toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Manzaneda-Gonzalez, V.; Jenkinson, K.; Pena-Rodriguez, O.; Borrell-Grueiro, O.; Trivino-Sanchez, S.; Banares, L.; Junquera, E.; Espinosa, A.; Gonzalez-Rubio, G.; Bals, S.; Guerrero-Martinez, A. url  doi
openurl 
  Title From multi- to single-hollow trimetallic nanocrystals by ultrafast heating Type A1 Journal article
  Year (down) 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume 35 Issue 22 Pages 9603-9612  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metal nanocrystals (NCs) display unique physicochemical features that are highly dependent on nanoparticle dimensions, anisotropy, structure, and composition. The development of synthesis methodologies that allow us to tune such parameters finely emerges as crucial for the application of metal NCs in catalysis, optical materials, or biomedicine. Here, we describe a synthetic methodology to fabricate hollow multimetallic heterostructures using a combination of seed-mediated growth routes and femtosecond-pulsed laser irradiation. The envisaged methodology relies on the coreduction of Ag and Pd ions on gold nanorods (Au NRs) to form Au@PdAg core-shell nanostructures containing small cavities at the Au-PdAg interface. The excitation of Au@PdAg NRs with low fluence femtosecond pulses was employed to induce the coalescence and growth of large cavities, forming multihollow anisotropic Au@PdAg nanostructures. Moreover, single-hollow alloy AuPdAg could be achieved in high yield by increasing the irradiation energy. Advanced electron microscopy techniques, energy-dispersive X-ray spectroscopy (EDX) tomography, X-ray absorption near-edge structure (XANES) spectroscopy, and finite differences in the time domain (FDTD) simulations allowed us to characterize the morphology, structure, and elemental distribution of the irradiated NCs in detail. The ability of the reported synthesis route to fabricate multimetallic NCs with unprecedented hollow nanostructures offers attractive prospects for the fabrication of tailored high-entropy alloy nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001110623500001 Publication Date 2023-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 2 Open Access OpenAccess  
  Notes Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number UA @ admin @ c:irua:202144 Serial 9040  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: