toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Serov, T.V.; Dombrovski, E.N.; Ardashnikova, E.I.; Dolgikh, V.A.; el Omari, M.; el Omari, M.; Abaouz, A.; Senegas, J.; Chaban, N.G.; Abakumov, A.M.; Van Tendeloo, G. pdf  doi
openurl 
  Title Fluorite-like phases in the BaF2-BiF3-Bi2O3 system-synthesis, conductivity and defect clustering Type A1 Journal article
  Year 2005 Publication Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume (down) 40 Issue 5 Pages 821-830  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000229376500012 Publication Date 2005-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 4 Open Access  
  Notes Iap V-1 Approved Most recent IF: 2.446; 2005 IF: 1.380  
  Call Number UA @ lucian @ c:irua:54838 Serial 1240  
Permanent link to this record
 

 
Author Shpanchenko, R.V.; Lapshina, O.A.; Antipov, E.V.; Hadermann, J.; Kaul, E.E.; Geibel, C. pdf  doi
openurl 
  Title New lead vanadium phosphate with langbeinite-type structure: Pb1.5V2(PO4)3 Type A1 Journal article
  Year 2005 Publication Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume (down) 40 Issue 9 Pages 1569-1576  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000231208100018 Publication Date 2005-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 14 Open Access  
  Notes Approved Most recent IF: 2.446; 2005 IF: 1.380  
  Call Number UA @ lucian @ c:irua:55031 Serial 2320  
Permanent link to this record
 

 
Author Miglio, A.; Saniz, R.; Waroquiers, D.; Stankovski, M.; Giantomassi, M.; Hautier, G.; Rignanese, G.-M.; Gonze, X. pdf  doi
openurl 
  Title Computed electronic and optical properties of SnO2 under compressive stress Type A1 Journal article
  Year 2014 Publication Optical materials Abbreviated Journal Opt Mater  
  Volume (down) 38 Issue Pages 161-166  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We consider the effects of three different types of applied compressive stress on the structural, electronic and optical properties of rutile SnO2. We use standard density functional theory (OFT) to determine the structural parameters. The effective masses and the electronic band gap, as well as their stress derivatives, are computed within both DFT and many-body perturbation theory (MBPT). The stress derivatives for the SnO2 direct band gap are determined to be 62, 38 and 25 meV/GPa within MBPT for applied hydrostatic, biaxial and uniaxial stress, respectively. Compared to DFT, this is a clear improvement with respect to available experimental data. We also estimate the exciton binding energies and their stress coefficients and compute the absorption spectrum by solving the Bethe-Salpeter equation. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000346228800028 Publication Date 2014-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-3467; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.238 Times cited 6 Open Access  
  Notes ; This work was supported by the FRS-FNRS through a FRIA grant (D.W.) and a FNRS grant (G.H.). This work was also supported by the IWT Project Number 080023 (ISIMADE), the Region Wallonne through WALL-ETSF project Number 816849, the EU-FP7 HT4TCOS Grant No. PCIG11-GA-2912-321988, the FRS-FNRS through contracts FRFC Number 2.4.589.09.F and AIXPHO (PDR Grant T-0238.13). The authors would like to thank Yann Pouillon and Jean-Michel Beuken for their valuable technical support and help with the test and build system of ABINIT. Computational resources have been provided by the supercomputing facilities of the Universite catholique de Louvain (CISM/UCL) and the Consortium des Equipements de Calcul Intensif en Federation Wallonie Bruxelles (CECI) funded by the Fonds de la Recherche Scientifique de Belgique (FRS-FNRS) under Grant No. 2.5020.11. ; Approved Most recent IF: 2.238; 2014 IF: 1.981  
  Call Number UA @ lucian @ c:irua:122747 Serial 460  
Permanent link to this record
 

 
Author Horemans, B.; Schalm, O.; De Wael, K.; Cardell, C.; Van Grieken, R. url  doi
openurl 
  Title Atmospheric composition and micro-climate in the Alhambra monument, Granada (Spain), in the context of preventive conservation Type P1 Proceeding
  Year 2012 Publication IOP conference series : materials science and engineering Abbreviated Journal  
  Volume (down) 37 Issue Pages 012002-12008  
  Keywords P1 Proceeding; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The world famous Alhambra monument in Granada, Southern Spain, listed as UNESCO world cultural heritage since 1984, represents probably the most beautiful example of Islamic art and architecture from the Middle Ages in Europe. It is visited by ca. 2 million people annually. Granada is situated in a natural basin, surrounded by mountains with altitudes up to 3500 m. Due to this topography and the prevailing low wind speeds, pollution-derived and especially traffic-derived particulate matter often accumulates in the urban air. In order to evaluate the potential conservation risks from the surrounding air, the atmospheric composition in the Alhambra monument was evaluated. Indoor temperature and relative humidity fluctuations were evaluated for their potential degenerative effects. Furthermore, the atmospheric composition in the Alhambra was analyzed in terms of inorganic gases (NO2, SO2, O3, and NH3) and black carbon. It was found that the open architecture protected the indoor environments from developing a potentially harmful microclimate, such as the build-up of humidity resulting from the huge number of daily tourists. On the downside, the strong ventilation made the indoor air hardly different from outdoor air, as characterized by strong diurnal temperature and relative humidity gradients and high traffic-derived pollutant levels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000307662000002 Publication Date 2012-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1757-8981; 1757-899x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:100112 Serial 5484  
Permanent link to this record
 

 
Author Li, H.; Pandey, T.; Jiang, Y.; Gu, X.; Lindsay, L.; Koh, Y.K. pdf  doi
openurl 
  Title Origins of heat transport anisotropy in MoTe₂ and other bulk van der Waals materials Type A1 Journal article
  Year 2023 Publication Materials Today Physics Abbreviated Journal  
  Volume (down) 37 Issue Pages 101196-101198  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Knowledge of how heat flows anisotropically in van der Waals (vdW) materials is crucial for thermal management of emerging 2D materials devices and design of novel anisotropic thermoelectric materials. Despite the importance, anisotropic heat transport in vdW materials is yet to be systematically studied and is often presumably attributed to anisotropic speeds of sound in vdW materials due to soft interlayer bonding relative to covalent in-plane networks of atoms. In this work, we investigate the origins of the anisotropic heat transport in vdW materials, through time-domain thermoreflectance (TDTR) measurements and first-principles calculations of anisotropic thermal conductivity of three different phases of MoTe2. MoTe2 is ideal for the study due to its weak anisotropy in the speeds of sound. We find that even when the speeds of sound are roughly isotropic, the measured thermal conductivity of MoTe2 along the c-axis is 5-8 times lower than that along the in-plane axes. We derive meaningful characteristic heat capacity, phonon group velocity, and relaxation times from our first principles calculations for selected vdW materials (MoTe2, BP, h-BN, and MoS2), to assess the contributions of these factors to the anisotropic heat transport. Interestingly, we find that the main contributor to the heat transport anisotropy in vdW materials is anisotropy in heat capacity of the dominant heat-carrying phonon modes in different directions, which originates from anisotropic optical phonon dispersion and disparity in the frequency of heat-carrying phonons in different directions. The discrepancy in frequency of the heat-carrying phonons also leads to similar to 2 times larger average relaxation times in the cross-plane direction, and partially explains the apparent dependence of the anisotropic heat transport on the anisotropic speeds of sound. This work provides insight into understanding of the anisotropic heat transport in vdW materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001093005700001 Publication Date 2023-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.5 Times cited Open Access  
  Notes Approved Most recent IF: 11.5; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:201295 Serial 9070  
Permanent link to this record
 

 
Author Schuddinck, W.; Van Tendeloo, G.; Hervieu, M.; Floros, N.; Raveau, B. doi  openurl
  Title Structure of the hexagonal 16l perovskites Ba4Ca0.9Mn3.1O11.3 and Ba4Ca0.5Mn3Cu0.5O12-\delta by high-resolution electron microscopy Type A1 Journal article
  Year 2001 Publication Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume (down) 36 Issue 15 Pages 2689-2700  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000172705000014 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.446; 2001 IF: 0.715  
  Call Number UA @ lucian @ c:irua:54837 Serial 3314  
Permanent link to this record
 

 
Author Li, C.-F.; Zhao, K.; Liao, X.; Hu, Z.-Y.; Zhang, L.; Zhao, Y.; Mu, S.; Li, Y.; Li, Y.; Van Tendeloo, G.; Sun, C. pdf  url
doi  openurl
  Title Interface cation migration kinetics induced oxygen release heterogeneity in layered lithium cathodes Type A1 Journal article
  Year 2021 Publication Energy Storage Materials Abbreviated Journal  
  Volume (down) 36 Issue Pages 115-122  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The irreversible release of the lattice oxygen in layered cathodes is one of the major degradation mechanisms of lithium ion batteries, which accounts for a number of battery failures including the voltage/capacity fade, loss of cation ions and detachment of the primary particles, etc. Oxygen release is generally attributed to the stepwise thermodynamic controlled phase transitions from the layered to spinel and rock salt phases. Here, we report a strong kinetic effect from the mobility of cation ions, whose migration barrier can be significantly modulated by the phase epitaxy at the degrading interface. It ends up with a clear oxygen release heterogeneity and completely different reaction pathways between the thin and thick areas, as well as the interparticle valence boundaries, both of which widely exist in the mainstream cathode design with the secondary agglomerates. This work unveils the origin of the heterogenous oxygen release in the layered cathodes. It also sheds light on the rational design of cathode materials with enhanced oxygen stability by suppressing the cation migration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000620584300009 Publication Date 2020-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176654 Serial 6730  
Permanent link to this record
 

 
Author Cheng, K.; Leys, M.; Degroote, S.; van Daele, B.; Boeykens, S.; Derluyn, J.; Germain, M.; Van Tendeloo, G.; Engelen, J.; Borghs, G. doi  openurl
  Title Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers Type A1 Journal article
  Year 2006 Publication Journal of electronic materials Abbreviated Journal J Electron Mater  
  Volume (down) 35 Issue 4 Pages 592-598  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Boston, Mass. Editor  
  Language Wos 000237101800016 Publication Date 2007-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0361-5235;1543-186X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.579 Times cited 102 Open Access  
  Notes Approved Most recent IF: 1.579; 2006 IF: 1.504  
  Call Number UA @ lucian @ c:irua:58238 Serial 1223  
Permanent link to this record
 

 
Author Kahraman, Z.; Yagmurcukardes, M.; Sahin, H. pdf  doi
openurl 
  Title Functionalization of single-layer TaS₂ and formation of ultrathin Janus structures Type A1 Journal article
  Year 2020 Publication Journal Of Materials Research Abbreviated Journal J Mater Res  
  Volume (down) 35 Issue 11 Pages 1397-1406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ab initio calculations are performed to investigate the structural, vibrational, electronic, and piezoelectric properties of functionalized single layers of TaS2. We find that single-layer TaS2 is a suitable host material for functionalization via fluorination and hydrogenation. The one-side fluorinated (FTaS2) and hydrogenated (HTaS2) single layers display indirect gap semiconducting behavior in contrast to bare metallic TaS2. On the other hand, it is shown that as both surfaces of TaS2 are saturated anti-symmetrically, the formed Janus structure is a dynamically stable metallic single layer. In addition, it is revealed that out-of-plane piezoelectricity is created in all anti-symmetric structures. Furthermore, the Janus-type single-layer has the highest specific heat capacity to which longitudinal and transverse acoustical phonon modes have contribution at low temperatures. Our findings indicate that single-layer TaS2 is suitable for functionalization via H and F atoms that the formed, anti-symmetric structures display distinctive electronic, vibrational, and piezoelectric properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000540764300005 Publication Date 2020-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0884-2914 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 1 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. Acknowledges financial support from the TUBITAK under the project number 117F095. H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (M.Y.). ; Approved Most recent IF: 2.7; 2020 IF: 1.673  
  Call Number UA @ admin @ c:irua:170185 Serial 6525  
Permanent link to this record
 

 
Author Arenas Esteban, D.; Pacquets, L.; Choukroun, D.; Hoekx, S.; Kadu, A.A.; Schalck, J.; Daems, N.; Breugelmans, T.; Bals, S. pdf  url
doi  openurl
  Title 3D characterization of the structural transformation undergone by Cu@Ag core-shell nanoparticles following CO₂ reduction reaction Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume (down) 35 Issue 17 Pages 6682-6691  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The increasing use of metallic nanoparticles (NPs) is significantly advancing the field of electrocatalysis. In particular, Cu/Ag bimetallic interfaces are widely used to enhance the electrochemical CO2 reduction reaction (eCO(2)RR) toward CO and, more recently, C-2 products. However, drastic changes in the product distribution and performance when Cu@Ag core-shell configurations are used can often be observed under electrochemical reaction conditions, especially during the first few minutes of the reaction. Possible structural changes that generate these observations remain underexplored; therefore, the structure-property relationship is hardly understood. In this study, we use electron tomography to investigate the structural transformation mechanism of Cu@Ag core-shells NPs during the critical first minutes of the eCO(2)RR. In this manner, we found that the crystallinity of the Cu seed determines whether the formation of a complete and homogeneous Ag shell is possible. Moreover, by tracking the particles' transformations, we conclude that modifications of the Cu-Ag interface and Cu2O enrichment at the surface of the NPs are key factors contributing to the product generation changes. These insights provide a better understanding of how bimetallic core-shell NPs transform under electrochemical conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001061530700001 Publication Date 2023-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 1 Open Access OpenAccess  
  Notes L.P. was supported through a PhD fellowship for strategicbasic research (1S56920N) of the Research Foundation – Flanders(FWO). S.H. was supported through a PhD fellowship for strategic basicresearch (1S42623N) of the Research Foundation – Flanders (FWO).S.B., D.A.E., and A.A.K. acknowledge financial support from ERC Consolidator Grant Number 815128 REALNANO. This research was financed by the researchcouncil of the University of Antwerp (BOF-GOA 33928). Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number UA @ admin @ c:irua:199187 Serial 8825  
Permanent link to this record
 

 
Author Mulder, J.T.T.; Jenkinson, K.; Toso, S.; Prato, M.; Evers, W.H.H.; Bals, S.; Manna, L.; Houtepen, A.J.J. url  doi
openurl 
  Title Nucleation and growth of bipyramidal Yb:LiYF₄ nanocrystals : growing up in a hot environment Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume (down) 35 Issue 14 Pages 5311-5321  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Lanthanide-doped LiYF4 (Ln:YLF) is commonlyused fora broad variety of optical applications, such as lasing, photon upconversionand optical refrigeration. When synthesized as nanocrystals (NCs),this material is also of interest for biological applications andfundamental physical studies. Until now, it was unclear how Ln:YLFNCs grow from their ionic precursors into tetragonal NCs with a well-defined,bipyramidal shape and uniform dopant distribution. Here, we studythe nucleation and growth of ytterbium-doped LiYF4 (Yb:YLF),as a template for general Ln:YLF NC syntheses. We show that the formationof bipyramidal Yb:YLF NCs is a multistep process starting with theformation of amorphous Yb:YLF spheres. Over time, these spheres growvia Ostwald ripening and crystallize, resulting in bipyramidal Yb:YLFNCs. We further show that prolonged heating of the NCs results inthe degradation of the NCs, observed by the presence of large LiFcubes and small, irregular Yb:YLF NCs. Due to the similarity in chemicalnature of all lanthanide ions our work sheds light on the formationstages of Ln:YLF NCs in general.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001021474500001 Publication Date 2023-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.6 Times cited Open Access OpenAccess  
  Notes This project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 766900 (Testing the large-scale limit of quantum mechanics). The authors thank Niranjan Saikumar for proof reading the manuscript. Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number UA @ admin @ c:irua:197787 Serial 8907  
Permanent link to this record
 

 
Author Mayda, S.; Monico, L.; Krishnan, D.; De Meyer, S.; Cotte, M.; Garrevoet, J.; Falkenberg, G.; Sandu, I.C.A.; Partoens, B.; Lamoen, D.; Romani, A.; Miliani, C.; Verbeeck, J.; Janssens, K. pdf  url
doi  openurl
  Title A combined experimental and computational approach to understanding CdS pigment oxidation in a renowned early 20th century painting Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume (down) 35 Issue 24 Pages 10403-10415  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Cadmium sulfide (CdS)-based yellow pigments have been used in a number of early 20th century artworks, including The Scream series painted by Edvard Munch. Some of these unique paintings are threatened by the discoloration of these CdS-based yellow oil paints because of the oxidation of the original sulfides to sulfates. The experimental data obtained here prove that moisture and cadmium chloride compounds play a key role in promoting such oxidation. To clarify how these two factors effectively prompt the process, we studied the band alignment between CdS, CdCl2, and Cd-(OH)Cl as well as the radicals center dot OH and H3O center dot by density functional theory (DFT) methods. Our results show that a stack of several layers of Cd-(OH)Cl creates a pocket of positive holes at the Cl-terminated surface and a pocket of electrons at the OH-terminated surface by leading in a difference in ionization energy at both surfaces. The resulting band alignment indicates that Cd-(OH)Cl can indeed play the role of an oxidative catalyst for CdS in a moist environment, thus providing an explanation for the experimental evidence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001133000900001 Publication Date 2023-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.6 Times cited Open Access  
  Notes The experimental research on the cadmium yellow powders/paint mock-ups and The Scream (ca. 1910) was financially supported by the European Union, research projects IPERION-CH (H2020-INFRAIA-2014-2015, GA no. 654028) and IPERION-HS (H2020-INFRAIA-2019-1, GA no. 871034) and the project AMIS within the program Dipartimenti di Eccellenza 2018-2022 (funded by MUR and the University of Perugia). For the beamtime grants received, the authors thank the ESRF-ID21 beamline (experiments HG64 and HG95), the DESY-P06 beamline, a member of the Helmholtz Association HGF (experiments I-20130221 EC and I-20160126 EC), and the project CALIPSOplus under the GA no. 730872 from the E.U. Framework Programme for Research and Innovation Horizon 2020. All of the staff of the MUNCH Museum (Conservation Department) is acknowledged for their collaboration. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO – Vlaanderen and the Flemish Government, Department EWI. Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number UA @ admin @ c:irua:202836 Serial 8999  
Permanent link to this record
 

 
Author Shevchenko, V.A.; Glazkova, I.S.; Novichkov, D.A.; Skvortsova, I.; V. Sobolev, A.; Abakumov, A.M.; Presniakov, I.A.; Drozhzhin, O.A.; V. Antipov, E. pdf  doi
openurl 
  Title Competition between the Ni and Fe redox in the O3-NaNi1/3Fe1/3Mn1/3O2 cathode material for Na-ion batteries Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume (down) 35 Issue 10 Pages 4015-4025  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sodium-ion batteries are attracting great attention due to their low cost and abundance of sodium. The O3-type NaNi1/3Fe1/3Mn1/3O2 layered oxide material is a promising candidate for positive electrodes (cathodes) in Na-ion batteries. However, its stable electrochemical performance is restricted by the upper voltage limit of 4.0 V (vs Na/Na+), which allows for reversibly removing 0.5-0.55 Na+ per formula unit, corresponding to the capacity of 120-130 mAh.g(-1). Further reduction of sodium content inevitably accelerates capacity degradation, and this issue calls for a detailed study of the redox reactions that accompany the electrochemical (de)intercalation of a large amount of sodium. Here, we present operando and ex situ studies using powder X-ray diffraction and X-ray absorption spectroscopy combined with Fe-57 Mossbauer spectroscopy. Our approach reveals the sequence of the redox transitions that occur during the charge and discharge of O3-NaNi1/3Fe1/3Mn1/3O2. Our data show that in addition to nickel and iron cations oxidizing to M+4, a part of iron transforms into the “3 + delta” state owing to the fast electron exchange Fe3+ + Fe4+ <-> Fe4+ + Fe3+. This process freezes upon cooling the material to 35 K, producing Fe4+ cations, some of which occupy tetrahedral positions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000985970200001 Publication Date 2023-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited Open Access  
  Notes Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number UA @ admin @ c:irua:197352 Serial 9013  
Permanent link to this record
 

 
Author Jenkinson, K.; Spadaro, M.C.; Golovanova, V.; Andreu, T.; Morante, J.R.; Arbiol, J.; Bals, S. url  doi
openurl 
  Title Direct operando visualization of metal support interactions induced by hydrogen spillover during CO₂ hydrogenation Type A1 Journal article
  Year 2023 Publication Advanced materials Abbreviated Journal  
  Volume (down) 35 Issue 51 Pages 2306447-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The understanding of catalyst active sites is a fundamental challenge for the future rational design of optimized and bespoke catalysts. For instance, the partial reduction of Ce4+ surface sites to Ce3+ and the formation of oxygen vacancies are critical for CO2 hydrogenation, CO oxidation, and the water gas shift reaction. Furthermore, metal nanoparticles, the reducible support, and metal support interactions are prone to evolve under reaction conditions; therefore a catalyst structure must be characterized under operando conditions to identify active states and deduce structure-activity relationships. In the present work, temperature-induced morphological and chemical changes in Ni nanoparticle-decorated mesoporous CeO2 by means of in situ quantitative multimode electron tomography and in situ heating electron energy loss spectroscopy, respectively, are investigated. Moreover, operando electron energy loss spectroscopy is employed using a windowed gas cell and reveals the role of Ni-induced hydrogen spillover on active Ce3+ site formation and enhancement of the overall catalytic performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001106139400001 Publication Date 2023-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 29.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 29.4; 2023 IF: 19.791  
  Call Number UA @ admin @ c:irua:201143 Serial 9022  
Permanent link to this record
 

 
Author Manzaneda-Gonzalez, V.; Jenkinson, K.; Pena-Rodriguez, O.; Borrell-Grueiro, O.; Trivino-Sanchez, S.; Banares, L.; Junquera, E.; Espinosa, A.; Gonzalez-Rubio, G.; Bals, S.; Guerrero-Martinez, A. url  doi
openurl 
  Title From multi- to single-hollow trimetallic nanocrystals by ultrafast heating Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume (down) 35 Issue 22 Pages 9603-9612  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metal nanocrystals (NCs) display unique physicochemical features that are highly dependent on nanoparticle dimensions, anisotropy, structure, and composition. The development of synthesis methodologies that allow us to tune such parameters finely emerges as crucial for the application of metal NCs in catalysis, optical materials, or biomedicine. Here, we describe a synthetic methodology to fabricate hollow multimetallic heterostructures using a combination of seed-mediated growth routes and femtosecond-pulsed laser irradiation. The envisaged methodology relies on the coreduction of Ag and Pd ions on gold nanorods (Au NRs) to form Au@PdAg core-shell nanostructures containing small cavities at the Au-PdAg interface. The excitation of Au@PdAg NRs with low fluence femtosecond pulses was employed to induce the coalescence and growth of large cavities, forming multihollow anisotropic Au@PdAg nanostructures. Moreover, single-hollow alloy AuPdAg could be achieved in high yield by increasing the irradiation energy. Advanced electron microscopy techniques, energy-dispersive X-ray spectroscopy (EDX) tomography, X-ray absorption near-edge structure (XANES) spectroscopy, and finite differences in the time domain (FDTD) simulations allowed us to characterize the morphology, structure, and elemental distribution of the irradiated NCs in detail. The ability of the reported synthesis route to fabricate multimetallic NCs with unprecedented hollow nanostructures offers attractive prospects for the fabrication of tailored high-entropy alloy nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001110623500001 Publication Date 2023-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 2 Open Access OpenAccess  
  Notes Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number UA @ admin @ c:irua:202144 Serial 9040  
Permanent link to this record
 

 
Author Kuznetsov, A.S.; Cuong, N.T.; Tikhomirov, V.K.; Jivanescu, M.; Stesmans, A.; Chibotaru, L.F.; Velázquez, J.J.; Rodríguez, V.D.; Kirilenko, D.; Van Tendeloo, G.; Moshchalkov, V.V. pdf  doi
openurl 
  Title Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing Type A1 Journal article
  Year 2012 Publication Optical materials Abbreviated Journal Opt Mater  
  Volume (down) 34 Issue 4 Pages 616-621  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The effect of heat treatment on the structure and luminescence of Ag nanoclusters doped oxyfluoride glasses was studied and the implication for drawing the corresponding fibers doped with luminescent Ag nanoclusters has been proposed. The heat treatment results, first, in condensation of the Ag nanoclusters into larger Ag nanoparticles and loss of Ag luminescence, and further heat treatment results in precipitation of a luminescent-loss nano- and microcrystalline Ag phases onto the surface of the glass. Thus, the oxyfluoride fiber doped with luminescent Ag nanoclusters was pulled from the viscous glass melt and its attenuation loss was 0.19 dB/cm in the red part of the spectrum; i.e. near to the maximum of Ag nanoclusters luminescence band. The nucleation centers for the Ag nanoclusters in oxyfluoride glasses have been suggested to be the fluorine vacancies and their nanoclusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000300124500006 Publication Date 2011-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-3467; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.238 Times cited 25 Open Access  
  Notes Methusalem Approved Most recent IF: 2.238; 2012 IF: 1.918  
  Call Number UA @ lucian @ c:irua:93632 Serial 811  
Permanent link to this record
 

 
Author Rembeza, E.S.; Richard, O.; van Landuyt, J. doi  openurl
  Title Influence of laser and isothermal treatments on microstructural properties of SnO2 films Type A1 Journal article
  Year 1999 Publication Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume (down) 34 Issue 10/11 Pages 1527-1533  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000084625300006 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 17 Open Access  
  Notes Approved Most recent IF: 2.446; 1999 IF: 0.840  
  Call Number UA @ lucian @ c:irua:29691 Serial 1626  
Permanent link to this record
 

 
Author Hao, Y.; Velpula, G.; Kaltenegger, M.; Bodlos, W.R.; Vibert, F.; Mali, K.S.; De Feyter, S.; Resel, R.; Geerts, Y.H.; Van Aert, S.; Beljonne, D.; Lazzaroni, R. pdf  doi
openurl 
  Title From 2D to 3D : bridging self-assembled monolayers to a substrate-induced polymorph in a molecular semiconductor Type A1 Journal article
  Year 2022 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume (down) 34 Issue 5 Pages 2238-2248  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this study, a new bottom-up approach is proposed to predict the crystal structure of the substrate-induced polymorph (SIP) of an archetypal molecular semiconductor. In spite of intense efforts, the formation mechanism of SIPs is still not fully understood, and predicting their crystal structure is a very delicate task. Here, we selected lead phthalocyanine (PbPc) as a prototypical molecular material because it is a highly symmetrical yet nonplanar molecule and we demonstrate that the growth and crystal structure of the PbPc SIPs can be templated by the corresponding physisorbed self-assembled molecular networks (SAMNs). Starting from SAMNs of PbPc formed at the solution/graphite interface, the structural and energetic aspects of the assembly were studied by a combination of in situ scanning tunneling microscopy and multiscale computational chemistry approach. Then, the growth of a PbPc SIP on top of the physisorbed monolayer was modeled without prior experimental knowledge, from which the crystal structure of the SIP was predicted. The theoretical prediction of the SIP was verified by determining the crystal structure of PbPc thin films using X-ray diffraction techniques, revealing the formation of a new polymorph of PbPc on the graphite substrate. This study clearly illustrates the correlation between the SAMNs and SIPs, which are traditionally considered as two separate but conceptually connected research areas. This approach is applicable to molecular materials in general to predict the crystal structure of their SIPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000812125800001 Publication Date 2022-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 8.6  
  Call Number UA @ admin @ c:irua:189086 Serial 7084  
Permanent link to this record
 

 
Author Xia, C.; Pedrazo-Tardajos, A.; Wang, D.; Meeldijk, J.D.; Gerritsen, H.C.; Bals, S.; de Donega, C.M. url  doi
openurl 
  Title Seeded growth combined with cation exchange for the synthesis of anisotropic Cu2-xS/ZnS, Cu2-xS, and CuInS2 nanorods Type A1 Journal article
  Year 2021 Publication Chemistry of materials Abbreviated Journal  
  Volume (down) 33 Issue 1 Pages 102-116  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal copper(I) sulfide (Cu2-xS) nanocrystals (NCs) have attracted much attention for a wide range of applications because of their unique optoelectronic properties, driving scientists to explore the potential of using Cu2-xS NCs as seeds in the synthesis of heteronanocrystals to achieve new multifunctional materials. Herein, we developed a multistep synthesis strategy toward Cu2-xS/ZnS heteronanorods. The Janus-type Cu2-xS/ZnS heteronanorods are obtained by the injection of hexagonal high-chalcocite Cu2-xS seed NCs in a hot zinc oleate solution in the presence of suitable surfactants, 20 s after the injection of sulfur precursors. The Cu2-xS seed NCs undergo rapid aggregation and coalescence in the first few seconds after the injection, forming larger NCs that act as the effective seeds for heteronucleation and growth of ZnS. The ZnS heteronucleation occurs on a single (100) facet of the Cu2-xS seed NCs and is followed by fast anisotropic growth along a direction that is perpendicular to the c-axis, thus leading to Cu2-xS/ZnS Janus-type heteronanorods with a sharp heterointerface. Interestingly, the high-chalcocite crystal structure of the injected Cu2-xS seed NCs is preserved in the Cu2-xS segments of the heteronanorods because of the highthermodynamic stability of this Cu2-xS phase. The Cu2-xS/ZnS heteronanorods are subsequently converted into single-component Cu2-xS and CuInS2 nanorods by postsynthetic topotactic cation exchange. This work expands the possibilities for the rational synthesis of colloidal multicomponent heteronanorods by allowing the design principles of postsynthetic heteroepitaxial seeded growth and nanoscale cation exchange to be combined, yielding access to a plethora of multicomponent heteronanorods with diameters in the quantum confinement regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000610984700009 Publication Date 2020-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 10 Open Access OpenAccess  
  Notes C.X. acknowledges China Scholarship Council (CSC) for the financial support (grant number 201406330055). C.d.M.D. acknowledges funding from the European Commission for access to the EMAT facilities (grant number EUSMI E180900184). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). S.B. acknowledges support by means of the ERC Consolidator grant no. 815128 REALNANO. The authors thank Donglong Fu for XRD measurements.; sygma Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176587 Serial 6732  
Permanent link to this record
 

 
Author Salzmann, B.B.V.; Vliem, J.F.; Maaskant, D.N.; Post, L.C.; Li, C.; Bals, S.; Vanmaekelbergh, D. url  doi
openurl 
  Title From CdSe nanoplatelets to quantum rings by thermochemical edge reconfiguration Type A1 Journal article
  Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume (down) 33 Issue 17 Pages 6853-6859  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The variation in the shape of colloidal semiconductor nanocrystals (NCs) remains intriguing. This interest goes beyond crystallography as the shape of the NC determines its energy levels and optoelectronic properties. While thermodynamic arguments point to a few or just a single shape(s), terminated by the most stable crystal facets, a remarkable variation in NC shape has been reported for many different compounds. For instance, for the well-studied case of CdSe, close-to-spherical quantum dots, rods, two-dimensional nanoplatelets, and quantum rings have been reported. Here, we report how two-dimensional CdSe nanoplatelets reshape into quantum rings. We monitor the reshaping in real time by combining atomically resolved structural characterization with optical absorption and photoluminescence spectroscopy. We observe that CdSe units leave the vertical sides of the edges and recrystallize on the top and bottom edges of the nanoplatelets, resulting in a thickening of the rims. The formation of a central hole, rendering the shape into a ring, only occurs at a more elevated temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000696553600024 Publication Date 2021-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 7 Open Access OpenAccess  
  Notes Hans Meeldijk is kindly acknowledged for helping with electron microscopy at Utrecht University. B.B.V.S. and D.V. acknowledge the Dutch NWO for financial support via the TOP-ECHO grant no. 715.016.002. D.V. acknowledges financial support from the European ERC Council, ERC Advanced grant 692691 “First Step”. D.V. and L.C.P. acknowledge the Dutch NWO for financial support via the TOP-ECHO grant nr. 718.015.002. S.B acknowledges financial support from the European ERC Council, ERC Consolidator grant 815128. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 731019 (EUSMI). Realnano; sygmaSB Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:181550 Serial 6839  
Permanent link to this record
 

 
Author Feng, H.L.; Kang, C.-J.; Manuel, P.; Orlandi, F.; Su, Y.; Chen, J.; Tsujimoto, Y.; Hadermann, J.; Kotliar, G.; Yamaura, K.; McCabe, E.E.; Greenblatt, M. pdf  url
doi  openurl
  Title Antiferromagnetic order breaks inversion symmetry in a metallic double perovskite, Pb₂NiOsO₆ Type A1 Journal article
  Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume (down) 33 Issue 11 Pages 4188-4195  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of Pb2NiOsO6 was synthesized under high-pressure (6 GPa) and high-temperature (1575 K) conditions. Pb2NiOsO6 crystallizes in a monoclinic double perovskite structure with a centrosymmetric space group P2(1)/n at room temperature. Pb2NiOsO6 is metallic down to 2 K and shows a single antiferromagnetic (AFM) transition at T-N = 58 K. Pb2NiOsO6 is a new example of a metallic and AFM oxide with three-dimensional connectivity. Neutron powder diffraction and first-principles calculation studies indicate that both Ni and Os moments are ordered below T-N and the AFM magnetic order breaks inversion symmetry. This loss of inversion symmetry driven by AFM order is unusual in metallic systems, and the 3d-Sd double-perovskite oxides represent a new class of noncentrosymmetric AFM metallic oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000661521800032 Publication Date 2021-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:179679 Serial 6854  
Permanent link to this record
 

 
Author Li, W.; Tong, W.; Yadav, A.; Bladt, E.; Bals, S.; Funston, A.M.; Etheridge, J. pdf  doi
openurl 
  Title Shape control beyond the seeds in gold nanoparticles Type A1 Journal article
  Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume (down) 33 Issue 23 Pages 9152-9164  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In typical seed-mediated syntheses of metal nanocrystals, the shape of the nanocrystal is determined largely by the seed nucleation environment and subsequent growth environment (where “environment” refers to the chemical environment, including the surfactant and additives). In this approach, crystallinity is typically determined by the seeds, and surfaces are controlled by the environment(s). However, surface energies, and crystallinity, are both influenced by the choice of environment(s). This limits the permutations of crystallinity and surface facets that can be mixed and matched to generate new nanocrystal morphologies. Here, we control post-seed growth to deliberately incorporate twin planes during the growth stage to deliver new final morphologies, including twinned cubes and bipyramids from single-crystal seeds. The nature and number of twin planes, together with surfactant control of facet growth, define the final nanoparticle morphology. Moreover, by breaking symmetry, the twin planes introduce new facet orientations. This additional mechanism opens new routes for the synthesis of different morphologies and facet orientations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000753956100012 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 3 Open Access Not_Open_Access  
  Notes This work was supported by the Australian Research Council (ARC) Grants DP160104679 and CE170100026 and used microscopes at the Monash Centre for Electron Microscopy funded by ARC Grants LE0454166, LE110100223, and LE140100104. W.L. thanks the support of the Australian Government Research Training Program (RTP) scholarship. W.T. thanks the Australian Department of Education and Monash University for the IPRS and APA scholarships. E.B. acknowledges financial support and a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). The authors thank Dr. Matthew Weyland and Dr. Tim Peterson for helpful discussions. A.Y. thanks the support from Post Graduation Publication Award (PPA) scholarship from Monash University. Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:187229 Serial 7065  
Permanent link to this record
 

 
Author Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. pdf  doi
openurl 
  Title Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations Type A1 Journal article
  Year 2016 Publication Dental materials Abbreviated Journal Dent Mater  
  Volume (down) 32 Issue 12 Pages E327-E337  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Objective. The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y2O3 content and La2O3 doping on the translucency. Methods. Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n = 6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n = 10), single edge V-notched beam (SEVNB) fracture toughness (n = 8) and Vickers hardness (n = 10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n = 3) after accelerated hydrothermal aging in steam at 134 degrees C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (alpha = 0.05). Results. Lowering the alumina content below 0.25 wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5 mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2 mol% La2O3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La2O3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. Significance. Three different approaches were compared to improve the translucency of 3YTZP ceramics. (C) 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000389516400003 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0109-5641 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.07 Times cited 47 Open Access  
  Notes Approved Most recent IF: 4.07  
  Call Number UA @ lucian @ c:irua:140246 Serial 4447  
Permanent link to this record
 

 
Author Kirkwood, N.; De Backer, A.; Altantzis, T.; Winckelmans, N.; Longo, A.; Antolinez, F.V.; Rabouw, F.T.; De Trizio, L.; Geuchies, J.J.; Mulder, J.T.; Renaud, N.; Bals, S.; Manna, L.; Houtepen, A.J. url  doi
openurl 
  Title Locating and controlling the Zn content in In(Zn)P quantum dots Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume (down) 32 Issue 32 Pages 557-565  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Zinc is routinely employed in the synthesis of InP quantum dots (QDs) to improve the photoluminescence efficiency and carrier mobility of the resulting In(Zn)P alloy nanostructures. The exact location of Zn in the final structures and the mechanism by which it enhances the optoelectronic properties of the QDs is debated. We use synchrotron X-ray absorbance spectroscopy to show that the majority of Zn in In(Zn)P QDs is located at their surface as Zn-carboxylates. However, a small amount of Zn is present inside the bulk of the QDs with the consequent contraction of their lattice, as confirmed by combining high resolution high-angle annular dark-field imaging scanning transmission electron microscopy (HAADF-STEM) with statistical parameter estimation theory. We further demonstrate that the Zn content and its incorporation into the QDs can be tuned by the ligation of commonly employed Zn carboxylate precursors: the use of highly reactive Zn-acetate leads to the formation of undesired Zn3P2 and the final nanostructures being characterized by broad optical features, whereas Zn-carboxylates with longer carbon chains lead to InP crystals with much lower zinc content and narrow optical features. These results can explain the differences between structural and optical properties of In(Zn)P samples reported across the literature, and provide a rational method to tune the amount of Zn in InP nanocrystals and to drive the incorporation of Zn either as surface Zn-carboxylate, as a substitutional dopant inside the InP crystal lattice, or even predominantly as Zn3P2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000507721600056 Publication Date 2019-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 39 Open Access OpenAccess  
  Notes A.J.H. acknowledges support from the European Research Council Horizon 2020 ERC Grant Agreement No. 678004 (Doping on Demand). This research is supported by the Dutch Technology Foundation TTW, which is part of The Netherlands Organization for Scientific Research (NWO), and which is partly funded by Ministry of Economic Affairs. SB acknowledges funding from the European Research Council (grant 815128 REALNANO). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project funding G.0381.16N and a postdoctoral grant to A.D.B. AJH, LM and JM acknowledge support from the H2020 Collaborative Project TEQ (Grant No. 766900).; sygma Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:165234 Serial 5438  
Permanent link to this record
 

 
Author Marchetti, A.; Saniz, R.; Krishnan, D.; Rabbachin, L.; Nuyts, G.; De Meyer, S.; Verbeeck, J.; Janssens, K.; Pelosi, C.; Lamoen, D.; Partoens, B.; De Wael, K. pdf  url
doi  openurl
  Title Unraveling the Role of Lattice Substitutions on the Stabilization of the Intrinsically Unstable Pb2Sb2O7Pyrochlore: Explaining the Lightfastness of Lead Pyroantimonate Artists’ Pigments Type A1 Journal article
  Year 2020 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume (down) 32 Issue 7 Pages 2863-2873  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The pyroantimonate pigments Naples yellow and lead tin antimonate yellow are recognized as some of the most stable synthetic yellow pigments in the history of art. However, this exceptional lightfastness is in contrast with experimental evidence suggesting that this class of mixed oxides is of semiconducting nature. In this study the electronic structure and light-induced behavior of the lead pyroantimonate pigments were determined by means of a combined multifaceted analytical and computational approach (photoelectrochemical measurements, UV-vis diffuse reflectance spectroscopy, STEM-EDS, STEM-HAADF, and density functional theory calculations). The results demonstrate both the semiconducting nature and the lightfastness of these pigments. Poor optical absorption and minority carrier mobility are the main properties responsible for the observed stability. In addition, novel fundamental insights into the role played by Na atoms in the stabilization of the otherwise intrinsically unstable Pb2Sb2O7 pyrochlore were obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526394000016 Publication Date 2020-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 8 Open Access OpenAccess  
  Notes Universiteit Antwerpen; Belgian Federal Science Policy Office; Approved Most recent IF: 8.6; 2020 IF: 9.466  
  Call Number EMAT @ emat @c:irua:168819 Serial 6363  
Permanent link to this record
 

 
Author Jorgensen, M.; Shea, P.T.; Tomich, A.W.; Varley, J.B.; Bercx, M.; Lovera, S.; Cerny, R.; Zhou, W.; Udovic, T.J.; Lavallo, V.; Jensen, T.R.; Wood, B.C.; Stavila, V. url  doi
openurl 
  Title Understanding superionic conductivity in lithium and sodium salts of weakly coordinating closo-hexahalocarbaborate anions Type A1 Journal article
  Year 2020 Publication Chemistry of materials Abbreviated Journal  
  Volume (down) 32 Issue 4 Pages 1475-1487  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solid-state ion conductors based on closo-polyborate anions combine high ionic conductivity with a rich array of tunable properties. Cation mobility in these systems is intimately related to the strength of the interaction with the neighboring anionic network and the energy for reorganizing the coordination polyhedra. Here, we explore such factors in solid electrolytes with two anions of the weakest coordinating ability, [HCB11H5Cl6](-) and [HCB11H5Br6](-), and a total of 11 polymorphs are identified for their lithium and sodium salts. Our approach combines ab initio molecular dynamics, synchrotron X-ray powder diffraction, differential scanning calorimetry, and AC impedance measurements to investigate their structures, phase-transition behavior, anion orientational mobilities, and ionic conductivities. We find that M(HCB11H5X6) (M = Li, Na, X = Cl, Br) compounds exhibit order-disorder polymorphic transitions between 203 and 305 degrees C and display Li and Na superionic conductivity in the disordered state. Through detailed analysis, we illustrate how cation disordering in these compounds originates from a competitive interplay among the lattice symmetry, the anion reorientational mobility, the geometric and electronic asymmetry of the anion, and the polarizability of the halogen atoms. These factors are compared to other closo-polyborate-based ion conductors to suggest guidelines for optimizing the cation-anion interaction for fast ion mobility. This study expands the known solid-state poly(carba)borate-based materials capable of liquid-like ionic conductivities, unravels the mechanisms responsible for fast ion transport, and provides insights into the development of practical superionic solid electrolytes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000517351300014 Publication Date 2020-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access OpenAccess  
  Notes ; The authors gratefully acknowledge support from the Hydrogen Materials-Advanced Research Consortium (HyMARC), established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Contract no. AC04-94AL85000. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under Contract no. DE-NA-0003525. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract no. ACS2-07NA27344. We also gratefully thank Kyoung Kweon for useful discussions. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Neither the United States Government nor any agency thereof nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. The Danish council for independent research, technology and production, HyNanoBorN (4181-00462) and SOS-MagBat (9041-00226B) and NordForsk, The Nordic Neutron Science Program, project FunHy (81942), and the Carlsberg Foundation are acknowledged for funding. Affiliation with the Center for Integrated Materials Research (iMAT) at Aarhus University is gratefully acknowledged. V.L. acknowledges the NSF for partial support of this project (DMR-1508537). The authors would like to thank the Swiss-Norwegian beamlines (BM01) at the ESRF, Grenoble, for the help with the data collection, DESY for access to Petra III, at beamline P02.1, and Diamond for access to beamline I11. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:167754 Serial 6645  
Permanent link to this record
 

 
Author Imran, M.; Ramade, J.; Di Stasio, F.; De Franco, M.; Buha, J.; Van Aert, S.; Goldoni, L.; Lauciello, S.; Prato, M.; Infante, I.; Bals, S.; Manna, L. url  doi
openurl 
  Title Alloy CsCdxPb1–xBr3Perovskite Nanocrystals: The Role of Surface Passivation in Preserving Composition and Blue Emission Type A1 Journal article
  Year 2020 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume (down) 32 Issue Pages acs.chemmater.0c03825  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Various strategies have been proposed to engineer the band gap of metal halide perovskite nanocrystals (NCs) while preserving their structure and composition and thus ensuring spectral stability of the emission color. An aspect that has only been marginally investigated is how the type of surface passivation influences the structural/color stability of AMX3 perovskite NCs composed of two different M2+ cations. Here, we report the synthesis of blue-emitting Cs-oleate capped CsCdxPb1–xBr3 NCs, which exhibit a cubic perovskite phase containing Cd-rich domains of Ruddlesden–Popper phases (RP phases). The RP domains spontaneously transform into pure orthorhombic perovskite ones upon NC aging, and the emission color of the NCs shifts from blue to green over days. On the other hand, postsynthesis ligand exchange with various Cs-carboxylate or ammonium bromide salts, right after NC synthesis, provides monocrystalline NCs with cubic phase, highlighting the metastability of RP domains. When NCs are treated with Cs-carboxylates (including Cs-oleate), most of the Cd2+ ions are expelled from NCs upon aging, and the NCs phase evolves from cubic to orthorhombic and their emission color changes from blue to green. Instead, when NCs are coated with ammonium bromides, the loss of Cd2+ ions is suppressed and the NCs tend to retain their blue emission (both in colloidal dispersions and in electroluminescent devices), as well as their cubic phase, over time. The improved compositional and structural stability in the latter cases is ascribed to the saturation of surface vacancies, which may act as channels for the expulsion of Cd2+ ions from NCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603288800034 Publication Date 2020-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 44 Open Access OpenAccess  
  Notes European Commission; Fonds Wetenschappelijk Onderzoek, G.0267.18N ; H2020 European Research Council, 770887 815128 851794 ; We acknowledge funding from the FLAG-ERA JTC2019 project PeroGas. S.B., and S.V.A. acknowledges funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants #815128REALNANO and #770887PICOMETRICS) and from the Research Foundation Flanders (FWO, Belgium) through project funding G.0267.18N. F.D.S. acknowledges the funding from ERC starting grant NANOLED (851794). The computational work was carried out on the Dutch National e-infrastructure with the support of the SURF Cooperative; sygma Approved Most recent IF: 8.6; 2020 IF: 9.466  
  Call Number EMAT @ emat @c:irua:174004 Serial 6659  
Permanent link to this record
 

 
Author Ferreira da Costa, L.; de Lucena, L.C.F.L.; de Lucena, A.E.F.L.; Grangeiro de Barros, A. doi  openurl
  Title Use of Banana Fibers in SMA Mixtures Type A1 Journal article
  Year 2020 Publication Journal Of Materials In Civil Engineering Abbreviated Journal J Mater Civil Eng  
  Volume (down) 32 Issue 1 Pages 04019341  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Energy and Materials in Infrastructure and Buildings (EMIB)  
  Abstract Asphalt binder draindown is a potential issue related to stone matrix asphalt (SMA) mixtures. One convenient approach for reducing binder drainage is the use of fibers as stabilizing additives. This study assesses the feasibility of incorporating fibers from banana plants into an SMA mixture as a proposed use for residues from banana cultivation. We found the fiber content capable of preventing draindown and subsequently evaluated the influence of fiber length on the mechanical properties of an SMA mixture. Samples were prepared in a Superpave gyratory compactor with four different fiber lengths (5, 10, 15, and 20 mm) at a fixed content (0.3% by weight) and then compared to samples without fibers. Indirect tensile strength, resilient and dynamic modulus, flow number, and fatigue life tests were conducted. Overall, fibers improved the mechanical properties analyzed. These enhancements were more pronounced for the samples with 15- and 20-mm fibers. Thus, a smaller number of longer fibers was more beneficial to the fiber reinforcement of mixtures than a larger number of shorter fibers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000497709300014 Publication Date 2019-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0899-1561 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited Open Access  
  Notes Approved Most recent IF: 3.2; 2020 IF: 1.644  
  Call Number UA @ admin @ c:irua:178728 Serial 8719  
Permanent link to this record
 

 
Author Laffez, P.; Van Tendeloo, G.; Millange, F.; Caignaert, V.; Hervieu, M.; Raveau, B. pdf  doi
openurl 
  Title Structural phase transition at low temperature, corresponding to charge ordering in the CMR perovskites LN0.5A0.5MNO3 Type A1 Journal article
  Year 1996 Publication Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume (down) 31 Issue 8 Pages 905-911  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The magneto resistive perovskites Nd0.5Sr0.5MnO3 and Pr0.5Sr0.41Ca0.09MnO3 undergo a transition from anti ferromagnetic insulator to ferromagnetic metal as function of temperature. The room temperature phase is orthorhombic with the space group Imma and the cell parameters a approximate to root 2a(p), b approximate to 2a(p), and c approximate to root 2a(p). A structural phase transition related to charge ordering accompanying the transition from ferromagnetic state to antiferromagnetic state has been evidenced by low temperature electron diffraction. This transition is reversible and a new superstructure, with a P-type orthorhombic cell. and lattice parameters parameters a approximate to 2 root 2a(p), b approximate to 2a(p), and c approximate to root 2a(p), is formed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1996UZ37300002 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.288 Times cited 25 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:99650 Serial 3246  
Permanent link to this record
 

 
Author Kim, Y.; Che, F.; Jo, J.W.; Choi, J.; de Arquer, F.P.G.; Voznyy, O.; Sun, B.; Kim, J.; Choi, M.-J.; Quintero-Bermudez, R.; Fan, F.; Tan, C.S.; Bladt, E.; Walters, G.; Proppe, A.H.; Zou, C.; Yuan, H.; Bals, S.; Hofkens, J.; Roeffaers, M.B.J.; Hoogland, S.; Sargent, E.H. pdf  url
doi  openurl
  Title A Facet-Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics Type A1 Journal article
  Year 2019 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume (down) 31 Issue 31 Pages 1805580  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal nanocrystals combine size- and facet-dependent properties with solution processing. They offer thus a compelling suite of materials for technological applications. Their size- and facet-tunable features are studied in synthesis; however, to exploit their features in optoelectronic devices, it will be essential to translate control over size and facets from the colloid all the way to the film. Larger-diameter colloidal quantum dots (CQDs) offer the attractive possibility of harvesting infrared (IR) solar energy beyond absorption of silicon photovoltaics. These CQDs exhibit facets (nonpolar (100)) undisplayed in small-diameter CQDs; and the materials chemistry of smaller nanocrystals fails consequently to translate to materials for the short-wavelength IR regime. A new colloidal management strategy targeting the passivation of both (100) and (111) facets is demonstrated using distinct choices of cations and anions. The approach leads to narrow-bandgap CQDs with impressive colloidal stability and photoluminescence quantum yield. Photophysical studies confirm a reduction both in Stokes shift (approximate to 47 meV) and Urbach tail (approximate to 29 meV). This approach provides a approximate to 50% increase in the power conversion efficiency of IR photovoltaics compared to controls, and a approximate to 70% external quantum efficiency at their excitonic peak.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465600000001 Publication Date 2019-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 74 Open Access OpenAccess  
  Notes ; Y.K., F.C., J.W.J., and J.C. contributed equally. This work was supported by King Abdullah University of Science and Technology (KAUST, Office of Sponsored Research (OSR), Award No. OSR-2017-CPF-3325) and Ontario Research Fund-Research Excellence program (ORF7-Ministry of Research and Innovation, Ontario Research Fund-Research Excellence Round 7). E.B. gratefully acknowledges financial support by the Research Foundation-Flanders (FWO Vlaanderen). Y.K. received financial support from the DGIST R&D Programs of the Ministry of Science, ICT & Future Planning of Korea (18-ET-01). M.B.J.R. and J.H. acknowledge financial support from the Research Foundation-Flanders (FWO, grants nr ZW15_09-GOH6316 and G.098319N) and the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04). H.Y. acknowledges the Research Foundation-Flanders (FWO) for a postdoctoral fellowship. The authors thank L. Levina, R. Wolowiec, D. Kopilovic, and E. Palmiano for their technical help over the course of this research. ; Approved Most recent IF: 19.791  
  Call Number UA @ admin @ c:irua:160392 Serial 5239  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: