the pair correlation functions reveal a transition from linear harmonic chain behavior to a hard-sphere liquid upon heating, demonstrating the possibility of tuning properties of C-60- and C-70@SWCNT peapods with radius and temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304297500015 Publication Date 2012-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1536-383X;1536-4046; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.35 Times cited 1 Open Access  
  Notes ; Helpful discussions with K. H. Michel, P.-A. Albouy and C. Bousige are gratefully acknowledged. This work was financially supported by the Research Foundation-Flanders (FWO-Vl). ; Approved Most recent IF: 1.35; 2012 IF: 0.764  
  Call Number UA @ lucian @ c:irua:99003 Serial 2200  
Permanent link to this record
 

 
Author Silhanek, A.V.; Leo, A.; Grimaldi, G.; Berdiyorov, G.R.; Milošević, M.V.; Nigro, A.; Pace, S.; Verellen, N.; Gillijns, W.; Metlushko, V.; Ilić, B.; Zhu, X.; Moshchalkov, V.V.; url  doi
openurl 
  Title Influence of artificial pinning on vortex lattice instability in superconducting films Type A1 Journal article
  Year 2012 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 14 Issue Pages 053006-053006,11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In superconducting films under an applied dc current, we analyze experimentally and theoretically the influence of engineered pinning on the vortex velocity at which the flux-flow dissipation undergoes an abrupt transition from low to high resistance. We argue, based on a nonuniform distribution of vortex velocity in the sample, that in strongly disordered systems the mean critical vortex velocity for flux-flow instability (i) has a nonmonotonic dependence on magnetic field and (ii) decreases as the pinning strength is increased. These findings challenge the generally accepted microscopic model of Larkin and Ovchinnikov (1979 J. Low. Temp. Phys. 34 409) and all subsequent refinements of this model which ignore the presence of pinning centers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000304871700003 Publication Date 2012-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 40 Open Access  
  Notes ; This work was supported by the Methusalem Funding of the Flemish Government, the ESF-NES program, the Belgian Science Policy (IAP) and the Fund for Scientific Research-Flanders (FWO-Vlaanderen). AVS, GRB and WG received individual support from FWO-Vlaanderen. GG acknowledges support from the research project L.R. N5 of Regione Campania. VM acknowledges financial support from the US NSF, grant no. ECCS-0823813. We acknowledge J Van de Vondel for a critical reading of the manuscript. ; Approved Most recent IF: 3.786; 2012 IF: 4.063  
  Call Number UA @ lucian @ c:irua:98949 Serial 1616  
Permanent link to this record
 

 
Author Vandenberghe, W.G.; Verhulst, A.S.; Kao, K.-H.; De Meyer, K.; Sorée, B.; Magnus, W.; Groeseneken, G. doi  openurl
  Title A model determining optimal doping concentration and material's band gap of tunnel field-effect transistors Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 19 Pages 193509-193509,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We develop a model for the tunnel field-effect transistor (TFET) based on the Wentzel-Kramer-Brillouin approximation which improves over existing semi-classical models employing generation rates. We hereby introduce the concept of a characteristic tunneling length in direct semiconductors. Based on the model, we show that a limited density of states results in an optimal doping concentration as well as an optimal material's band gap to obtain the highest TFET on-current at a given supply voltage. The observed optimal-doping trend is confirmed by 2-dimensional quantum-mechanical simulations for silicon and germanium. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714544]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000304108000098 Publication Date 2012-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 25 Open Access  
  Notes ; William Vandenberghe gratefully acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by IMEC's Industrial Affiliation Program. ; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:98948 Serial 2105  
Permanent link to this record
 

 
Author Palgrave, R.G.; Borisov, P.; Dyer, M.S.; McMitchell, S.R.C.; Darling, G.R.; Claridge, J.B.; Batuk, M.; Tan, H.; Tian, H.; Verbeeck, J.; Hadermann, J.; Rosseinsky, M.J.; pdf  doi
openurl 
  Title Artificial construction of the layered Ruddlesden-Popper manganite La2Sr2Mn3O10 by reflection high energy electron diffraction monitored pulsed laser deposition Type A1 Journal article
  Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 18 Pages 7700-7714  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pulsed laser deposition has been used to artificially construct the n = 3 Ruddlesden Popper structure La2Sr2Mn3O10 in epitaxial thin film form by sequentially layering La1-xSrxMnO3 and SrO unit cells aided by in situ reflection high energy electron diffraction monitoring. The interval deposition technique was used to promote two-dimensional SrO growth. X-ray diffraction and cross-sectional transmission electron microscopy indicated that the trilayer structure had been formed. A site ordering was found to differ from that expected thermodynamically, with the smaller Sr2+ predominantly on the R site due to kinetic trapping of the deposited cation sequence. A dependence of the out-of-plane lattice parameter on growth pressure was interpreted as changing the oxygen content of the films. Magnetic and transport measurements on fully oxygenated films indicated a frustrated magnetic ground state characterized as a spin glass-like magnetic phase with the glass temperature T-g approximate to 34 K. The magnetic frustration has a clear in-plane (ab) magnetic anisotropy, which is maintained up to temperatures of 150 K. Density functional theory calculations suggest competing antiferromagnetic and ferromagnetic long-range orders, which are proposed as the origin of the low-temperature glassy state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000303696200029 Publication Date 2012-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 27 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:98947UA @ admin @ c:irua:98947 Serial 153  
Permanent link to this record
 

 
Author Grimaldi, G.; Leo, A.; Nigro, A.; Silhanek, A.V.; Verellen, N.; Moshchalkov, V.V.; Milošević, M.V.; Casaburi, A.; Cristiano, R.; Pace, S. doi  openurl
  Title Controlling flux flow dissipation by changing flux pinning in superconducting films Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 20 Pages 202601-202601,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the flux flow state in superconducting materials characterized by rather strong intrinsic pinning, such as Nb, NbN, and nanostructured Al thin films, in which we drag the superconducting dissipative state into the normal state by current biasing. We modify the vortex pinning strength either by ion irradiation, by tuning the measuring temperature or by including artificial pinning centers. We measure critical flux flow voltages for all materials and the same effect is observed: switching to low flux flow dissipations at low fields for an intermediate pinning regime. This mechanism offers a way to additionally promote the stability of the superconducting state. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4718309]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000304265000051 Publication Date 2012-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 33 Open Access  
  Notes ; ; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:98946 Serial 504  
Permanent link to this record
 

 
Author Komendová, L.; Chen, Y.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Two-band superconductors : hidden criticality deep in the superconducting state Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 108 Issue 20 Pages 207002-207002,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We show that two-band superconductors harbor hidden criticality deep in the superconducting state, stemming from the critical temperature of the weaker band taken as an independent system. For sufficiently small interband coupling gamma the coherence length of the weaker band exhibits a remarkable deviation from the conventional monotonic increase with temperature, namely, a pronounced peak close to the hidden critical point. The magnitude of the peak scales as proportional to gamma(-mu), with the Landau critical exponent mu = 1/3, the same as found for the mean-field critical behavior with respect to the source field in ferromagnets and ferroelectrics. Here reported hidden criticality of multiband superconductors can be experimentally observed by, e.g., imaging of the variations of the vortex core in a broader temperature range. Similar effects are expected for the superconducting multilayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000304064000017 Publication Date 2012-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 75 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Useful discussions with A. V. Vagov are acknowledged. ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ lucian @ c:irua:98945 Serial 3770  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Strain-engineered graphene through a nanostructured substrate : 2 : pseudomagnetic fields Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 19 Pages 195446-195446,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The strain-induced pseudomagnetic field in supported graphene deposited on top of a nanostructured substrate is investigated by using atomistic simulations. A step, an elongated trench, a one-dimensional barrier, a spherical bubble, a Gaussian bump, and a Gaussian depression are considered as support structures for graphene. From the obtained optimum configurations we found very strong induced pseudomagnetic fields which can reach up to similar to 1000 T due to the strain-induced deformations in the supported graphene. Different magnetic confinements with controllable geometries are found by tuning the pattern of the substrate. The resulting induced magnetic fields for graphene on top of a step, barrier, and trench are calculated. In contrast to the step and trench the middle part of graphene on top of a barrier has zero pseudomagnetic field. This study provides a theoretical background for designing magnetic structures in graphene by nanostructuring substrates. We found that altering the radial symmetry of the deformation changes the sixfold symmetry of the induced pseudomagnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304394800013 Publication Date 2012-05-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the ESF EUROCORE program EuroGRAPHENE: CONGRAN. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98943 Serial 3167  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Strain-engineered graphene through a nanostructured substrate : 1 : deformations Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 19 Pages 195445-195445,11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using atomistic simulations we investigate the morphological properties of graphene deposited on top of a nanostructured substrate. Sinusoidally corrugated surfaces, steps, elongated trenches, one-dimensional and cubic barriers, spherical bubbles, Gaussian bumps, and Gaussian depressions are considered as support structures for graphene. The graphene-substrate interaction is governed by van der Waals forces and the profile of the graphene layer is determined by minimizing the energy using molecular dynamics simulations. Based on the obtained optimum configurations, we found that (i) for graphene placed over sinusoidally corrugated substrates with corrugation wavelengths longer than 2 nm, the graphene sheet follows the substrate pattern while for supported graphene it is always suspended across the peaks of the substrate, (ii) the conformation of graphene to the substrate topography is enhanced when increasing the energy parameter in the van der Waals model, (iii) the adhesion of graphene into the trenches depends on the width of the trench and on the graphene's orientation, i. e., in contrast to a small-width (3 nm) nanoribbon with armchair edges, the one with zigzag edges follows the substrate profile, (iv) atomic-scale graphene follows a Gaussian bump substrate but not the substrate with a Gaussian depression, and (v) the adhesion energy due to van der Waals interaction varies in the range [0.1-0.4] J/m(2).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304394800012 Publication Date 2012-05-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 62 Open Access  
  Notes ; We thank L. Covaci and S. Costamagna for valuable comments. We acknowledge M. Zarenia, M. R. Masir and D. Nasr for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and ESF EUROCORE program EuroGRAPHENE: CONGRAN. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98942 Serial 3166  
Permanent link to this record
 

 
Author Badalyan, S.M.; Peeters, F.M. url  doi
openurl 
  Title Effect of nonhomogenous dielectric background on the plasmon modes in graphene double-layer structures at finite temperatures Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 19 Pages 195444-195444,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have calculated the plasmon modes in graphene double layer structures at finite temperatures, taking into account the inhomogeneity of the dielectric background of the system. The effective dielectric function is obtained from the solution of the Poisson equation of a three-layer dielectric medium with graphene sheets located at the interfaces, separating the different materials. Due to the momentum dispersion of the effective dielectric function, the intra- and interlayer bare Coulomb interactions in the graphene double layer system acquires an additional momentum dependence-an effect that is of the order of the interlayer interaction itself. We show that the energies of the in-phase and out-of-phase plasmon modes are determined largely by different values of the spatially dependent effective dielectric function. The effect of the dielectric inhomogeneity increases with temperature, and even at high temperatures the energy shift induced by the dielectric inhomogeneity and temperature itself remains larger than the broadening of the plasmon energy dispersions due to the Landau damping. The obtained new features of the plasmon dispersions can be observed in frictional drag measurements and in inelastic light scattering and electron energy-loss spectroscopies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304394800011 Publication Date 2012-05-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 67 Open Access  
  Notes ; We thank G. Vignale for useful discussions and acknowledge support from the Flemisch Science Foundation (FWO-Fl) and the Belgian Science Policy (BELSPO). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98941 Serial 826  
Permanent link to this record
 

 
Author Ramos, I.R.O.; Ferreira, W.P.; Munarin, F.F.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Bilayer crystals of charged magnetic dipoles : structure and phonon spectrum Type A1 Journal article
  Year 2012 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 85 Issue 5:1 Pages 051404-051404,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the structure and phonon spectrum of a two-dimensional bilayer system of classical charged dipoles oriented perpendicular to the plane of the layers for equal density in each layer. This system can be tuned through six different crystalline phases by changing the interlayer separation or the charge and/or dipole moment of the particle. The presence of the charge on the dipole particles is responsible for the nucleation of five staggered phases and a disordered phase which are not found in the magnetic dipole bilayer system. These extra phases are a consequence of the competition between the repulsive Coulomb and the attractive dipole interlayer interaction. We present the phase diagram and determine the order of the phase transitions. The phonon spectrum of the system was calculated within the harmonic approximation, and a nonmonotonic behavior of the phonon spectrum is found as a function of the effective strength of the interparticle interaction. The stability of the different phases is determined.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000304403400002 Publication Date 2012-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 8 Open Access  
  Notes ; This work was supported by the Brazilian agencies CNPq, CAPES, and FUNCAP (PRONEX grant), the Flemish Science Foundation (FWO-Vl), the bilateral program between Flanders and Brazil, and the CNPq-FWO collaborating project. The authors are grateful to Prof. G. Goldoni for some technical clarifications concerning Ref. [18]. ; Approved Most recent IF: 2.366; 2012 IF: 2.313  
  Call Number UA @ lucian @ c:irua:98940 Serial 233  
Permanent link to this record
 

 
Author Badalyan, S.M.; Peeters, F.M. url  doi
openurl 
  Title Electron-phonon bound state in graphene Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 20 Pages 205453-205453,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The fine structure of the Dirac energy spectrum in graphene induced by electron-optical phonon coupling is investigated in the portion of the spectrum near the phonon emission threshold. The derived new dispersion equation in the immediate neighborhood below the threshold corresponds to an electron-phonon bound state. We find that the singular vertex corrections beyond perturbation theory strongly increase the electron-phonon binding energy scale. The predicted enhancement of the effective electron-phonon coupling can be measured using angle-resolved spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304649400002 Publication Date 2012-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes ; We thank E. Rashba for the useful discussion and acknowledge support from the Belgian Science Policy (IAP) and BELSPO. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98939 Serial 982  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: