toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hervieu, M.; Michel, C.; Martin, C.; Huvé, M.; Van Tendeloo, G.; Maignan, A.; Pelloquin, D.; Goutenoire, F.; Raveau, B. openurl 
  Title Mécanismes de la non-stoechiométrie dans les nouveaux supraconducteurs à haute Tc Type A1 Journal article
  Year 1994 Publication Journal de physique: 3: applied physics, materials science, fluids, plasma and instrumentation Abbreviated Journal  
  Volume 4 Issue Pages 2057-2067  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos A1994PT17900002 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4320 ISBN Additional Links (up) UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:10041 Serial 1973  
Permanent link to this record
 

 
Author Bogaerts, A.; Snoeckx, R.; Berthelot, A.; Heijkers, S.; Wang, W.; Sun, S.; Van Laer, K.; Ramakers, M.; Michielsen, I.; Uytdenhouwen, Y.; Meynen, V.; Cool, P. pdf  openurl
  Title Plasma based co2 conversion: a combined modeling and experimental study Type P1 Proceeding
  Year 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In recent years there is increased interest in plasma-based CO2 conversion. Several plasma setups are being investigated for this purpose, but the most commonly used ones are a dielectric barrier discharge (DBD), a microwave (MW) plasma and a gliding arc (GA) reactor. In this proceedings paper, we will show results from our experiments in a (packed bed) DBD reactor and in a vortex-flow GA reactor, as well as from our model calculations for the detailed plasma chemistry in a DBD, MW and GA, for pure CO2 as well as mixtures of CO2 with N-2, CH4 and H2O.  
  Address  
  Corporate Author Thesis  
  Publisher Masarykova univ Place of Publication Brno Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-80-210-8318-9 ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:141553 Serial 4526  
Permanent link to this record
 

 
Author Belov, I.; Paulussen, S.; Bogaerts, A. pdf  openurl
  Title Analysis and comparison of the co2 and co dielectric barrier discharge solid products Type P1 Proceeding
  Year 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The CO and CO2 Dielectric Barrier Discharges (DBD) and their solid products were analyzed keeping similar energy input regimes. Gas chromatography analysis revealed the presence of CO2, CO and O-2 mixture in the exhaust of the CO2 DBD, while no O-2 was found when CO was used as a feed gas. It was shown that the C-2 Swan lines observed with optical emission spectroscopy were distinct in the CO plasma while they were not observed in the CO2 emission spectrum. Also the solid products of the plasmas exhibited remarkable differences. Nanoparticles with a diameter between10 and 300 nm, composed of Fe, O and C (Fe: O: C similar to 13: 50: 30) were produced by the CO2 DBD, while microscopic dendrite-like carbon structure (C: O similar to 73: 27) were formed in the CO plasma. The growth rate in the CO2 and CO DBDs was evaluated to be on the level of 0.15 mg/min and 15 mg/min, respectively. The difference of the CO and CO2 discharges and their products might be attributed to the oxygen content in the latter (6.4 mol.% O-2 in the exhaust) and subsequent etching of the carbonaceous film.  
  Address  
  Corporate Author Thesis  
  Publisher Masarykova univ Place of Publication Brno Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-80-210-8318-9 ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:141554 Serial 4516  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. openurl 
  Title Comprehensive three-dimensional modeling network for a dc glow discharge plasma Type A1 Journal article
  Year 1998 Publication Plasma physics reports Abbreviated Journal Plasma Phys Rep+  
  Volume 24 Issue Pages 573-583  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000075129800005 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-780x ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.984 Times cited 8 Open Access  
  Notes Approved Most recent IF: 0.984; 1998 IF: 0.444  
  Call Number UA @ lucian @ c:irua:24123 Serial 452  
Permanent link to this record
 

 
Author Teodorescu, V.S.; Mihailescu, I.N.; Dinescu, M.; Chitica, N.; Nistor, L.C.; van Landuyt, J.; Barborica, A. doi  openurl
  Title Laser induced phase transition in iron thin films Type A1 Journal article
  Year 1994 Publication Journal de physique: 3: applied physics, materials science, fluids, plasma and instrumentation Abbreviated Journal  
  Volume 4 Issue Pages 127-130  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos A1994NT08700028 Publication Date 2007-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:10003 Serial 1787  
Permanent link to this record
 

 
Author Teodoru, S.; Kusano, Y.; Bogaerts, A. pdf  doi
openurl 
  Title The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge Type A1 Journal article
  Year 2012 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 9 Issue 7 Pages 652-689  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A numerical model for NxOy remediation in humid air plasma produced with a dielectric barrier discharge at atmospheric pressure is presented. Special emphasis is given to NO2 and N2O reduction with the decrease of O2 content in the feedstock gas. A detailed reaction mechanism including electronic and ionic processes, as well as the contribution of radicals and excited atomic/molecular species is proposed. The temporal evolution of the densities of NO, NO2 and N2O species, and some other by-products, is analyzed, and the major pathways for the NxOy remediation are discussed for one pulse. Subsequently, simulations are presented for a multi-pulses case, where three O2 contents are tested for optimization of the remediation process. It is found that when the gas mixture O2/N2/H2O/NOx has no initial O2 content, the best NOx and N2O remediation is achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000306279500005 Publication Date 2012-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 24 Open Access  
  Notes Approved Most recent IF: 2.846; 2012 IF: 3.730  
  Call Number UA @ lucian @ c:irua:100920 Serial 842  
Permanent link to this record
 

 
Author Aerts, R.; Tu, X.; De Bie, C.; Whitehead, J.C.; Bogaerts, A. doi  openurl
  Title An investigation into the dominant reactions for ethylene destruction in non-thermal atmospheric plasmas Type A1 Journal article
  Year 2012 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 9 Issue 10 Pages 994-1000  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A crucial step, which is still not well understood in the destruction of volatile organic compounds (VOCs) with low temperature plasmas, is the initiation of the process. Here, we present a kinetic model for the destruction of ethylene in low temperature plasmas that allows us to calculate the relative importance of all plasma species and their related reactions. Modifying the ethylene concentration and/or the SED had a major impact on the relative importance of the radicals (i.e., mainly atomic oxygen) and the metastable nitrogen (i.e., more specifically N2(equation image)) in the destruction process. Our results show that the direct destruction by electron impact reactions for ethylene can be neglected; however, we can certainly not neglect the influence of N2(equation image)).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000309750300008 Publication Date 2012-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 46 Open Access  
  Notes Approved Most recent IF: 2.846; 2012 IF: 3.730  
  Call Number UA @ lucian @ c:irua:101765 Serial 1727  
Permanent link to this record
 

 
Author Zhao, S.-X.; Gao, F.; Wang, Y.-N.; Bogaerts, A. pdf  doi
openurl 
  Title Gas ratio effects on the Si etch rate and profile uniformity in an inductively coupled Ar/CF4 plasma Type A1 Journal article
  Year 2013 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 22 Issue 1 Pages 015017-15018  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, a hybrid model is used to investigate the effect of different gas ratios on the Si etching and polymer film deposition characteristics in an Ar/CF4 inductively coupled plasma. The influence of the surface processes on the bulk plasma properties is studied, and also the spatial characteristics of important gas phase and etched species. The densities of F and CF2 decrease when the surface module is included in the simulations, due to the species consumption caused by etching and polymer deposition. The influence of the surface processes on the bulk plasma depends on the Ar/CF4 gas ratio. The deposited polymer becomes thicker at high CF4 content because of more abundant CFx radicals. As a result of the competition between the polymer thickness and the F flux, the etch rate first increases and then decreases upon increasing the CF4 content. The electron properties, more specifically the electron density profile, affect the Si etch characteristics substantially by determining the radical density and flux profiles. In fact, the radial profile of the etch rate is more uniform at low CF4 content since the electron density has a smooth distribution. At high CF4 content, the etch rate is less uniform with a minimum halfway along the wafer radius, because the electron density distribution is more localized. Therefore, our calculations predict that it is better to work at relatively high Ar/CF4 gas ratios, in order to obtain high etch rate and good profile uniformity for etch applications. This, in fact, corresponds to the typical experimental etch conditions in Ar/CF4 gas mixtures as found in the literature, where Ar is typically present at a much higher concentration than CF4.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000314966300022 Publication Date 2012-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.302; 2013 IF: 3.056  
  Call Number UA @ lucian @ c:irua:102583 Serial 1320  
Permanent link to this record
 

 
Author Yu, M.Y.; Yu, W.; Chen, Z.Y.; Zhang, J.; Yin, Y.; Cao, L.H.; Lu, P.X.; Xu, Z.Z. url  doi
openurl 
  Title Electron acceleration by an intense short-pulse laser in underdense plasma Type A1 Journal article
  Year 2003 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 10 Issue 6 Pages 2468-2474  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Electron acceleration from the interaction of an intense short-pulse laser with low density plasma is considered. The relation between direct electron acceleration within the laser pulse and that in the wake is investigated analytically. The magnitude and location of the ponderomotive-force-caused charge separation field with respect to that of the pulse determine the relative effectiveness of the two acceleration mechanisms. It is shown that there is an optimum condition for acceleration in the wake. Electron acceleration within the pulse dominates as the pulse becomes sufficiently short, and the latter directly drives and even traps the electrons. The latter can reach ultrahigh energies and can be extracted by impinging the pulse on a solid target. (C) 2003 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000183316500031 Publication Date 2003-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 41 Open Access  
  Notes Approved Most recent IF: 2.115; 2003 IF: 2.146  
  Call Number UA @ lucian @ c:irua:103293 Serial 904  
Permanent link to this record
 

 
Author Vranjes, J.; Petrovic, D.; Pandey, B.P.; Poedts, S. doi  openurl
  Title Electrostatic modes in multi-ion and pair-ion collisional plasmas Type A1 Journal article
  Year 2008 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 15 Issue 7 Pages 072104  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The physics of plasmas containing positive and negative ions is discussed with special attention to the recently produced pair-ion plasma containing ions of equal mass and opposite charge. The effects of the density gradient in the direction perpendicular to the ambient magnetic field vector are discussed. The possible presence of electrons is discussed in the context of plasma modes propagating at an angle with respect to the magnetic field vector. It is shown that the electron plasma mode may become a backward mode in the presence of a density gradient, and this behavior may be controlled either by the electron number density or the mode number in the perpendicular direction. In plasmas with hot electrons an instability may develop, driven by the combination of electron collisions and the density gradient, and in the regime of a sound ions' response. In the case of a pure pair-ion plasma, for lower frequencies and for parameters close to those used in the recent experiments, the perturbed ions may feel the effects of the magnetic field. In this case the plasma mode also becomes backward, resembling features of an experimentally observed but yet unexplained backward mode. (C) 2008 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000258175800004 Publication Date 2008-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 54 Open Access  
  Notes Approved Most recent IF: 2.115; 2008 IF: 2.427  
  Call Number UA @ lucian @ c:irua:103554 Serial 1023  
Permanent link to this record
 

 
Author Liu, Y.-X.; Zhang, Q.-Z.; Liu, L.; Song, Y.-H.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Electron bounce resonance heating in dual-frequency capacitively coupled oxygen discharges Type A1 Journal article
  Year 2013 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 22 Issue 2 Pages 025012-11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The electron bounce resonance heating (BRH) in dual-frequency capacitively coupled plasmas operated in oxygen is studied by different experimental methods and a particle-in-cell/Monte Carlo collision (PIC/MCC) simulation, and compared with the electropositive argon discharge. In comparison with argon, the experimental results show that in an oxygen discharge the resonance peaks in positive-ion density and light intensity tend to occur at larger electrode gaps. Moreover, at electrode gaps L > 2.5 cm, the positive-ion (and electron) density and the light emission drop monotonically in the oxygen discharge upon increasing L, whereas they rise (after an initial drop) in the argon case. At resonance gap the electronegativity reaches its maximum due to the BRH. All these experimental observations are explained by PIC/MCC simulations, which show that in the oxygen discharge the bulk electric field becomes quite strong and is out of phase with the sheath field. Therefore, it retards the resonance electrons when traversing the bulk, resulting in a suppressed BRH. Both experiment and simulation results show that this effect becomes more pronounced at lower high-frequency power, when the discharge mode changes from electropositive to electronegative. In a pure oxygen discharge, the BRH is suppressed with increasing pressure and almost diminishes at 12 Pa. Finally, the driving frequency significantly affects the BRH, because it determines the phase relation between bulk electric field and sheath electric field.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000317275400014 Publication Date 2013-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 20 Open Access  
  Notes Approved Most recent IF: 3.302; 2013 IF: 3.056  
  Call Number UA @ lucian @ c:irua:106534 Serial 911  
Permanent link to this record
 

 
Author Van Laer, K.; Tinck, S.; Samara, V.; de Marneffe, J.F.; Bogaerts, A. pdf  doi
openurl 
  Title Etching of low-k materials for microelectronics applications by means of a N2/H2 plasma : modeling and experimental investigation Type A1 Journal article
  Year 2013 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 22 Issue 2 Pages 025011-25019  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, we investigate the etch process of so-called low-k organic material by means of a N2/H2 capacitively coupled plasma, as applied in the micro-electronics industry for the manufacturing of computer chips. In recent years, such an organic material has emerged as a possible alternative for replacing bulk SiO2 as a dielectric material in the back-end-of-line, because of the smaller parasitic capacity between adjacent conducting lines, and thus a faster propagation of the electrical signals throughout the chip. Numerical simulations with a hybrid plasma model, using an extensive plasma and surface chemistry set, as well as experiments are performed, focusing on the plasma properties as well as the actual etching process, to obtain a better insight into the underlying mechanisms. Furthermore, the effects of gas pressure, applied power and gas composition are investigated to try to optimize the etch process. In general, the plasma density reaches a maximum near the wafer edge due to the so-called 'edge effect'. As a result, the etch rate is not uniform but will also reach its maximum near the wafer edge. The pressure seems not to have a big effect. A higher power increases the etch rate, but the uniformity becomes (slightly) worse. The gas mixing ratio has no significant effect on the etch process, except when a pure H2 or N2 plasma is used, illustrating the synergistic effects of a N2/H2 plasma. In fact, our calculations reveal that the N2/H2 plasma entails an ion-enhanced etch process. The simulation results are in reasonable agreement with the experimental values. The microscopic etch profile shows the desired anisotropic shape under all conditions under study.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000317275400013 Publication Date 2013-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.302; 2013 IF: 3.056  
  Call Number UA @ lucian @ c:irua:106654 Serial 1084  
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Liu, Y.-X.; Jiang, W.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Heating mechanism in direct current superposed single-frequency and dual-frequency capacitively coupled plasmas Type A1 Journal article
  Year 2013 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 22 Issue 2 Pages 025014-25018  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work particle-in-cell/Monte Carlo collision simulations are performed to study the heating mechanism and plasma characteristics in direct current (dc) superposed radio-frequency (RF) capacitively coupled plasmas, operated both in single-frequency (SF) and dual-frequency (DF) regimes. An RF (60/2 MHz) source is applied on the bottom electrode to sustain the discharge, and a dc source is fixed on the top electrode. The heating mechanism appears to be very different in dc superposed SF and DF discharges. When only a single source of 60 MHz is applied, the plasma bulk region is reduced by the dc source, thus the ionization rate and hence the electron density decrease with rising dc voltage. However, when a DF source of 60 and 2 MHz is applied, the electron density can increase upon addition of a dc voltage, depending on the gap length and applied dc voltage. This is explained from the spatiotemporal ionization rates in the DF discharge. In fact, a completely different behavior is observed for the ionization rate in the two half-periods of the LF source. In the first LF half-period, the situation resembles the dc superposed SF discharge, and the reduced plasma bulk region due to the negative dc bias results in a very small effective discharge area and a low ionization rate. On the other hand, in the second half-period, the negative dc bias is to some extent counteracted by the LF voltage, and the sheath close to the dc electrode becomes particularly thin. Consequently, the amplitude of the high-frequency sheath oscillations at the top electrode is largely enhanced, while the LF sheath at the bottom electrode is in its expanding phase and can thus well confine the high-energy electrons. Therefore, the ionization rate increases considerably in this second LF half-period. Furthermore, in addition to the comparison between SF and DF discharges and the effect of gap length and dc voltage, the effect of secondary electrons is examined.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000317275400016 Publication Date 2013-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 9 Open Access  
  Notes Approved Most recent IF: 3.302; 2013 IF: 3.056  
  Call Number UA @ lucian @ c:irua:106877 Serial 1413  
Permanent link to this record
 

 
Author Tinck, S.; De Schepper, P.; Bogaerts, A. pdf  doi
openurl 
  Title Numerical investigation of SiO2 coating deposition in wafer processing reactors with SiCl4/O2/Ar inductively coupled plasmas Type A1 Journal article
  Year 2013 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 10 Issue 8 Pages 714-730  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Simulations and experiments are performed to obtain a better insight in the plasma enhanced chemical vapor deposition process of SiO2 by SiCl4/O2/Ar plasmas for introducing a SiO2-like coating in wafer processing reactors. Reaction sets describing the plasma and surface chemistry of the SiCl4/O2/Ar mixture are presented. Typical calculation results include the bulk plasma characteristics, i.e., electrical properties, species densities, and information on important production and loss processes, as well as the chemical composition of the deposited coating, and the thickness uniformity of the film on all reactor surfaces. The film deposition characteristics, and the trends for varying discharge conditions, are explained based on the plasma behavior, as calculated by the model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000327790000006 Publication Date 2013-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.846; 2013 IF: 2.964  
  Call Number UA @ lucian @ c:irua:109900 Serial 2397  
Permanent link to this record
 

 
Author Tinck, S.; Altamirano-Sánchez, E.; De Schepper, P.; Bogaerts, A. pdf  doi
openurl 
  Title Formation of a nanoscale SiO2 capping layer on photoresist lines with an Ar/SiCl4/O2 inductively coupled plasma : a modeling investigation Type A1 Journal article
  Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 11 Issue 1 Pages 52-62  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract PECVD of a nanoscale SiO2 capping layer using low pressure SiCl4/O-2/Ar plasmas is numerically investigated. The purpose of this capping layer is to restore photoresist profiles with improved line edge roughness. A 2D plasma and Monte Carlo feature profile model are applied for this purpose. The deposited films are calculated for various operating conditions to obtain a layer with desired shape. An increase in pressure results in more isotropic deposition with a higher deposition rate, while a higher power creates a more anisotropic process. Dilution of the gas mixture with Ar does not result in an identical capping layer shape with a thickness linearly correlated to the dilution. Finally, a substrate bias seems to allow proper control of the vertical deposition rate versus sidewall deposition as desired.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000330588800006 Publication Date 2013-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.846; 2014 IF: 2.453  
  Call Number UA @ lucian @ c:irua:115735 Serial 1256  
Permanent link to this record
 

 
Author Van Gaens, W.; Bogaerts, A. pdf  doi
openurl 
  Title Reaction pathways of biomedically active species in an Ar plasma jet Type A1 Journal article
  Year 2014 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 23 Issue 3 Pages 035015-35027  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper we analyse the gas phase production and loss pathways for several biomedically active species, i.e. N2(A), O, O3, O2(a), N, H, HO2, OH, NO, NO2, N2O5, H2O2, HNO2 and HNO3, in an argon plasma jet flowing into an open humid air atmosphere. For this purpose, we employ a zero-dimensional reaction kinetics model to mimic the typical experimental conditions by fitting several parameters to experimentally measured values. These include ambient air diffusion, the gas temperature profile and power deposition along the jet effluent. We focus in detail on how the pathways of the biomedically active species change as a function of the position in the effluent, i.e. inside the discharge device, active plasma jet effluent and afterglow region far from the nozzle. Moreover, we demonstrate how the reaction kinetics and species production are affected by different ambient air humidities, total deposited power into the plasma and gas temperature along the jet. It is shown that the dominant pathways can drastically change as a function of the distance from the nozzle exit or experimental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000337891900017 Publication Date 2014-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 34 Open Access  
  Notes Approved Most recent IF: 3.302; 2014 IF: 3.591  
  Call Number UA @ lucian @ c:irua:117075 Serial 2820  
Permanent link to this record
 

 
Author Kozák, T.; Bogaerts, A. pdf  doi
openurl 
  Title Splitting of CO2 by vibrational excitation in non-equilibrium plasmas : a reaction kinetics model Type A1 Journal article
  Year 2014 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 23 Issue 4 Pages 045004  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a zero-dimensional kinetic model of CO2 splitting in non-equilibrium plasmas. The model includes a description of the CO2 vibrational kinetics (25 vibrational levels up to the dissociation limit of the molecule), taking into account state-specific VT and VV relaxation reactions and the effect of vibrational excitation on other chemical reactions. The model is applied to study the reaction kinetics of CO2 splitting in an atmospheric-pressure dielectric barrier discharge (DBD) and in a moderate-pressure microwave discharge. The model results are in qualitative agreement with published experimental works. We show that the CO2 conversion and its energy efficiency are very different in these two types of discharges, which reflects the important dissociation mechanisms involved. In the microwave discharge, excitation of the vibrational levels promotes efficient dissociation when the specific energy input is higher than a critical value (2.0 eV/molecule under the conditions examined). The calculated energy efficiency of the process has a maximum of 23%. In the DBD, vibrationally excited levels do not contribute significantly to the dissociation of CO2 and the calculated energy efficiency of the process is much lower (5%).  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000345761500014 Publication Date 2014-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 170 Open Access  
  Notes Approved Most recent IF: 3.302; 2014 IF: 3.591  
  Call Number UA @ lucian @ c:irua:117398 Serial 3108  
Permanent link to this record
 

 
Author Saeed, A.; Khan, A.W.; Shafiq, M.; Jan, F.; Abrar, M.; Zaka-ul-Islam, M.; Zakaullah, M. pdf  doi
openurl 
  Title Investigation of 50 Hz pulsed DC nitrogen plasma with active screen cage by trace rare gas optical emission spectroscopy Type A1 Journal article
  Year 2014 Publication Plasma science & technology Abbreviated Journal Plasma Sci Technol  
  Volume 16 Issue 4 Pages 324-328  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Optical emission spectroscopy is used to investigate the nitrogen-hydrogen with trace rare gas (4% Ar) plasma generated by 50 Hz pulsed DC discharges. The filling pressure varies from 1 mbar to 5 mbar and the current density ranges from 1 mA.cm(-2) to 4 mA.cm(-2). The hydrogen concentration in the mixture plasma varies from 0% to 80%, with the objective of identifying the optimum pressure, current density and hydrogen concentration for active species ([N] and [N-2]) generation. It is observed that in an N-2-H-2 gas mixture, the concentration of N atom density decreases with filling pressure and increases with current density, with other parameters of the discharge kept unchanged. The maximum concentrations of active species were found for 40% H-2 in the mixture at 3 mbar pressure and current density of 4 mA.cm(-2).  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Plasma Physics, the Chinese Academy of Sciences Place of Publication Beijing Editor  
  Language Wos 000335909600005 Publication Date 2014-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1009-0630; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.83 Times cited 5 Open Access  
  Notes Approved Most recent IF: 0.83; 2014 IF: 0.579  
  Call Number UA @ lucian @ c:irua:117686 Serial 1728  
Permanent link to this record
 

 
Author Somers, W.; Dubreuil, M.F.; Neyts, E.C.; Vangeneugden, D.; Bogaerts, A. pdf  doi
openurl 
  Title Incorporation of fluorescent dyes in atmospheric pressure plasma coatings for in-line monitoring of coating homogeneity Type A1 Journal article
  Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 11 Issue 7 Pages 678-684  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This paper reports on the incorporation of three commercial fluorescent dyes, i.e., rhodamine 6G, fluorescein, and fluorescent brightener 184, in plasma coatings, by utilizing a dielectric barrier discharge (DBD) reactor, and the subsequent monitoring of the coatings homogeneity based on the emitted fluorescent light. The plasma coatings are qualitatively characterized with fluorescence microscopy, UVvis spectroscopy and profilometry for the determination of the coating thickness. The emitted fluorescent light of the coating correlates to the amount of dye per area, and deviations of these factors can hence be observed by monitoring the intensity of this light. This allows monitoring the homogeneity of the plasma coatings in a fast and simple way, without making major adjustments to the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000340416300007 Publication Date 2014-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.846; 2014 IF: 2.453  
  Call Number UA @ lucian @ c:irua:118063 Serial 1598  
Permanent link to this record
 

 
Author Aerts, R.; Snoeckx, R.; Bogaerts, A. pdf  doi
openurl 
  Title In-situ chemical trapping of oxygen in the splitting of carbon dioxide by plasma Type A1 Journal article
  Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 11 Issue 10 Pages 985-992  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000344180900008 Publication Date 2014-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 29 Open Access  
  Notes Approved Most recent IF: 2.846; 2014 IF: 2.453  
  Call Number UA @ lucian @ c:irua:118302 Serial 1575  
Permanent link to this record
 

 
Author Vandenbroucke, A.M.; Aerts, R.; Van Gaens, W.; De Geyter, N.; Leys, C.; Morent, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Modeling and experimental study of trichloroethylene abatement with a negative direct current corona discharge Type A1 Journal article
  Year 2015 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P  
  Volume 35 Issue 35 Pages 217-230  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, we study the abatement of dilute trichloroethylene (TCE) in air with a negative direct current corona discharge. A numerical model is used to theoretically investigate the underlying plasma chemistry for the removal of TCE, and a reaction pathway for the abatement of TCE is proposed. The Cl atom, mainly produced by dissociation of COCl, is one of the controlling species in the TCE destruction chemistry and contributes to the production of chlorine containing by-products. The effect of humidity on the removal efficiency is studied and a good agreement is found between experiments and the model for both dry (5 % relative humidity (RH)) and humid air (50 % RH). An increase of the relative humidity from 5 % to 50 % has a negative effect on the removal efficiency, decreasing by ±15 % in humid air. The main loss reactions for TCE are with ClO·, O· and CHCl2. Finally, the by-products and energy cost of TCE abatement are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000347285800014 Publication Date 2014-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324;1572-8986; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.355 Times cited 9 Open Access  
  Notes Approved Most recent IF: 2.355; 2015 IF: 2.056  
  Call Number c:irua:118882 Serial 2108  
Permanent link to this record
 

 
Author Bogaerts, A.; Yusupov, M.; Van der Paal, J.; Verlackt, C.C.W.; Neyts, E.C. pdf  doi
openurl 
  Title Reactive molecular dynamics simulations for a better insight in plasma medicine Type A1 Journal article
  Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 11 Issue 12 Pages 1156-1168  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this review paper, we present several examples of reactive molecular dynamics simulations, which contribute to a better understanding of the underlying mechanisms in plasma medicine on the atomic scale. This includes the interaction of important reactive oxygen plasma species with the outer cell wall of both gram-positive and gram-negative bacteria, and with lipids present in human skin. Moreover, as most biomolecules are surrounded by a liquid biofilm, the behavior of these plasma species in a liquid (water) layer is presented as well. Finally, a perspective for future atomic scale modeling studies is given, in the field of plasma medicine in general, and for cancer treatment in particular.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000346034700007 Publication Date 2014-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 22 Open Access  
  Notes Approved Most recent IF: 2.846; 2014 IF: 2.453  
  Call Number UA @ lucian @ c:irua:121269 Serial 2822  
Permanent link to this record
 

 
Author Kozák, T.; Bogaerts, A. pdf  url
doi  openurl
  Title Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model Type A1 Journal article
  Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 24 Issue 24 Pages 015024  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We use a zero-dimensional reaction kinetics model to simulate CO2 conversion in microwave discharges where the excitation of the vibrational levels plays a significant role in the dissociation kinetics. The model includes a description of the CO2 vibrational kinetics, taking into account state-specific VT and VV relaxation reactions and the effect of vibrational excitation on other chemical reactions. The model is used to simulate a general tubular microwave reactor, where a stream of CO2 flows through a plasma column generated by microwave radiation. We study the effects of the internal plasma parameters, namely the reduced electric field, electron density and the total specific energy input, on the CO2 conversion and its energy efficiency. We report the highest energy efficiency (up to 30%) for a specific energy input in the range 0.41.0 eV/molecule and a reduced electric field in the range 50100 Td and for high values of the electron density (an ionization degree greater than 10−5). The energy efficiency is mainly limited by the VT relaxation which contributes dominantly to the vibrational energy losses and also contributes significantly to the heating of the reacting gas. The model analysis provides useful insight into the potential and limitations of CO2 conversion in microwave discharges.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000348298200025 Publication Date 2014-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 100 Open Access  
  Notes Approved Most recent IF: 3.302; 2015 IF: 3.591  
  Call Number c:irua:122243 Serial 1087  
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title A 2D model for a gliding arc discharge Type A1 Journal article
  Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 24 Issue 24 Pages 015025  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this study we report on a 2D fluid model of a gliding arc discharge in argon. Despite the 3D nature of the discharge, 2D models are found to be capable of providing very useful information about the operation of the discharge. We employ two modelsan axisymmetric and a Cartesian one. We show that for the considered experiment and the conditions of a low current arc (around 30 mA) in argon, there is no significant heating of the cathode surface and the discharge is sustained by field electron emission from the cathode accompanied by the formation of a cathode spot. The obtained discharge power and voltage are relatively sensitive to the surface properties and particularly to the surface roughness, causing effectively an amplification of the normal electric field. The arc body and anode region are not influenced by this and depend mainly on the current value. The gliding of the arc is modelled by means of a 2D Cartesian model. The arcelectrode contact points are analysed and the gliding mechanism along the electrode surface is discussed. Following experimental observations, the cathode spot is simulated as jumping from one point to another. A complete arc cycle is modelled from initial ignition to arc decay. The results show that there is no interaction between the successive gliding arcs.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000348298200026 Publication Date 2014-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 34 Open Access  
  Notes Approved Most recent IF: 3.302; 2015 IF: 3.591  
  Call Number c:irua:122538 c:irua:122538 c:irua:122538 c:irua:122538 Serial 3  
Permanent link to this record
 

 
Author Peerenboom, K.; Parente, A.; Kozák, T.; Bogaerts, A.; Degrez, G. pdf  url
doi  openurl
  Title Dimension reduction of non-equilibrium plasma kinetic models using principal component analysis Type A1 Journal article
  Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 24 Issue 24 Pages 025004  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The chemical complexity of non-equilibrium plasmas poses a challenge for plasma modeling because of the computational load. This paper presents a dimension reduction method for such chemically complex plasmas based on principal component analysis (PCA). PCA is used to identify a low-dimensional manifold in chemical state space that is described by a small number of parameters: the principal components. Reduction is obtained since continuity equations only need to be solved for these principal components and not for all the species. Application of the presented method to a CO2 plasma model including state-to-state vibrational kinetics of CO2 and CO demonstrates the potential of the PCA method for dimension reduction. A manifold described by only two principal components is able to predict the CO2 to CO conversion at varying ionization degrees very accurately.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000356816200008 Publication Date 2015-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.302; 2015 IF: 3.591  
  Call Number c:irua:123534 Serial 704  
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Verlackt, C.C.; Khalilov, U.; van Duin, A.C.T.; Bogaerts, A. pdf  url
doi  openurl
  Title Inactivation of the endotoxic biomolecule lipid A by oxygen plasma species : a reactive molecular dynamics study Type A1 Journal article
  Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 12 Issue 12 Pages 162-171  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Reactive molecular dynamics simulations are performed to study the interaction of reactive oxygen species, such as OH, HO2 and H2O2, with the endotoxic biomolecule lipid A of the gram-negative bacterium Escherichia coli. It is found that the aforementioned plasma species can destroy the lipid A, which consequently results in reducing its toxic activity. All bond dissociation events are initiated by hydrogen-abstraction reactions. However, the mechanisms behind these dissociations are dependent on the impinging plasma species, i.e. a clear difference is observed in the mechanisms upon impact of HO2 radicals and H2O2 molecules on one hand and OH radicals on the other hand. Our simulation results are in good agreement with experimental observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000350275400005 Publication Date 2014-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 18 Open Access  
  Notes Approved Most recent IF: 2.846; 2015 IF: 2.453  
  Call Number c:irua:123540 Serial 1589  
Permanent link to this record
 

 
Author Ramakers, M.; Michielsen, I.; Aerts, R.; Meynen, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge Type A1 Journal article
  Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 12 Issue 12 Pages 755-763  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This paper demonstrates that the CO2 conversion in a dielectric barrier discharge rises drastically upon addition of Ar or He, and the effect is more pronounced for Ar than for He. The effective CO2 conversion, on the other hand, drops upon addition of Ar or He, which is logical due to the lower CO2 content in the gas mixture, and the same is true for the energy efficiency, because a considerable fraction of the energy is then consumed into ionization/excitation of Ar or He atoms. The higher absolute CO2 conversion upon addition of Ar or He can be explained by studying in detail the Lissajous plots and the current profiles. The breakdown voltage is lower in the CO2/Ar and CO2/He mixtures, and the discharge gap is more filled with plasma, which enhances the possibility for CO2 conversion. The rates of electron impact excitationdissociation of CO2, estimated from the electron densities and mean electron energies, are indeed higher in the CO2/Ar and (to a lower extent) in the CO2/He mixtures, compared to the pure CO2 plasma. Moreover, charge transfer between Ar+ or Ar2+ ions and CO2, followed by electron-ion dissociative recombination of the CO2+ ions, might also contribute to, or even be dominant for the CO2 dissociation. All these effects can explain the higher CO2 conversion, especially upon addition of Ar, but also upon addition of He.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000359672400007 Publication Date 2015-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 63 Open Access  
  Notes Approved Most recent IF: 2.846; 2015 IF: 2.453  
  Call Number c:irua:126822 Serial 799  
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Similarities and differences between gliding glow and gliding arc discharges Type A1 Journal article
  Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 24 Issue 24 Pages 065023  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work we have analyzed the properties of a gliding dc discharge in argon at atmospheric pressure. Despite the usual designation of these discharges as ‘gliding arc discharges’, it was found previously that they operate in two different regimes—glow and arc. Here we analyze the differences in both regimes by means of two dimensional fluid modeling. In order to address different aspects of the discharge operation, we use two models—Cartesian and axisymmetric in a cylindrical coordinate system. The obtained results show that the two types of discharges produce a similar plasma column for a similar discharge current. However, the different mechanisms of plasma channel attachment to the cathode could produce certain differences in the plasma parameters (i.e. arc elongation), and this can affect gas treatments applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368117100028 Publication Date 2015-11-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 12 Open Access  
  Notes This work is financially supported by the Methusalem financing and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen Approved Most recent IF: 3.302; 2015 IF: 3.591  
  Call Number c:irua:129214 Serial 3952  
Permanent link to this record
 

 
Author Van Laer, K.; Bogaerts, A. pdf  url
doi  openurl
  Title Fluid modelling of a packed bed dielectric barrier discharge plasma reactor Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 015002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A packed bed dielectric barrier discharge plasma reactor is computationally studied with a fluid model. Two different complementary axisymmetric 2D geometries are used to mimic the intrinsic 3D problem. It is found that a packing enhances the electric field strength and electron temperature at the contact points of the dielectric material due to polarization of the beads by the applied potential. As a result, these contact points prove to be of direct importance to initiate the plasma. At low applied potential, the discharge stays at the contact points, and shows the properties of a Townsend discharge. When a high enough potential is applied, the plasma will be able to travel through the gaps in between the beads from wall to wall, forming a kind of glow discharge. Therefore, the inclusion of a so-called ‘channel of voids’ is indispensable in any type of packed bed modelling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370974800009 Publication Date 2015-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 50 Open Access  
  Notes The authors gratefully thank St Kolev for the many interesting discussions and the useful advise in setting up the models. This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions— Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb. ac.be/), and supported by the Belgian Science Policy Office (BELSPO). K Van Laer is indebted to the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for financial support. Approved Most recent IF: 3.302  
  Call Number c:irua:129802 Serial 3982  
Permanent link to this record
 

 
Author Bogaerts, A.; van de Sanden, R. pdf  url
doi  openurl
  Title Special Issue of Papers by Plenary and Topical Invited Lecturers at the 22nd International Symposium on Plasma Chemistry (ISPC 22), 5–10 July 2015, Antwerp, Belgium: Introduction Type Editorial
  Year 2016 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P  
  Volume 36 Issue 36 Pages 1-2  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370720800001 Publication Date 2016-01-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor 2.355 Times cited Open Access  
  Notes Approved Most recent IF: 2.355  
  Call Number c:irua:130713 Serial 4003  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: