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Abstract. In superconducting films under an applied dc current, we analyze
experimentally and theoretically the influence of engineered pinning on the
vortex velocity at which the flux-flow dissipation undergoes an abrupt transition
from low to high resistance. We argue, based on a nonuniform distribution
of vortex velocity in the sample, that in strongly disordered systems the
mean critical vortex velocity for flux-flow instability (i) has a nonmonotonic
dependence on magnetic field and (ii) decreases as the pinning strength is
increased. These findings challenge the generally accepted microscopic model of
Larkin and Ovchinnikov (1979 J. Low. Temp. Phys. 34 409) and all subsequent
refinements of this model which ignore the presence of pinning centers.
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1. Introduction

The quest for enlarging the dissipationless regime of superconductors has led to a progressive
enhancement of the vortex pinning strengths in recent decades and to a continuous effort at
understanding the microscopic pinning mechanisms [1]. In addition to the maximal current
that a superconductor can sustain before starting to dissipate, Jc, it is technologically relevant
to know how far above Jc the dissipation remains reasonably low. This information directly
concerns the tolerance of a superconducting system to current fluctuation close to the depinning
current [2]. In a seminal paper, Larkin and Ovchinnikov [3] showed theoretically that this
dissipation region above Jc is limited by a maximum vortex velocity beyond which the damping
force acting on vortices decreases. This decrement, in turn, accelerates the vortex motion and
eventually gives rise to a sudden increase of dissipation. The microscopic picture at high vortex
velocities corresponds to a migration of quasiparticles out of the vortex core, resulting in a
shrinkage of the effective core size and therefore in a lower damping force [4, 5].

In their original formulation, Larkin and Ovchinnikov assumed a homogeneous distribution
of quasiparticles which led them to predict a field-independent critical vortex velocity v∗. This
assumption holds as long as the diffusion of nonequilibrium quasiparticles exceeds the distance
between vortices, i.e. at high enough magnetic fields. Later on, Doettinger et al [6] argued
that this assumption should be considered as a necessary condition to trigger the instability,
which allowed them to explain the observed systematic increase of v∗ with decreasing magnetic
field. Further refinements of the Larkin–Ovchinnikov (LO) model to include the unavoidable
overheating of quasiparticles with respect to the sample were carried out by Bezuglyj and
Shklovskij [7]. In [7], it was shown that this effect does not modify the tendency of v∗ to
increase as the external field, H , decreases. Even though this particular v∗(H) dependence has
been extensively corroborated experimentally by many independent groups in intermediate- and
high-field regimes [8–14], Grimaldi et al [15] recently observed the opposite trend at low fields,
i.e. v∗ decreasing with decreasing H .

In this work, we demonstrate that this unexpected behavior can result from the presence
of vortex pinning and disorder, ingredients that have not been included in any of the previous
theoretical models.

2. Pinning model

The assumption of no pinning corresponds to a δ-function-like vortex velocity distribution and
a free flux flow with zero critical current [17]. In this case, an increase of current produces a

New Journal of Physics 14 (2012) 053006 (http://www.njp.org/)

http://www.njp.org/


3

Figure 1. Schematic representation of different dynamic regimes. Velocity
distribution for the case of flux flow (a) and plastic flow (c). Expected
current–voltage characteristics for weak (b) and strong (d) pinning strengths.
The critical current density Jc indicates the onset of dissipation, whereas the
instability current J ∗ and critical voltage V ∗ indicate where vortex instability
takes place.

shift of the velocity distribution to higher mean values until the vortex instability is triggered
at v∗, for all vortices simultaneously. In disordered systems, this situation can be realized in
the vortex liquid state, in a weak pinning regime or at high enough fields and currents such
that the vortex–vortex interaction exceeds the vortex–pinning interaction. Here, increasing the
current J above Jc produces a shift of the velocity distribution toward higher mean values 〈v〉

and progressively narrows the distribution peak. This sharp distribution of vortex velocities
corresponds to a linear flux-flow regime, as shown in figures 1(a) and (b), respectively. Once the
system reaches a current value J ∗ such that 〈v〉 ∼ v∗, vortex instability takes place [14, 17].

The introduction of strong pinning and disorder substantially modifies the previous picture.
On the one hand, the presence of disorder is expected to broaden the velocity distribution and
extend the nonlinear regime for currents above the critical value [13]9. This is schematically
shown in figure 1(c). On the other hand, strong pinning increases the critical current and causes
the vortex instability likely to appear within a nonlinear V (I ) regime (see figure 1(d)). This
is particularly true if the instability current J ∗ does not depend strongly on pinning, a fact
which we will demonstrate experimentally and theoretically further below. Most importantly,
the broadening of the velocity distribution implies a sizable separation between the measured

9 It has been theoretically demonstrated by Faleski et al [18] via molecular dynamic simulations that a bimodal
distribution of velocities can also be expected in the case of strong disorder. Nevertheless, this assumption leads to
a similar conclusion as that achieved in this paper.
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average velocity 〈v〉 and the maximal attainable vortex velocity vmax. In this plastic vortex flow
regime, the system will inevitably reach the instability point at a lower vortex velocity than
expected, practically when vmax ∼ v∗. In this case, the condition of homogeneous quasiparticle
distribution in the whole sample (the basis for the LO model) has to be dropped and instead
homogeneous quasiparticle distribution only along the paths where vortices flow has to be
considered [5, 15, 19–22]. This simple argument lead us to conclude that the stronger the
pinning the lower the measured critical velocity becomes.

This analysis enables us to formulate another finding, one of our main results, which
concerns the critical velocity as a function of applied magnetic field H . In the LO model, the
assumption of a homogeneous quasiparticle distribution holds if the distance v∗τε (τε being the
quasiparticle relaxation time) over which the quasiparticles diffuse is larger than the intervortex
spacing a(H) ∝ H−1/2. Obviously, this leads to v∗

∝ H−1/2 (see, e.g., [9] for details). However,
in the presence of strong pinning, this dependence changes dramatically.

Indeed, as the magnetic field increases the vortex density and the vortex–vortex interaction
increase, which in turn effectively decreases the pinning. This narrows the vortex velocity
distribution, and the measured critical velocity increases. Further increasing H , the assumption
of homogeneous quasiparticle distribution at the critical velocity becomes justified again,
and the standard LO scenario of v∗ decreasing with increasing field is recovered. This is in
agreement with recent experimental reports of Grimaldi et al [15, 16] showing that in Al and
Nb films at low fields, v∗ increases with increasing field.

This behavior at low fields is clearly unexpected within the standard LO picture and its
subsequent refinements.

3. Time-dependent Ginzburg–Landau simulations

In order to provide compelling evidence in favor of the above-described picture, we performed
theoretical simulations using the time-dependent Ginzburg–Landau (GL) theory, with a
model and numerical procedure identical to those described in [20]. The samples were
thin superconducting stripes of aluminum (taking coherence length ξ(0) = 100 nm, inelastic
scattering time τin = 10 ns and relaxation constant u = 5.79) of size 10 × 10 µm2, with a regular
square array of square pinning sites of size 150 × 150 nm2 and a lattice period of 600 nm. The
pinning was realized through suppressed critical temperature inside the pinning sites, differing
by the coefficient ζ from the rest of the sample. Obviously, for lower ζ the overall Tc of the
sample decreases. For that reason, we used the same reduced temperature T/Tc(H = 0) for
comparison between samples with different ζ and thus different pinning strengths. For each
sample, we first calculated the I –V curves for different applied fields H , and identified the jump
in voltage from the low to the high dissipative regime. The last value of current before the jump
was labeled as the instability current j∗ and the value of voltage upon the jump was taken as the
critical voltage V ∗. Both these quantities are plotted against the magnetic field in figures 2(a)
and (b) for samples with different pinning strengths. There we clearly show that j∗ is weakly
dependent on the pinning strength, while V ∗ decreases in magnitude, both in agreement with
our introductory analysis. Furthermore, we use the experimental estimate of average velocity as
V ∗/H and plot it as a function of magnetic field in figure 2(c). We find the exact dependence of
〈v〉(H) as explained in the previous paragraph, clearly different at low magnetic field from the
LO scenario.
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Figure 2. The results of the Ginzburg–Landau theory for a thin Al
superconducting stripe with a regular square array of pinning sites (as described
in the text). Inside the pinning site, the critical temperature is suppressed by
a factor ζ compared to the rest of the sample. All curves are obtained at the
same reduced temperature of 0.9Tc(H = 0), where Tc(H = 0) is different for
different ζ . Panels (a)–(c) show, respectively, the instability current j∗, the
critical voltage V ∗ and the average critical velocity estimated as V ∗/H , as a
function of applied magnetic field H (scaled to ‘matching’ field H1, which
provides exactly one quantum of flux per pinning site). The current is normalized
to c80/8π2λ2ξ and the voltage is normalized to h̄/2eτGL.

4. Experimental results

Experimental evidence for our claims is provided by measuring the voltage–current
characteristics of a 50 nm thick Al superconducting film deposited on top of an array of
permalloy (FeNi) square rings as shown in the leftmost panel of figure 3. It has been
demonstrated that these magnetic templates represent a very convenient and flexible way to
change the pinning strength by simply changing the magnetic state of the rings [23, 24]. This
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Figure 3. (a) Atomic force microscopy image showing the topography of the
magnetic template consisting of Py square rings. (b) Magnetic force microscopy
image showing the magnetic field emanating from the square rings in the vortex
state. The intensity has been magnified to become comparable to the intensity
shown in (c) for rings in the onion state. In all panels, the white bars indicate
1 µm scale.

feature stems from the possibility to arrange the individual magnetic domains along each leg
of the square rings in such a way that they produce either a very weak or very strong stray
field at the corners [26]. Magnetic force microscopy images of these extreme cases are shown
in the middle panel of figure 3 (magnified to enhance the contrast), corresponding to the
so-called vortex state with a weak stray field, and the rightmost panel of figure 3, corresponding
to the onion state with a strong stray field. This magnetic template is separated from the
superconducting film by an insulating 5 nm Si layer in order to avoid proximity effects. The
line width of each individual square ring is 150 nm, the thickness 25 nm and the lateral size
d = 1 µm. Neighboring rings are separated by 70 nm, thus making the period of the magnetic
template d = 1.07 µm. This separation corresponds to a matching field H1 = 1.808 mT at which
there is one vortex per unit cell. In order to guarantee a homogeneous current distribution [25],
the Al film was evaporated onto a predefined photoresist mask patterned into a transport bridge
aligned with one of the sides of the square rings. For a direct comparison, patterned and
nonpatterned Al films were co-evaporated.

In figure 4, the experimental V (I ) data are reported to compare with (middle and lower
panels) and without (upper panel) the presence of artificial pinning centers. It is evident that
these V (I ) curves are highly nonlinear in the presence of artificial pinning with respect to the
reference plain film. It is well known that Joule heating can be a possible mechanism inducing
flux-flow instability, so that in our experiments we have previously performed a systematic
study on the influence of self-heating (see [13] and references therein). Since unavoidable self-
heating may affect experimental data, we also took into account self-heating by considering
the Bezuglyj–Shklovskij [7] approach for the term of quasiparticle overheating, leading to the
estimate of the threshold magnetic field value BT = 20 mT. In other words, heating effects
become crucial for B > BT, clearly out of the low-field range investigated in this work. In
addition, we derived from the V (I ) data the dissipated power P∗

= I ∗V ∗, which is an increasing
function of the magnetic field. This is the experimental evidence that thermal effects are not
determining the instability points. In fact, if this was the case of thermal runaway, P∗ should be
independent of magnetic field [27].
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Figure 4. Experimental V (I ) data at T/Tc(H = 0) = 0.89. In the upper panel,
the V (I ) is related to a plain Al film; in the middle and lower panels, the V (I ) is
related to an Al film deposited on top of the magnetic template with rings in the
vortex and onion states, respectively.

In figure 5, we summarize the main results of the transport measurements comparing the
response of a plain (nonpatterned) Al bridge with the Al bridge on top of the magnetic landscape
for two different states, namely the vortex and the onion states. Figure 5(a) shows the critical
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Figure 5. Comparison of the critical current density Jc (a), instability current
density J ∗ (b) and critical velocity v∗ (c) between a plain Al film, an Al film
deposited on top of the magnetic template with rings in the vortex state and an
Al film deposited on top of the magnetic template with rings in the onion states.
The inset shows a zoom-in of the critical current density and critical voltage for
the onion state at a particular submatching field.

current density Jc obtained with a voltage criterion of 1 µV as a function of reduced field H/H1

for the three cases and at the same reduced temperature T/Tc(H = 0) = 0.89. A clear difference
in the critical current is found among the three samples, the lowest being for the plain film in
the entire field range, whereas the onion state exhibits the highest Jc (and therefore the strongest
pinning) for fields above H/H1 > 0.2. The fact that Jc for the rings in vortex state crosses over
the one for the onion state at low field can be attributed to the suppression of the superconducting
order parameter due to the strong stray fields at the corners of the rings. For simplicity, we focus
on the field range H/H1 > 0.2, although the analysis is also valid for H/H1 < 0.2. The use of
micromagnets as tunable pinning centers has been described in detail in [28].

Figure 5(b) shows the instability current density J ∗ at which the voltage undergoes an
abrupt transition toward a higher dissipation branch. Note that despite the huge variation of Jc

among the studied samples, only small changes in the instability current J ∗ appear. This finding
again validates our model depicted in figures 1(b) and (d), where an increase of pinning only
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changes Jc but leaves J ∗ almost unaltered. This indicates that J ∗, rather than the depairing
current, represents the upper bound for the maximum achievable critical current. The most
remarkable result is the field dependence of the critical velocity, shown in figure 5(c), obtained
from the measured critical voltage V ∗ divided by the magnetic field. All features from our
introductory analysis and the theoretical simulation (figure 2(c)) are clearly reproduced in these
curves. In particular, the fact that there is a decrease of Jc by changing the pinning implies an
increase of v∗. This latter effect is shown in more detail in the inset of figure 5 where both
the critical current density (right axis) and the critical voltage (left axis) are plotted in a field
range around the submatching condition H/H1 = 0.5. Here, instead of changing the pinning
by switching between different magnetic states, we change the effective pinning by simply
sweeping the magnetic field. Each time that the density of vortices is commensurate with the
density of pinning sites (matching condition) the vortex lattice arranges itself in a very ordered
state that leads to a minimum of the vortex–vortex interaction and therefore to a maximum
pinning efficiency. Detuning the field from this condition leads to a rapid weakening of the
pinning properties. It is worth mentioning that at low temperatures and magnetic fields or in the
vicinity of a matching condition, the critical voltage is close to zero and the inequality Jc 6 J ∗

becomes an identity.
It is interesting to note that in figure 5, the condition H = 0 corresponds to no vortices

induced externally but does not prevent vortices being induced by the underlying magnetic
template. Indeed, at H = 0 completely different scenarios apply for the Al plain film, the film
with modulated weak pinning produced by the rings in the vortex state and the strong pinning
produced by the rings in the onion state. For instance, for the sample with rings in the onion
state, vortex–antivortex pairs are induced by the local intense field [29] and even at H = 0, the
entire sample is populated with these pairs. This is in agreement with the fact that at H = 0,
the critical voltage V ∗ is finite (not zero) and thus Jc indicates the onset of vortex motion. In
contrast to that, for the sample with rings in the vortex state at H = 0, the V (I ) curves show a
sudden jump from V = 0 state (pinning) to the normal state, with no hint of a dissipation tail in
between these two regimes. The latter effect can be attributed to the departing transition rather
than indicating vortex motion. These considerations omit the effect produced by the self-field
which can become important at zero external field and high currents.

Another point that we would like to emphasize is that the superconducting layer (50 nm) is
evaporated on top of the magnetic template (20 nm), which implies an important corrugation of
thickness modulation. As discussed above, the instabilities take place within a nonlinear V (I )
regime indicative of a plastic-like flow of vortices. The microscopic image probably corresponds
to a filamentary displacement of vortices, a sort of vortex river, crossing the width of the sample.
Since the path that these vortex rivers follow is probably defined by the maximum stress in the
vortex lattice, which in turn results from a delicate balance between vortex distribution and the
pinning landscape, they may not be exactly reproducible each time. This is just a speculative
argument that remains to be verified. In any case, the overall response of the system and the
values of I ∗ and V ∗ are very much reproducible.

5. Conclusions

To summarize, we have investigated the influence of vortex pinning on the instability current
I ∗ and the critical voltage V ∗ in Al superconducting films. Based on a simple model, where
the effects of pinning strength and disorder are explicitly incorporated, we conclude that
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the critical velocity is always underestimated in the strong pinning limit. This effect leads
to an unconventional, very strong decrease of measured v∗ followed by its increase as the
field increases, unforeseen within the widely established LO model. Additionally, our model
predicts a decrease of critical velocity as the pinning strength rises. We confirm this prediction
theoretically using the Ginzburg–Landau theory and experimentally by switching from weak
to strong pinning in a superconducting sample with a tunable magnetic landscape. Moreover,
we also underline that our findings are independent of the particular choice either of the
superconducting material or of the pinning mechanism [15, 16]. As another fact of importance,
we found that the instability current J ∗ is practically insensitive to changes in pinning strength,
contrary to the critical current. Therefore J ∗ should be regarded as an upper limit for the
maximum achievable Jc.

Acknowledgments

This work was supported by the Methusalem Funding of the Flemish Government, the ESF-
NES program, the Belgian Science Policy (IAP) and the Fund for Scientific Research-Flanders
(FWO-Vlaanderen). AVS, GRB and WG received individual support from FWO-Vlaanderen.
GG acknowledges support from the research project L.R. N5 of Regione Campania. VM
acknowledges financial support from the US NSF, grant no. ECCS-0823813. We acknowledge
J Van de Vondel for a critical reading of the manuscript.

References

[1] Maiorov B, Baily S A, Zhou H, Ugurlu O, Kennison J A, Dowden P C, Hoelesinger T G, Foltyn S R and
Civale L 2009 Nature Mater. 8 398

[2] Wilson M N 1983 Superconducting Magnets ed R G Seurlock (Oxford: Oxford University Press) pp 91–158
[3] Larkin A I and Ovchinnikov Y N 1979 J. Low Temp. Phys. 34 409
[4] Klein W, Huebener R P, Gauss S and Parisi J 1995 J. Low Temp. Phys. 61 413
[5] Vodolazov D Y and Peeters F M 2007 Phys. Rev. B 76 014521
[6] Doettinger S G, Huebener R P and Khule A 1995 Physica C 251 285
[7] Bezuglyj A I and Shklovskij V A 1992 Physica C 202 234
[8] Samoilov A V, Konczykowski M, Yeh N C, Berry S and Tsuei C C 1995 Phys. Rev. Lett. 75 4118
[9] Doettinger S G, Huebener R P, Gerdemann R, Kuhle A, Anders S, Trauble T G and Villegier J C 1994

Phys. Rev. Lett. 73 1691
[10] Ruck B J, Abele J C, Trodahl H J, Brown S A and Lynam P 1997 Phys. Rev. Lett. 78 3378
[11] Xiao Z L, Voss-de Haan P, Jakob G and Adrian H 1998 Phys. Rev. B 57 R736
[12] Peroz C and Villard C 2005 Phys. Rev. B 72 014515
[13] Grimaldi G, Leo A, Nigro A, Pace S and Huebener R P 2009 Phys. Rev. B 80 144521
[14] Liang M and Kunchur M N 2010 Phys. Rev. B 82 144517
[15] Grimaldi G, Leo A, Zola D, Nigro A, Pace S, Laviano F and Mezzetti E 2010 Phys. Rev. B 82 024512
[16] Grimaldi G, Leo A, Cirillo C, Casaburi A, Cristiano R, Attanasio C, Nigro A, Pace S and Huebener R P 2011

J. Supercond. Nov. Magn. 24 81
[17] Liang M et al 2010 Phys. Rev. B 82 064502
[18] Faleski M C, Marchetti M C and Middleton A A 1996 Phys. Rev. B 54 12427
[19] Gurevich A and Ciovati G Phys. Rev. B 77 104501
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