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The chemical complexity of non-equilibrium plasmas poses a challenge for plasma

modeling because of the computational load. This paper presents a dimension re-

duction method for such chemically complex plasmas based on principal component

analysis. Principal component analysis (PCA) is used to identify a low-dimensional

manifold in chemical state space that is described by a small number of parameters:

the principal components. Reduction is obtained since continuity equations only need

to be solved for these principal components and not for all the species. Application

of the presented method to a CO2 plasma model including state-to-state vibrational

kinetics of CO2 and CO demonstrates the potential of the PCA method for dimension

reduction. A manifold described by only two principal components is able to predict

the CO2 to CO conversion at varying ionization degrees very accurately.
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I. INTRODUCTION

Many plasma applications exploit the rich chemistry that non-equilibrium plasmas pro-

vide. Examples include biomedical plasmas1–3 and plasmas for environmental applications4–6.

Non-equilibrium plasmas are very effective in creating chemically reactive species such as

radicals and electronically and vibrationally excited states, even at low temperatures.

This chemical complexity of non-equilibrium plasmas poses a challenge for plasma mod-

eling. Not only do many species have to be taken into account, often also the internal states

have to be dealt with by a state-to-state approach because of the non-equilibrium character

of the plasma. Furthermore, many different time scales are involved in the chemical reac-

tions, resulting in a stiff system of equations. These issues cause the computational load to

become prohibitive for spatially resolved simulations of chemically complex plasmas.

Clearly, there is a need for dimension reduction techniques to keep simulations manageable

in the plasma physics community. Roughly speaking, there are two main strategies for

reducing the dimensionality: mechanism reduction and reparametrization of the chemical

state space. An example of mechanism reduction is grouping of energy levels in state to

state kinetic models7,8. Although developed as an analysis tool, the algorithm of Lehmann

to determine principal reaction pathways9,10 can also be viewed as an example of mechanism

reduction.

Despite the impressive results obtained in combustion simulations11–13, the second ap-

proach of reparametrization of the chemical state space has not yet found its way to plasma

physics modeling. It is the most common approach in combustion and is based on the fact

that the composition lies on a so-called low dimensional manifold. Due to the existence of

this low dimensional manifold, it is possible to describe the composition with only a small

number of parameters. Successful methods using this approach are for example Flamelet

Generated Manifolds11 and Principal Component Analysis (PCA)14–22. Other approaches

have been proposed to deal with highly non-linear systems, based on non-linear component

analysis in combination with diffusion maps23.

This article presents the application of PCA to non-equilibrium plasma models. PCA

is a statistical procedure to reduce the dimensionality of datasets by transforming a large

number of correlated variables into a smaller number of uncorrelated variables called princi-

pal components (PCs). As a case study, a 0D state-to-state kinetic model of CO2 including
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vibrational levels of CO2 and CO is used. The original variables (species densities) are

projected onto the principal component basis. Reduction is achieved by solving continuity

equations for only a few principal components. To our knowledge it is the first time that

this approach is applied to a plasma model. Only very recently12, this approach was demon-

strated for a combustion simulation. To tailor the approach of solving principal component

continuity equations to plasmas, a log transformation is introduced to deal with the expo-

nential behavior of the vibrationally excited states, which has never been considered in prior

applications of the method. Another novel contribution is the use of tabulation within PCA,

to improve the accuracy of the reconstruction.

This article is organized as follows. The CO2 plasma kinetics model is presented in section

II. Subsequently, the theory of principal component analysis is introduced in section III.

Also the principal component continuity equations are derived in this section. In section

IV, results of the application of PCA to the CO2 plasma model are presented. Firstly, the

influence of log transformation, scaling and retrieving the original variables from a lookup

table is studied through an a priori analysis of the dataset. We will also briefly discuss

the physical interpretation of the principal components. Secondly, the principal component

continuity equations are solved to demonstrate the ability to reduce non-equilibrium plasma

simulations. Finally, conclusions are drawn in section V.

II. CO2 PLASMA MODEL

A model was developed to simulate the state-to-state vibrational kinetics of CO2 in a non-

equilibrium plasma, with special attention to the dissociation of CO2 due to the excitation

of its vibrational levels. The model can be characterized as a zero-dimensional model, which

means that the time evolution of the densities of the plasma species in a fixed volume of

plasma is calculated. Mathematically, it is expressed by a set of coupled ordinary differential

equations of the form

dni

dt
=

∑

j

[

(aRij − aLij)kj
∏

l

nL
l

]

, (1)

where ni is the density of species i, aRij and aLij are the right-hand side and left-hand side

stoichiometric coefficients of species i in the reaction j, kj is the reaction rate constant and

nL
l is the density of the lth reactant of reactions j. These equations are also coupled with the
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Neutral ground states CO2, CO, O2, O3, O, C2O, C, C2

Vibrational levels CO2(25), CO(10), O2(4)

Electronic states CO2(2), CO(4), O2(2)

Charged species CO2
+, e

TABLE I. Summary of all species included in the model. The numbers between brackets indicate

the number of excited levels taken into account.

Boltzmann equation which is solved for the electron energy distribution function (EEDF).

Energy is supplied to the plasma electrons by an external electric field (specified by the

reduced electric field E/N and by the reduced frequency ω/N , in case of an AC field, where

N =
∑

ni is the total gas density). We use an existing code ZDPlasKin24 which features an

interface for description of the plasma species and reactions, a solver for the set of differential

equations and a Boltzmann equation solver BOLSIG+25.

The species and reactions used in this work are based on our previous work6. We have

found that the dissociation of CO2 is strongly influenced by the population of highly excited

vibrational levels, which are determined mainly by electron impact vibrational excitation

and by the VT and VV relaxation of the CO2 vibrational levels. In the present work we

focus in particular on the kinetics of CO2 vibrational levels and on the applicability of PCA

for reduction of the computation load. Compared to the previous model6, we have reduced

the reaction chemistry by omitting all charged species (except for electrons and CO2
+ ions),

which play a minor role in the kinetics of the neutral species and we simply set the electron

density to a given value.

The species included in the model are summarized in table I. For CO2, CO and O2,

we have included several vibrational levels and electronically excited levels. The vibrational

levels of CO2 used in the model are shown in figure 1. We use four lowest effective symmetric

mode levels (denoted by letters) and 21 asymmetric mode levels (denoted by numbers) up

to the dissociation limit of the molecule. Moreover, we use 10 vibrational levels of CO and

4 vibrational levels of O2.

The reactions used in the model are of three types: electron impact reactions, heavy

particle reactions involving change of vibrational energy and heavy particle reactions leading

to breaking and formation of new species, see tables IV, V and VI, respectively. In the next

paragraphs, we will have a closer look at the reactions used, however, for even more detailed
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FIG. 1. Effective energy levels of CO2 included in the model (black lines). The asymmetric mode

levels (0,00,v3) where v3 = 0 . . . 21 are denoted by the numbers v3. The levels (v1,v
l2
2 ,v3) satisfying

n = v2+2v1 > 0 for a given v3 are grouped to effective symmetric mode levels and labeled (0,n,v3)

in the figure. The four lowest symmetric mode levels (with v3 = 0) are included in the model and

denoted by letters a . . . d, corresponding to n = 1 . . . 4, respectively.

information about the reactions and the rate constants used, see6.

The electron impact reactions (table IV) are given in the form of a cross section database

that is passed to the Boltzmann equation solver. Because we have omitted the charged

species, the reactions which result in the formation of ions are not taken into account in

the kinetic part of the model, nevertheless, they have to be included in the cross section

database in order to calculate the EEDF correctly.

The reactions in tables V and VI are given in the form of temperature-dependent rate

constants. The vibrational energy exchange reactions in table V include three types of

reactions: VT relaxation (V1 – V4), intermode VV relaxation which represents vibrational
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energy exchange among the symmetric and asymmetric mode of CO2 (V5) and VV relaxation

between CO2 and CO molecules (V6 – V8). VT relaxation is the main process responsible

for the decrease of vibrational energy stored in the molecules. The VV relaxation among

CO2 levels (V6) is almost resonant, i.e. little vibrational energy is lost to translation,

and is responsible for redistribution of the vibrational energy in the asymmetric mode.

This reaction leads to the population of high-energy levels (Treanor distribution)26. For all

reactions, only single-quantum transitions are taken into account.

Vibrational excitation can also have a significant effect on the chemical reactions sum-

marized in table VI. This is modeled by the Fridman–Macheret α-model27,28 which assumes

that the activation energy of a reaction is lowered by the vibrational energy of the reacting

species multiplied by an effectiveness parameter α. This parameter is assumed to be 1 for

strongly endothermic reactions, such as (N1) and (N9), and 0.5 for thermoneutral reactions

such as (N3) and (N4). Therefore, an excited molecule of CO2 with vibrational energy close

to the dissociation limit is easily dissociated through reactions (N1) and (N3), which are

the most efficient channels of CO2 dissociation in non-equilibrium plasmas29. Therefore, as

we have already mentioned earlier, an accurate calculation of dissociation requires a calcu-

lation of the vibrational distribution function of CO2, which is a result of many interactions

between the individual vibrational levels (table V).

Altogether the model includes 57 species and 1683 individual reactions, most of the

reactions come from the state-to-state interactions of vibrational levels. It is clear that this

amount of species and reactions in a spatially resolved simulation can not be handled in a

reasonable time.

The calculations performed to obtain data for the PCA were done in the following way.

We assumed constant gas pressure, gas temperature, electron density and electric field in-

tensity during the whole simulation time. This represents a gas of constant temperature

flowing through a homogeneous plasma, which can be used, for example, as a first approxi-

mation of a microwave surfaguide discharge30. These simplifications do not at all limit the

applicability of the PCA which could be used in the same way even when the electric field,

electron density or gas temperature changes.

In this case study, the values of the plasma parameters are also not critically important.

We used values lying in the typical range of parameters used in the microwave discharge

experiments28, i.e. a pressure of 100Torr, a reduced electric field of 50Td with a frequency
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of 2.45GHz and a gas temperature of 300K. We performed several runs with different values

of the ionization degree (electron density) which ranged from 10−7 to 10−5. The simulation

time varied with the ionization degree so that the specific energy input was 1 eV/molecule in

all calculations. It was found out in our calculations that this value is optimal for obtaining

high energy efficiency of the CO2 conversion under the above mentioned conditions.

III. PRINCIPAL COMPONENT ANALYSIS

At any point in time and space, the composition in a plasma is fully determined by a set

of chemical state space variables. Throughout this article, the species densities are used as

the chemical state space variables, but the mole or mass fractions can be used just as well.

The chemical state space is the space spanning all possible compositions and its dimension

is equal to the number of species, hereafter denoted as Q. Due to convection, diffusion and

chemical reactions, the composition changes in time and space. These changes can be seen

as trajectories in the chemical state space. Reduction techniques rely on the fact that the

composition relaxes quickly to a low-dimensional manifold due to equilibration driven by

fast processes. This low-dimensional manifold is a lower dimensional space (with dimension

< Q) inside the chemical state space. The task of PCA now is to search for a new set of

variables that optimally describe the manifold.

In figure 2, a schematic overview of the PCA method can be seen. The method starts

with generation of training data. The idea of PCA is that the training data can be generated

with representative, inexpensive 0D or 1D models. The results of these inexpensive models

are used to define the low-dimensional manifold, which can then be used to reduce expensive

2D or 3D models. This approach was successfully demonstrated for a 2D syngas jet flame12.

The training data is stored in a matrix X0 (n×Q), containing n observations of Q vari-

ables. In this work, the variables are the species densities and the observations correspond

to different time steps of the CO2 plasma kinetics model as presented in section II. As a

next step, the data must be scaled and centered31 to improve the performance of PCA:

X =
(

X0 − X̄0

)

D−1, (2)

where X contains the scaled data, X̄0 contains the mean of each variable and D is a diagonal

matrix that contains the scaling coefficients of all the variables. Different scaling methods
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t
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Training / PCA

LUT PC source terms
LUT densities

2D / 3D reduced simulation

FIG. 2. Schematic overview of dimension reduction using PCA. In the figure ‘LUT’ is used as an

abbreviation for lookup table.

can be used, as detailed in the table below. The best scaling method is the one giving the

smoothest manifold. This can be judged visually looking at the smoothness of the mani-

fold after PCA has been performed. Another option is to calculate a so-called smoothness

parameter which gives a quantification of the non-linearity of the manifold12.

After the centering and scaling the covariance matrix CX is calculated:

CX =
1

n− 1
XTX. (3)

The covariance matrix measures the correlation between the different species. The principal

components, which are the parametrization variables of the manifold, are calculated as the
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Method Scaling coefficient

auto Dii = si

pareto Dii =
√
si

vast Dii =
s2i

X̄0,i

range Dii = max
(

X0,i − X̄0,i

)

−min
(

X0,i − X̄0,i

)

level Dii = X̄0,i

TABLE II. Different scaling methods31. The symbol si refers to the standard deviation of variable

i.

eigenvectors A of the covariance matrix:

CX = ALAT . (4)

Note that the principal components are linear combinations of all the original variables. Also

remark that the eigenvalues in the diagonal matrix L, which are a measure of the variance,

are ordered in decreasing order. As a result, the first principal components account for most

of the variation in the dataset. The original dataset can now be projected onto the principal

component basis:

Z = XA, (5)

where Z contains the so called principal component scores. Likewise, the original dataset

can also be recovered from the principal component scores:

X = ZA−1, (6)

where A−1 = AT . The fact that the first principal components account for most of the vari-

ation can be used for dimension reduction. This reduction can be achieved by approximating

X with the first q (q < Q) principal components:

X ≈ Xq = ZqAq
T , (7)

where Aq is the truncated version of A.

In15, the idea was proposed to derive continuity equations for the principal components

from the species continuity equations. Although the final goal is to use continuity equations

for the principal components in 2D or 3D simulations as illustrated in figure 2, we will stick to
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0D training data and 0D principal component continuity equations in this initial study. This

is necessary to demonstrate the feasibility and reduction potential of the proposed approach

for plasma simulations. Furthermore, it allows to focus on the effect of the combination of

the log transformation and the tabulation. To derive the 0D continuity equations for the

PCs, we start from the coupled set of ODE’s describing the time evolution of the species:

∂ni

∂t
= Sni

, (8)

where Sni
is the source term for the densities. After subtracting the species mean ni and

dividing by the scaling factor Dii, we get:

∂
(

ni−ni

Dii

)

∂t
=

Sni

Dii

. (9)

Multiplication of the equations with the ith component of the kth PC aik and summation

over all the species gives:

∂
∑

i aik

(

ni−ni

Dii

)

∂t
=

∑

i

aik
Sni

Dii

. (10)

As
∑

i aik

(

ni−ni

Dii

)

is the definition of the PC score Zk, equation (10), can be rewritten as:

∂Zk

∂t
= SZk

, (11)

where SZk
is the source term for Zk, defined as:

SZk
=

∑

i

aik
Sni

Dii

. (12)

Alternatively, when a log transformation is applied before carrying out PCA, there is an

extra factor ni in the denominator and the principal component source terms read:

SZk
=

∑

i

aik
Sni

Diini

. (13)

In principle, one could use these expressions to calculate the source terms for the principle

components. However, it has been shown21 in combustion simulations that the reconstruc-

tion errors of the densities strongly affect the accuracy of the source terms. Due to the

approximation of the densities by a limited number of principal components using equation

(7), a small error is made. However, this small error will propagate and increase because of

the strong non-linearity of the source terms. As a result, the source terms soon become too
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inaccurate when the number of retained PCs is decreased. Therefore, we use linear inter-

polation from a lookup table to recover the principal component source terms and species

densities, as will be further discussed in section IVA2.

IV. RESULTS

A. A priori PCA

1. Log transformation

A characteristic of non-equilibrium plasmas is that they can enhance chemical reactivity

by electronic or vibrational excitation of the reacting species. In equilibrium, the population

of such excited states is distributed according to a Boltzmann distribution where the ratio

between the populations of two states is proportional to the exponent of the energy difference

between the two levels. Due to this exponential behavior, different excited states can have

very different populations. Also outside equilibrium, the population of the different energy

levels varies over orders of magnitude. Moreover, the population of one excited state can

also vary wildly in space and time due to gradients in for example the electron temperature.

These variations of orders of magnitude pose a serious challenge to the performance of

principal component analysis as can be seen in figure 3. This figure shows the a priori
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FIG. 3. A priori reconstruction of the time evolution of the CO2 asymmetric stretch mode levels

with ‘range’ scaling and without log transformation.
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reduction of the training dataset by equation (7) using 5 and 10 principal components. The

solid lines represent the original training data, whereas the circles represent the a priori

reconstruction using equation (7). The color indicates the vibrational level. Whereas the

reconstruction is accurate at later times, it fails for the initial phase and even generates

negative densities. This can be seen as circles running off the figure. Especially the lower

species concentrations are affected by the errors. It can be seen that increasing the number

of retained principal components improves the result, but still the errors are unsatisfactory.

To decrease the dynamic range of the species concentrations, a log transformation is per-

formed on the original dataset. The result can be seen in figure 4. The decrease in the
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FIG. 4. A priori reconstruction of the time evolution of the CO2 asymmetric stretch mode levels

with ‘range’ scaling and log transformation.

dynamic range greatly improves the performance of principal components analysis. The

results remain physical and the reconstruction captures much better the lower species con-

centrations. The log transformation also has a beneficial effect on the manifold shape as

can be seen in figure 5. The manifold shows the time dependent reaction trajectories of the

plasma kinetics model at seven different ionization degrees. The smoothness and uniqueness

of the manifold are crucial for the accuracy of the data reconstruction. Uniqueness is needed

to be able to assign a single value of the species densities to each set of values of the first

two principal components. Furthermore, a small change in the principal component values

should ideally lead to a small change in the species densities for accurate data reconstruc-

tion. The less gradients in the manifold, the better. When looking at the manifold, the
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FIG. 5. Comparison of the manifold shape with (a) and without (b) log transformation. The

‘range’ scaling method is used. The manifold shows the time dependent reaction trajectories of

the plasma kinetics model at seven different ionization degrees.

reaction trajectories should therefore be well separated and non-overlapping. With the log

transformation all the points on the manifold can be uniquely described as a function of the

two principal components Z1 and Z2. Without the log transformation this is not the case

and multiple observations can be associated with single values of Z1 and Z2. As a result,

without the log transformation more principal components are needed to uniquely describe

the chemical state space.

2. Reconstruction and interpolation

The log transformation greatly improves the results of the reconstruction of the species

densities. Still, errors are visible when ten principal components are retained. It is known

from combustion simulations that these reconstruction errors strongly affect the accuracy of

the calculation of the source terms needed in the principal component continuity equations.

The reason is that PCA is a linear method while the non-equilibrium processes in plasmas

are highly non-linear. In the current plasma study, the problem is even bigger since the log

transformation requires to take the exponent to recover the species densities. This causes

a blow up of the error of the principal component source terms when not all principal

components are retained. Only very recently, a solution for this problem has been proposed
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FIG. 6. 2D lookup tables for the densities and the principal component source terms. The lookup

tables for the principal component source terms are only used in the a posteriori study.

in the form of non-linear regression12,21. In this case the densities are not recovered using

relation (7) but non-linear regression techniques are used to recover all the state space

variables including the principal component source terms. As an alternative to non-linear

regression we use linear interpolation from 2D lookup tables to recover all the state space

variables (densities in our case) and principal component source terms in the current study.

In these lookup tables the densities and principal components source terms are stored as a

function of Z1 and Z2, as depicted in figure 6.

A comparison between the reconstruction using relation (7) and interpolation can be seen

in figure 7. Interpolation clearly outperforms the reconstruction using relation (7), when 2

principal components are retained. This is also quantified in table III. Figure 8 displays the

eigenvalue magnitudes and the variance explained by the first two principal components.

From this figure, it could indeed be seen that two principal components are sufficient to

explain more than 95% of the variance of the data.

3. Scaling

The importance of scaling of the data for combustion simulations has been outlined in31.

Scaling of the data also has a large influence on the shape of the manifold in the case of

plasmas, as can be seen from figure 9. Except for the ‘vast’ scaling method, all scaling
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FIG. 7. A priori recovering of the time evolution of the CO2 asymmetric stretch mode levels using

two principal components using a) relation (7) and b) interpolation from a lookup table. Before

performing PCA a log transformation is applied to the original data. Scaling method: ‘range’.
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TABLE III. R2 statistics and normalized root mean square (NRMS) error for the log of the species

densities comparing reconstruction and interpolation from a lookup table. The ‘range’ scaling

method and a log transformation are used.

species R2 NRMS error R2 NRMS error

reconstruction reconstruction interpolation interpolation

CO2 0.9255 0.0001 1 3.177e-18

CO 0.9889 0.0012 1 3.220e-18

O2 0.9984 0.0008 1 3.189e-18

O3 0.9596 0.0073 1 3.074e-18

methods give a unique mapping using two principal components and a log transformation.

It seems that for the dataset used the ‘range’ scaling method performs best. The reaction

trajectories of the training set are most smoothly projected onto the principal component

basis. The ‘range’ scaling gives the clearest interpretation of the manifold. Looking at the

manifold in the case of ‘range’ scaling, it seems that Z2 corresponds to the ionization degree

(different reaction trajectories of the training set) and Z1 to the progress of the reaction

within one reaction trajectory. To check this physical interpretation, scatter plots of Z1 and

Z2 against the log of the CO ground state density and the electron density are presented in

figure 10. It can be seen that Z1 is strongly correlated with the ground state CO density. The

amount of CO produced is a measure of the reaction progress in the CO2 to CO conversion

process. Component Z2 also has a smaller but still clear correlation with the electron density.

B. A posteriori PCA

1. Verification

To demonstrate the suitability of PCA to carry out reduced simulations, time integration

of the principal component continuity equations is performed at an ionization degree of 1e-6,

which is one of the training data sets. Log transformation, tabulation and ‘range’ scaling

are used for the reduced simulation. Both the principal component source terms and the

densities are recovered by linear interpolation from a lookup table parametrized by Z1 and

Z2. The principal component source terms are recovered every time step, while the species
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FIG. 11. Comparison of the full and the reduced calculation for the ‘range’ scaling method. In

figure b, the gray circles are the training data, the black ones the reduced simulation.

densities are only needed when the reduced simulation has finished. In figure 11 it can be

seen that the reduced simulation accurately describes the time evolution of the vibrational

levels of CO2. The reduced simulation also nicely follows the trajectory of the training set in

principal component space. One can argue that when tabulation is used, PCA is not strictly

necessary as the state space variables and source terms can be tabulated as a function of

any variable. That this is not the case, can be seen in figure 12, where different scaling
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FIG. 12. Comparison of the full and the reduced calculation for different scaling methods.

methods are used. The shape of the manifold is different when different parametrization

variables are used and this influences the accuracy of the reduced simulations. The ‘level’

scaling method gives a less smooth manifold than the ‘range’ scaling method. As a result

the reduced simulation is less accurate. Usage of the ‘vast’ scaling method really ruins the

reduced calculation. The usage of PCA and proper scaling is necessary to find an optimal

parametrization of the manifold.

The speedup obtained in the reduced simulations is quite substantial. Since the full

model is implemented in Fortran and the reduced model in Matlab, it is difficult to compare

the calculation times directly. However the big difference in calculation time between the

full model (ca 30 s) and the reduced model (ca 0.5 s) supports the potential of PCA to
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FIG. 13. Comparison of training data in black and reduced simulations in gray at different ioniza-

tion degrees. The end time of the reduced simulations is 7.38e-6 s.

reduce the calculation time of non-equilibrium plasma simulations. Speedups of one to two

orders of magnitude should be attainable. The speedup is obtained because the method

not only reduces the number of variables to be solved for, but also reduces the stiffness of

the equations and avoids run-time calculation of the chemistry via the tabulation of the

principal component source terms. Note that although the reduced simulation only solves

for two variables, it gives as much physical information as the original simulation: the time

evolution of all the species densities.

2. Prediction

For real simulations it is not sufficient that the method can accurately redo the training

simulations. The method also has to have predictive power. To test the predictive power

of PCA, time integration of the principal component continuity equations is performed here

at different ionization degrees that were not in the original training data set. The principal

component continuity equations were integrated until 7.38e-6 s. The result can be seen

in figure 13. Both the training data and the reduced simulations show a clear transition

in CO2 conversion once a certain ionization degree has been reached, as is clear from the

higher CO ground state density. This transition can be understood as follows. As the

reduced simulations are run for a fixed time, the specific energy input (eV/molecule) is
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lower for a lower ionization degree. As was shown in6 above a critical specific energy input

there is enough vibrational excitation to stimulate the dissociation from high vibrational

levels, thus increasing the CO2 to CO conversion. When the ionization degree is inside the

range of the original data set (interpolation in the lookup table) the reduced simulations

give an accurate prediction of the amount of CO produced after 7.38e-6 s as a function of the

ionization degree. Also the trajectories of the reduced simulation follow nicely the manifold

shape of the original training data. When the ionization degree is outside the training range,

but close to the boundaries of the training set, the method still gives a reasonable prediction

of the amount of CO produced. However, when the ionization degree lies too far from the

original training set, the method fails. This is inherent to the use of a lookup table. It

is required that the values of the principal components obtained in the reduced simulation

stay within the range of the table. If they run out of this range, linear extrapolation based

on the points on the boundary of the table will soon become inaccurate for highly non-

linear processes like plasma kinetics. When using regression this is not necessarily the case.

Regression takes into account non-linearity. Furthermore, all the training points (instead

of only a few on the boundary ) are used when doing a prediction based on regression.

Therefore, when the principal components run out of the range of the original training data,

non-linear regression might be better than interpolation from a lookup table.

V. CONCLUSIONS

A reduction method based on principal component analysis has been implemented and

tested on a state-to-state kinetics model of CO2. Principal component analysis was used

to identify the directions with most variance in a training dataset. In the a priori anal-

ysis it was shown that for our CO2 plasma model, a log transformation is crucial for an

accurate mapping of the original data set onto the principal components and back. Further

improvement of the accuracy was achieved by using tabulation of the state space variables

as a function of the principal components. Also scaling of the training data was shown to

be important for the identification of the manifold.

A posteriori validation was provided by solving, for the first time to the authors knowl-

edge, the principal component continuity equations projected into a log feature space and

using tabulation to improve the accuracy of source term reconstruction. With only two
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principal components, the reduced model predicts very accurately the CO2 to CO conver-

sion at varying ionization degrees. Furthermore, the reduced model needs only a fraction

of the computational time of the detailed kinetic model. This is not so much of an issue

in the present example, where the original model is 0D, but it will become crucial when

implementing large chemistry sets in 2D or 3D models. The speedup is obtained because

the method not only reduces the number of variables to be solved for, but also reduces the

stiffness of the equations and avoids run-time calculation of the chemistry via the tabulation

of the principal component source terms.

The use of principal component analysis for the reduction of plasma models looks very

promising. The significant reduction observed in the present study could open up the way for

spatially resolved models with detailed state-to-state kinetics. Future work will investigate

the application of PCA to spatially resolved simulations.
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Appendix A: List of chemical reactions

No. Reaction Ref. Note
(X1) e + CO2 −−→ e + CO2

32 a
(X2) e + CO2 −−→ e + e + CO2

+ 32 a
(X3) e + CO2 −−→ e + e + CO+ +O 32 b
(X4) e + CO2 −−→ e + e + C+ +O2

32 b
(X5) e + CO2 −−→ e + e + O+ +CO 32 b
(X6) e + CO2 −−→ O– +CO 32 b
(X7) e + CO2 −−→ e + CO+O 32 b
(X8) e + CO2 −−→ e + CO2e1

33 a
(X9) e + CO2 −−→ e + CO2e2

33 a
(X10) e + CO2 −−→ e + CO2va

34

(X11) e + CO2 −−→ e + CO2vb
34

(X12) e + CO2 −−→ e + CO2vc
34

(X13) e + CO2 −−→ e + CO2vd
34

(X14) e + CO2vi −−→ e + CO2vj
34 c

(X15) e + CO −−→ e + CO 35 a
(X16) e + CO −−→ e + e + CO+ 35,36 a
(X17) e + CO −−→ e + e + C+ +O 35,36 b
(X18) e + CO −−→ e + e + C +O+ 35,36 b
(X19) e + CO −−→ C+O– 35 b
(X20) e + CO −−→ e + COe1

35 a
(X21) e + CO −−→ e + COe2

35 a
(X22) e + CO −−→ e + COe3

35 a
(X23) e + CO −−→ e + COe4

35 a
(X24) e + COvi −−→ e + COvj

35 d

(X25) e + C −−→ e + C 37

(X26) e + C −−→ e + e + C+ 37

(X27) e + C2 −−→ e + C2
38

(X28) e + C2 −−→ e + C + C 38

(X29) e + C2 −−→ e + e + C2
+ 38

(X30) e + O2 −−→ e + O2
39 a

(X31) e + O2 −−→ e + O +O 39 b
(X32) e + O2 −−→ e + e + O2

+ 39 a
(X33) e + O2 −−→ e + e + O +O+ 40 b
(X34) e + O2 −−→ O– +O 39 b
(X35) e + O2 −−→ e + O2v1

39

(X36) e + O2 −−→ e + O2v2
39

(X37) e + O2 −−→ e + O2v3
39

(X38) e + O2 −−→ e + O2e1
39

(X39) e + O2 −−→ e + O2e2
39

(X40) e + O3 −−→ e + O3
41

(X41) e + O3 −−→ e + O2 +O 42

(X42) e + O3 −−→ e + e + O2
+ +O 42
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TABLE V. Vibrational energy transfer reactions of CO2, CO and O2.

No. Reaction Ref. Note

(V1) CO2vx +M←−→ CO2 +M 46 x=a,b,c,d

(V2a) CO2vi +M←−→ CO2vi-1(a) +M 46

(V2b) CO2vi +M←−→ CO2vi-1(b) +M 46

(V2c) CO2vi +M←−→ CO2vi-1(c) +M 46

(V3) COvi +M←−→ COvi-1 +M 47

(V4) O2vi +M←−→ O2vi-1 +M 46

(V5) CO2vi +CO2 ←−→ CO2vi-1 +CO2vx
46 x=a,b

(V6) CO2vi +CO2j ←−→ CO2vi-1 +CO2vj+1
48,49

(V7) COvi +COvj ←−→ COvi-1 +COvj+1
47

(V8) CO2vi +COvj ←−→ CO2vi-1 +COvj+1
46

(X43) e + O3 −−→ e + O+ +O– +O 42

(X44) e + O3 −−→ O– +O2
43

(X45) e + O3 −−→ O+O2
– 43

(X46) e + O −−→ e + O 44

(X47) e + O −−→ e + e + O+ 45

TABLE IV: Electron impact reactions described by collision

cross sections.

(a) Same cross section used for reactions of CO2vi, and analogously for COvi or O2vi.

(b) Cross section modified by lowering the energy threshold by the excited state energy used

for reactions of CO2vi, and analogously for COvi and O2vi.

(c) Cross section 0→ 1 scaled and shifted using Fridman’s approximation6.

(d) Cross sections 0→ j (j = 1 . . . 10) scaled and shifted using Fridman’s approximation6.
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TABLE VI. Reactions of neutrals included in the model. The vibrational levels of CO2, CO and O2

follow the same reactions as the ground states, but the corresponding reaction rates are modified

according to the Fridman-Macheret α model (the activation energy is lowered by a fraction of the

vibrational energy, see6,28 for more details).

No. Reaction Ref.

(N1) CO2 +M −−→ CO+O+M 28

(N2) CO +O+M −−→ CO2 +M 50

(N3) CO2 +O −−→ CO+O2
28

(N4) O2 +CO −−→ CO2 +O 28

(N5) CO2 +C −−→ CO+ CO 51

(N6) CO +O3 −−→ CO2 +O2
52

(N7) CO + C+M −−→ C2O+M 50

(N8) O2 +C −−→ CO+O 50

(N9) CO +M −−→ O+C+M 53

(N10) O + C+M −−→ CO+M 52

(N11) O + C2O −−→ CO+ CO 51

(N12) O2 +C2O −−→ CO2 +CO 50

(N13) O + O3 −−→ O2 +O2
50

(N14) O3 +M −−→ O2 +O+M 52

(N15) O + O2 +M −−→ O3 +M 54

(N16) O + O+M −−→ O2 +M 55
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