toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Turner, S.; Idrissi, H.; Sartori, A.F.; Korneychuck, S.; Lu, Y.-G.; Verbeeck, J.; Schreck, M.; Van Tendeloo, G. url  doi
openurl 
  Title Direct imaging of boron segregation at dislocations in B:diamond heteroepitaxial films Type A1 Journal article
  Year 2016 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume (down) 8 Issue 8 Pages 2212-2218  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A thin film of heavily B-doped diamond has been grown epitaxially by microwave plasma chemical vapor deposition on an undoped diamond layer, on top of a Ir/YSZ/Si(001) substrate stack, to study the boron segregation and boron environment at the dislocations present in the film. The density and nature of the dislocations were investigated by conventional and weak-beam dark-field transmission electron microscopy techniques, revealing the presence of two types of dislocations: edge and mixed-type 45 degrees dislocations. The presence and distribution of B in the sample was studied using annular dark-field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy. Using these techniques, a segregation of B at the dislocations in the film is evidenced, which is shown to be intermittent along the dislocation. A single edge-type dislocation was selected to study the distribution of the boron surrounding the dislocation core. By imaging this defect at atomic resolution, the boron is revealed to segregate towards the tensile strain field surrounding the edge-type dislocations. An investigation of the fine structure of the B-K edge at the dislocation core shows that the boron is partially substitutionally incorporated into the diamond lattice and partially present in a lower coordination (sp(2)-like hybridization).  
  Address EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. stuart.turner@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000368860900053 Publication Date 2015-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 15 Open Access  
  Notes S. T. acknowledges the fund for scien tific research Flanders (FWO) for a post-doctoral scholarship and under contract number G.0044.13N Approved Most recent IF: 7.367  
  Call Number c:irua:131597UA @ admin @ c:irua:131597 Serial 4121  
Permanent link to this record
 

 
Author O'Sullivan, M.; Hadermann, J.; Dyer, M.S.; Turner, S.; Alaria, J.; Manning, T.D.; Abakumov, A.M.; Claridge, J.B.; Rosseinsky, M.J. pdf  doi
openurl 
  Title Interface control by chemical and dimensional matching in an oxide heterostructure Type A1 Journal article
  Year 2016 Publication Nature chemistry Abbreviated Journal Nat Chem  
  Volume (down) 8 Issue 8 Pages 347-353  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Interfaces between different materials underpin both new scientific phenomena, such as the emergent behaviour at oxide interfaces, and key technologies, such as that of the transistor. Control of the interfaces between materials with the same crystal structures but different chemical compositions is possible in many materials classes, but less progress has been made for oxide materials with different crystal structures. We show that dynamical self-organization during growth can create a coherent interface between the perovskite and fluorite oxide structures, which are based on different structural motifs, if an appropriate choice of cations is made to enable this restructuring. The integration of calculation with experimental observation reveals that the interface differs from both the bulk components and identifies the chemical bonding requirements to connect distinct oxide structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372505500013 Publication Date 2016-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-4330; 1755-4349 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 25.87 Times cited 28 Open Access  
  Notes Approved Most recent IF: 25.87  
  Call Number UA @ lucian @ c:irua:133189 Serial 4199  
Permanent link to this record
 

 
Author Willhammar, T.; Sentosun, K.; Mourdikoudis, S.; Goris, B.; Kurttepeli, M.; Bercx, M.; Lamoen, D.; Partoens, B.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L.M.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (down) 8 Issue 8 Pages 14925  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Copper chalcogenides find applications in different domains including photonics, photothermal therapy and photovoltaics. CuTe nanocrystals have been proposed as an alternative to noble metal particles for plasmonics. Although it is known that deviations from stoichiometry are a prerequisite for plasmonic activity in the near-infrared, an accurate description of the material and its (optical) properties is hindered by an insufficient understanding of the atomic structure and the influence of defects, especially for materials in their nanocrystalline form. We demonstrate that the structure of Cu1.5±xTe nanocrystals canbe determined using electron diffraction tomography. Real-space high-resolution electron tomography directly reveals the three-dimensional distribution of vacancies in the structure. Through first-principles density functional theory, we furthermore demonstrate that the influence of these vacancies on the optical properties of the nanocrystals is determined. Since our methodology is applicable to a variety of crystalline nanostructured materials, it is expected to provide unique insights concerning structure–property correlations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397799700001 Publication Date 2017-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 37 Open Access OpenAccess  
  Notes The work was financially supported by the European Research Council through an ERC Starting Grant (#335078-COLOURATOMS). T.W. acknowledges the Swedish Research Council for an international postdoc grant. We acknowledge financial support of FWO-Vlaanderen through project G.0216.14N, G.0369.15N and a postdoctoral research grant to B.G. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government–Department EWI. The work was further supported by the Spanish MINECO (MAT2013-45168-R). S.M. thanks the Action ooSupporting Postdoctoral Researchers44 of the Operational Program ‘Education and Lifelong Learning’ (Action’s Beneficiary: General Secretariat for Research and Technology of Greece), which was co-financed by the European Social Fund (ESF) and the Greek State. (ROMEO:green; preprint:; postprint:can ; pdfversion:can); ECAS_Sara Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @ c:irua:142203UA @ admin @ c:irua:142203 Serial 4538  
Permanent link to this record
 

 
Author Guzzinati, G.; Béché, A.; Lourenço-Martins, H.; Martin, J.; Kociak, M.; Verbeeck, J. pdf  url
doi  openurl
  Title Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (down) 8 Issue 8 Pages 14999  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations’ symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations’ symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399084300001 Publication Date 2017-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 84 Open Access OpenAccess  
  Notes ; We thank F.J. Garcia de Abajo and D.M. Ugarte for interesting and fruitful discussion. This work was supported by funding from the European Research Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX. Financial support from the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference number 312483 ESTEEM2) is also gratefully acknowledged. Aluminum nanostructures were fabricated using the Nanomat nanofabrication facility. ; Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @ c:irua:142205UA @ admin @ c:irua:142205 Serial 4548  
Permanent link to this record
 

 
Author Ghorbanfekr-Kalashami, H.; Vasu, K.S.; Nair, R.R.; Peeters, F.M.; Neek-Amal, M. url  doi
openurl 
  Title Dependence of the shape of graphene nanobubbles on trapped substance Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (down) 8 Issue 8 Pages 15844  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Van der Waals (vdW) interaction between two-dimensional crystals (2D) can trap substances in high pressurized (of order 1 GPa) on nanobubbles. Increasing the adhesion between the 2D crystals further enhances the pressure and can lead to a phase transition of the trapped material. We found that the shape of the nanobubble can depend critically on the properties of the trapped substance. In the absence of any residual strain in the top 2D crystal, flat nanobubbles can be formed by trapped long hydrocarbons (that is, hexadecane). For large nanobubbles with radius 130 nm, our atomic force microscopy measurements show nanobubbles filled with hydrocarbons (water) have a cylindrical symmetry (asymmetric) shape which is in good agreement with our molecular dynamics simulations. This study provides insights into the effects of the specific material and the vdW pressure on the microscopic details of graphene bubbles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403417500001 Publication Date 2017-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 44 Open Access  
  Notes We acknowledge fruitful discussion with Irina Grigorieva and Andre K. Geim. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program, the Royal Society and the Engineering and Physical Sciences Research Council, UK (EP/K016946/1). M.N.-A. was supported by Iran National Science Foundation (INSF). Approved Most recent IF: 12.124  
  Call Number CMT @ cmt @ c:irua:144189 Serial 4580  
Permanent link to this record
 

 
Author Chirayath, V.A.; Callewaert, V.; Fairchild, A.J.; Chrysler, M.D.; Gladen, R.W.; Mcdonald, A.D.; Imam, S.K.; Shastry, K.; Koymen, A.R.; Saniz, R.; Barbiellini, B.; Rajeshwar, K.; Partoens, B.; Weiss, A.H. pdf  url
doi  openurl
  Title Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (down) 8 Issue 8 Pages 16116  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405398200001 Publication Date 2017-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 20 Open Access  
  Notes The experiments in this work were supported by the grant NSF DMR 1508719. A.H.W and A.R.K. gratefully acknowledge support for the building of advanced positron beam through the grant NSF DMR MRI 1338130. V.C. and R.S. were supported by the FWO-Vlaanderen through Project No. G. 0224.14N. The computational resources and services used in this work were in part provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government (EWI Department). The work at Northeastern University was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences grant number DE-FG02-07ER46352 (core research), and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC), the NERSC supercomputing center through DOE grant number DE-AC02-05CH11231, and support (applications to layered materials) from the DOE EFRC: Center for the Computational Design of Functional Layered Materials (CCDM) under DE-SC0012575. Approved Most recent IF: 12.124  
  Call Number CMT @ cmt @ c:irua:144625 Serial 4627  
Permanent link to this record
 

 
Author Aussems, D.U.B.; Bal, K. M.; Morgan, T.W.; van de Sanden, M.C.M.; Neyts, E.C. url  doi
openurl 
  Title Atomistic simulations of graphite etching at realistic time scales Type A1 Journal article
  Year 2017 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume (down) 8 Issue 10 Pages 7160-7168  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Hydrogen–graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe timescale

limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of 1020 m2 s1. The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C–C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching – chemical erosion – is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411730500055 Publication Date 2017-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 3 Open Access OpenAccess  
  Notes DIFFER is part of the Netherlands Organisation for Scientic Research (NWO). K. M. B. is funded as a PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientic Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI. Approved Most recent IF: 8.668  
  Call Number PLASMANT @ plasmant @c:irua:145519 Serial 4707  
Permanent link to this record
 

 
Author Embon, L.; Anahory, Y.; Jelić, Z.L.; Lachman, E.O.; Myasoedov, Y.; Huber, M.E.; Mikitik, G.P.; Silhanek, A.V.; Milošević, M.V.; Gurevich, A.; Zeldov, E. url  doi
openurl 
  Title Imaging of super-fast dynamics and flow instabilities of superconducting vortices Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (down) 8 Issue Pages 85  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Quantized magnetic vortices driven by electric current determine key electromagnetic properties of superconductors. While the dynamic behavior of slow vortices has been thoroughly investigated, the physics of ultrafast vortices under strong currents remains largely unexplored. Here, we use a nanoscale scanning superconducting quantum interference device to image vortices penetrating into a superconducting Pb film at rates of tens of GHz and moving with velocities of up to tens of km/s, which are not only much larger than the speed of sound but also exceed the pair-breaking speed limit of superconducting condensate. These experiments reveal formation of mesoscopic vortex channels which undergo cascades of bifurcations as the current and magnetic field increase. Our numerical simulations predict metamorphosis of fast Abrikosov vortices into mixed Abrikosov-Josephson vortices at even higher velocities. This work offers an insight into the fundamental physics of dynamic vortex states of superconductors at high current densities, crucial for many applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405900400002 Publication Date 2017-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 124 Open Access  
  Notes ; We would like to thank M.L. Rappaport for fruitful discussions and technical support. This work was supported by the US-Israel Binational Science Foundation (BSF) grant No. 2014155 and the Israel Science Foundation grant No. 132/14. A.G. was also supported by the United States Department of Energy under Grant No. DE-SC0010081. M.V.M. acknowledges support from Research Foundation-Flanders (FWO). The work of Z.L.J. and A.V.S. was partially supported by “Mandat d'Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. This work benefited from the support of COST action MP-1201. ; Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:144832 Serial 4720  
Permanent link to this record
 

 
Author Yang, C.; Laberty-Robert, C.; Batuk, D.; Cibin, G.; Chadwick, A.V.; Pimenta, V.; Yin, W.; Zhang, L.; Tarascon, J.-M.; Grimaud, A. url  doi
openurl 
  Title Phosphate ion functionalization of perovskite surfaces for enhanced oxygen evolution reaction Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume (down) 8 Issue 15 Pages 3466-3472  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Recent findings revealed that surface oxygen can participate in the oxygen evolution reaction (OER) for the most active catalysts, which eventually triggers a new mechanism for which the deprotonation of surface intermediates limits the OER activity. We propose in this work a “dual strategy” in which tuning the electronic properties of the oxide, such as La1-xSrxCoO3-delta, can be dissociated from the use of surface functionalization with phosphate ion groups (P-i) that enhances the interfacial proton transfer. Results show that the P-i functionalized La0.5Sr0.5CoO3-delta gives rise to a significant enhancement of the OER activity when compared to La0.5Sr0.5Co3-delta and LaCoO3. We further demonstrate that the P-i surface functionalization selectivity enhances the activity when the OER kinetics is limited by the proton transfer. Finally, this work suggests that tuning the catalytic activity by such a “dual approach” may be a new and largely unexplored avenue for the design of novel high-performance catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000407191300003 Publication Date 2017-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.353 Times cited 31 Open Access OpenAccess  
  Notes ; C.Y., J.-M.T., D.B., and A.G. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. We acknowledge Diamond Light Source for time awarded to the Energy Materials BAG on Beamline B18, under Proposal sp12559. ; Approved Most recent IF: 9.353  
  Call Number UA @ lucian @ c:irua:145730 Serial 4747  
Permanent link to this record
 

 
Author Chirumamilla, C.S.; Palagani, A.; Kamaraj, B.; Declerck, K.; Verbeek, M.W.C.; Ryabtsova, O.; De Bosscher, K.; Bougarne, N.; Ruttens, B.; Gevaert, K.; Houtman, R.; De Vos, W.H.; Joossens, J.; van der Veken, P.; Augustyns, K.; van Ostade, X.; Bogaerts, A.; De Winter, H.; Vanden Berghe, W. url  doi
openurl 
  Title Selective glucocorticoid receptor properties of GSK866 analogs with cysteine reactive warheads Type Administrative Services
  Year 2017 Publication Frontiers in immunology Abbreviated Journal Front Immunol  
  Volume (down) 8 Issue Pages 1324  
  Keywords Administrative Services; A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Medicinal Chemistry (UAMC)  
  Abstract Synthetic glucocorticoids (GC) are the mainstay therapy for treatment of acute and chronic inflammatory disorders. Due to the high adverse effects associated with long-term use, GC pharmacology has focused since the nineties on more selective GC ligand-binding strategies, classified as selective glucocorticoid receptor (GR) agonists (SEGRAs) or selective glucocorticoid receptor modulators (SEGRMs). In the current study, GSK866 analogs with electrophilic covalent-binding warheads were developed with potential SEGRA properties to improve their clinical safety profile for long-lasting topical skin disease applications. Since the off-rate of a covalently binding drug is negligible compared to that of a non-covalent drug, its therapeutic effects can be prolonged and typically, smaller doses of the drug are necessary to reach the same level of therapeutic efficacy, thereby potentially reducing systemic side effects. Different analogs of SEGRA GSK866 coupled to cysteine reactive warheads were characterized for GR potency and selectivity in various biochemical and cellular assays. GR- and NFκB-dependent reporter gene studies show favorable anti-inflammatory properties with reduced GR transactivation of two non-steroidal GSK866 analogs UAMC-1217 and UAMC-1218, whereas UAMC-1158 and UAMC-1159 compounds failed to modulate cellular GR activity. These results were further supported by GR immuno-localization and S211 phospho-GR western analysis, illustrating significant GR phosphoactivation and nuclear translocation upon treatment of GSK866, UAMC-1217, or UAMC-1218, but not in case of UAMC-1158 or UAMC-1159. Furthermore, mass spectrometry analysis of tryptic peptides of recombinant GR ligand-binding domain (LBD) bound to UAMC-1217 or UAMC-1218 confirmed covalent cysteine-dependent GR binding. Finally, molecular dynamics simulations, as well as glucocorticoid receptor ligand-binding domain (GR-LBD) coregulator interaction profiling of the GR-LBD bound to GSK866 or its covalently binding analogs UAMC-1217 or UAMC-1218 revealed subtle conformational differences that might underlie their SEGRA properties. Altogether, GSK866 analogs UAMC-1217 and UAMC-1218 hold promise as a novel class of covalent-binding SEGRA ligands for the treatment of topical inflammatory skin disorders.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Place of publication unknown Editor  
  Language Wos 000414136300001 Publication Date 2017-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-3224 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.429 Times cited 2 Open Access OpenAccess  
  Notes Approved Most recent IF: 6.429  
  Call Number UA @ lucian @ c:irua:146485 Serial 4750  
Permanent link to this record
 

 
Author Li, J.; Pereira, P.J.; Yuan, J.; Lv, Y.-Y.; Jiang, M.-P.; Lu, D.; Lin, Z.-Q.; Liu, Y.-J.; Wang, J.-F.; Li, L.; Ke, X.; Van Tendeloo, G.; Li, M.-Y.; Feng, H.-L.; Hatano, T.; Wang, H.-B.; Wu, P.-H.; Yamaura, K.; Takayama-Muromachi, E.; Vanacken, J.; Chibotaru, L.F.; Moshchalkov, V.V. url  doi
openurl 
  Title Nematic superconducting state in iron pnictide superconductors Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (down) 8 Issue 1 Pages 1880  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nematic order often breaks the tetragonal symmetry of iron-based superconductors. It arises from regular structural transition or electronic instability in the normal phase. Here, we report the observation of a nematic superconducting state, by measuring the angular dependence of the in-plane and out-of-plane magnetoresistivity of Ba 0.5 K 0.5 Fe 2 As 2 single crystals. We find large twofold oscillations in the vicinity of the superconducting transition, when the direction of applied magnetic field is rotated within the basal plane. To avoid the influences from sample geometry or current flow direction, the sample was designed as Corbino-shape for in-plane and mesa-shape for out-of-plane measurements. Theoretical analysis shows that the nematic superconductivity arises from the weak mixture of the quasi-degenerate s-wave and d-wave components of the superconducting condensate, most probably induced by a weak anisotropy of stresses inherent to single crystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000416933400002 Publication Date 2017-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 8 Open Access OpenAccess  
  Notes The authors J.L., P.J.P., and J.Y. contributed equally to this work. J.L. and J.Y. designed the experiments. J.L., H.-L.F., K.Y., and E.T.-M. grew the single crystals. J.L., J.Y., Y.-Y.L., M.-P.J., D.L., M.-Y.L., T.H., H.-B.W., P.-H.W., K.Y., E.T.-M., J.V., and V.V.M. fabricated the devices and measured transport properties. J.L., Y.-Y.L., Z.-Q.L., Y.-J.L., J.-F.W., and L.L. studied on the pulsed high field measurements. X.K. and G.V.T. measured the low temperature TEM. All authors discussed the data. J.L., P.J.P., and L.F.C. proposed the model and simulated the results. J.L., P.J.P., K.Y., E.T.-M., and L.F.C. analyzed the data and prepared the manuscript. Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @c:irua:147348 Serial 4772  
Permanent link to this record
 

 
Author Lu, A.K.A.; Houssa, M.; Luisier, M.; Pourtois, G. url  doi
openurl 
  Title Impact of layer alignment on the behavior of MoS2-ZrS2 tunnel field-effect transistors : an ab initio study Type A1 Journal article
  Year 2017 Publication Physical review applied Abbreviated Journal Phys Rev Appl  
  Volume (down) 8 Issue 3 Pages 034017  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Tunnel field-effect transistors based on van der Waals heterostructures are emerging device concepts for low-power applications, auguring sub-60 mV/dec subthreshold swing values. In these devices, the channel is built from a stack of several different two-dimensional materials whose nature allows tailoring the band alignments and enables a good electrostatic control of the device. In this work, we propose a theoretical study of the variability of the performances of a MoS2-ZrS2 tunnel field-effect transistor induced by fluctuations of the relative position or the orientation of the layers. Our results indicate that although a steep subthreshold slope (20 mV/dec) is achievable, fluctuations in the relative orientation of the ZrS2 layer with respect to the MoS2 one lead to a significant variability in the tunneling current by about one decade. This arises from changes in the orbital overlap between the layers and from the modulation of the transport direction.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication College Park, Md Editor  
  Language Wos 000411460400001 Publication Date 2017-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.808 Times cited 6 Open Access OpenAccess  
  Notes Approved Most recent IF: 4.808  
  Call Number UA @ lucian @ c:irua:146741 Serial 4785  
Permanent link to this record
 

 
Author Dendooven, J.; Ramachandran, R.K.; Solano, E.; Kurttepeli, M.; Geerts, L.; Heremans, G.; Ronge, J.; Minjauw, M.M.; Dobbelaere, T.; Devloo-Casier, K.; Martens, J.A.; Vantomme, A.; Bals, S.; Portale, G.; Coati, A.; Detavernier, C. url  doi
openurl 
  Title Independent tuning of size and coverage of supported Pt nanoparticles using atomic layer deposition Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (down) 8 Issue 8 Pages 1074  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Synthetic methods that allow for the controlled design of well-defined Pt nanoparticles are highly desirable for fundamental catalysis research. In this work, we propose a strategy that allows precise and independent control of the Pt particle size and coverage. Our approach exploits the versatility of the atomic layer deposition (ALD) technique by combining two ALD processes for Pt using different reactants. The particle areal density is controlled by tailoring the number of ALD cycles using trimethyl(methylcyclopentadienyl) platinum and oxygen, while subsequent growth using the same Pt precursor in combination with nitrogen plasma allows for tuning of the particle size at the atomic level. The excellent control over the particle morphology is clearly demonstrated by means of in situ and ex situ X-ray fluorescence and grazing incidence small angle X-ray scattering experiments, providing information about the Pt loading, average particle dimensions, and mean center-to-center particle distance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413353500023 Publication Date 2017-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 88 Open Access OpenAccess  
  Notes ; This research was funded by the Research Foundation-Flanders (FWO), the Special Research Fund BOF of Ghent University (GOA 01G01513) and the Flemish Government (Medium-scale research infrastructure funding-Hercules funding). J. D., T. D. and M. M. M. acknowledge the FWO for a research fellowship. S. B. acknowledges the European Research Council, ERC grant no. 335078-Colouratom. For the GISAXS and XRF measurements at SOLEIL, the authors received funding from the European Community's Trans National Access Program CALIPSO. We are also grateful to the SOLEIL and ESRF staff for smoothly running the facilities. The authors thank G. Verellen for his help with drawing the 3D sketches. ; ecas_Sara Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:146668UA @ admin @ c:irua:146668 Serial 4786  
Permanent link to this record
 

 
Author Ulu Okudur, F.; D'Haen, J.; Vranken, T.; De Sloovere, D.; Verheijen, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Van Bael, M.K.; Hardy, A. pdf  url
doi  openurl
  Title Ti surface doping of LiNi0.5Mn1.5O4−δpositive electrodes for lithium ion batteries Type A1 Journal article
  Year 2018 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume (down) 8 Issue 13 Pages 7287-7300  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The particle surface of LiNi0.5Mn1.5O4−δ (LNMO), a Li-ion battery cathode material, has been modified by Ti cation doping through a hydrolysis–condensation reaction followed by annealing in oxygen. The effect of different annealing temperatures (500–850 °C) on the Ti distribution and electrochemical performance of the surface modified LNMO was investigated. Ti cations diffuse from the preformed amorphous ‘TiOx’ layer into the LNMO surface during annealing at 500 °C. This results in a 2–4 nm thick Ti-rich spinel surface having lower Mn and Ni content compared to the core of the LNMO particles, which was observed with scanning transmission electron microscopy coupled with compositional EDX mapping. An increase in the annealing temperature promotes the formation of a Ti bulk doped LiNi(0.5−w)Mn(1.5+w)−tTitO4 phase and Ti-rich LiNi0.5Mn1.5−yTiyO4 segregates above 750 °C. Fourier-transform infrared spectrometry indicates increasing Ni–Mn ordering with annealing temperature, for both bare and surface modified LNMO. Ti surface modified LNMO annealed at 500 °C shows a superior cyclic stability, coulombic efficiency and rate performance compared to bare LNMO annealed at 500 °C when cycled at 3.4–4.9 V vs. Li/Li+. The improvements are probably due to suppressed Ni and Mn dissolution with Ti surface doping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425508900064 Publication Date 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 9 Open Access OpenAccess  
  Notes This research is supported by the Research Foundation Flanders (FWO Vlaanderen, grant number G040116N). This project receives the support of the European Union, the European Regional Development Fund ERDF, Flanders Innovation & Entrepreneurship and the Province of Limburg (project 936). Greet Cuyvers and Gilles Bonneux (UHasselt) are acknowledged for the ICP-AES sample preparation and measurements. Vera Meynen and Karen Leyssens (Antwerp University, Belgium) are acknowledged for the BET measurements. Special thanks to Bart Ruttens (UHasselt) for XRD measurements and discussions on the refinements. Approved Most recent IF: 3.108  
  Call Number EMAT @ emat @c:irua:149513 Serial 4905  
Permanent link to this record
 

 
Author Kumar, N.; Shaw, P.; Razzokov, J.; Yusupov, M.; Attri, P.; Uhm, H.S.; Choi, E.H.; Bogaerts, A. url  doi
openurl 
  Title Enhancement of cellular glucose uptake by reactive species: a promising approach for diabetes therapy Type A1 Journal article
  Year 2018 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume (down) 8 Issue 18 Pages 9887-9894  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract It is generally known that antidiabetic activity is associated with an increased level of glucose uptake in adipocytes and skeletal muscle cells. However, the role of exogenous reactive oxygen and nitrogen species (RONS) in muscle development and more importantly in glucose uptake is largely unknown. We investigate the effect of RONS generated by cold atmospheric plasma (CAP) in glucose uptake. We show that the glucose uptake is significantly enhanced in differentiated L6 skeletal muscle cells after CAP treatment. We also observe a significant increase of the intracellular Ca++ and ROS level, without causing toxicity. One of the possible reasons for an elevated level of glucose uptake as well as intracellular ROS and Ca++ ions is probably the increased oxidative stress leading to glucose transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430451800036 Publication Date 2018-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 1 Open Access OpenAccess  
  Notes We gratefully acknowledge nancial support from the Research Foundation – Flanders (FWO), grant numbers 12J5617N, 1200216N and from the European Marie Skłodowska-Curie Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). We are also thankful to the Plasma Bioscience Research Center at Kwangwoon University for providing the core facilities for the experimental work as well as nancial support by the Leading Foreign Research Institute Recruitment program (Grant # NRF-2016K1A4A3914113) through the Basic Science Research Program of the National Research Founda Approved Most recent IF: 3.108  
  Call Number PLASMANT @ plasmant @c:irua:149564 Serial 4909  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Kusmartsev, F.; Peeters, F.M.; Savel'ev, S. url  doi
openurl 
  Title Josephson vortex loops in nanostructured Josephson junctions Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume (down) 8 Issue 8 Pages 2733  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Linked and knotted vortex loops have recently received a revival of interest. Such three-dimensional topological entities have been observed in both classical-and super-fluids, as well as in optical systems. In superconductors, they remained obscure due to their instability against collapse – unless supported by inhomogeneous magnetic field. Here we reveal a new kind of vortex matter in superconductors -the Josephson vortex loops – formed and stabilized in planar junctions or layered superconductors as a result of nontrivial cutting and recombination of Josephson vortices around the barriers for their motion. Engineering latter barriers opens broad perspectives on loop manipulation and control of other possible knotted/linked/entangled vortex topologies in nanostructured superconductors. In the context of Josephson devices proposed to date, the high-frequency excitations of the Josephson loops can be utilized in future design of powerful emitters, tunable filters and waveguides of high-frequency electromagnetic radiation, thereby pushing forward the much needed Terahertz technology.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000424630400046 Publication Date 2018-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 10 Open Access  
  Notes ; This work was supported by EU Marie-Curie program (project No: 253057), Special Research Funds of the University of Antwerp (BOF-UA), and by the Research Foundation – Flanders (FWO). ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:149262UA @ admin @ c:irua:149262 Serial 4940  
Permanent link to this record
 

 
Author Lutz, L.; Corte, D.A.D.; Chen, Y.; Batuk, D.; Johnson, L.R.; Abakumov, A.; Yate, L.; Azaceta, E.; Bruce, P.G.; Tarascon, J.-M.; Grimaud, A. pdf  doi
openurl 
  Title The role of the electrode surface in Na-Air batteries : insights in electrochemical product formation and chemical growth of NaO2 Type A1 Journal article
  Year 2018 Publication Advanced energy materials Abbreviated Journal Adv Energy Mater  
  Volume (down) 8 Issue 4 Pages 1701581  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The Na-air battery, because of its high energy density and low charging overpotential, is a promising candidate for low-cost energy storage, hence leading to intensive research. However, to achieve such a battery, the role of the positive electrode material in the discharge process must be understood. This issue is herein addressed by exploring the electrochemical reduction of oxygen, as well as the chemical formation and precipitation of NaO2 using different electrodes. Whereas a minor influence of the electrode surface is demonstrated on the electrochemical formation of NaO2, a strong dependence of the subsequent chemical precipitation of NaO2 is identified. In the origin, this effect stems from the surface energy and O-2/O-2(-) affinity of the electrode. The strong interaction of Au with O-2/O-2(-) increases the nucleation rate and leads to an altered growth process when compared to C surfaces. Consequently, thin (3 mu m) flakes of NaO2 are found on Au, whereas on C large cubes (10 mu m) of NaO2 are formed. This has significant impact on the cell performance and leads to four times higher capacity when C electrodes with low surface energy and O-2/O-2(-) affinity are used. It is hoped that these findings will enable the design of new positive electrode materials with optimized surfaces.  
  Address  
  Corporate Author Thesis  
  Publisher WILEY-VCH Verlag GmbH & Co. Place of Publication Weinheim Editor  
  Language Wos 000424152200009 Publication Date 2017-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.721 Times cited 13 Open Access Not_Open_Access  
  Notes ; L.L. thanks ALISTORE-ERI for his PhD grant. P.G.B. is indebted to the EPSRC for financial support, including the Supergen Energy Storage grant. ; Approved Most recent IF: 16.721  
  Call Number UA @ lucian @ c:irua:149269 Serial 4951  
Permanent link to this record
 

 
Author Pinto, N.; Rezvani, S.J.; Perali, A.; Flammia, L.; Milošević, M.V.; Fretto, M.; Cassiago, C.; De Leo, N. doi  openurl
  Title Dimensional crossover and incipient quantum size effects in superconducting niobium nanofilms Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume (down) 8 Issue 8 Pages 4710  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Superconducting and normal state properties of Niobium nanofilms have been systematically investigated as a function of film thickness, on different substrates. The width of the superconductingto- normal transition for all films is remarkably narrow, confirming their high quality. The superconducting critical current density exhibits a pronounced maximum for thickness around 25 nm, marking the 3D-to-2D crossover. The magnetic penetration depth shows a sizeable enhancement for the thinnest films. Additional amplification effects of the superconducting properties have been obtained with sapphire substrates or squeezing the lateral size of the nanofilms. For thickness close to 20 nm we measured a doubled perpendicular critical magnetic field compared to its large thickness value, indicating shortening of the correlation length and the formation of small Cooper pairs. Our data analysis indicates an exciting interplay between quantum-size and proximity effects together with strong-coupling effects and the importance of disorder in the thinnest films, placing these nanofilms close to the BCS-BEC crossover regime.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000427588300011 Publication Date 2018-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 37 Open Access  
  Notes ; We thank Antonio Bianconi, Mauro Doria and Vincenzo Lacquaniti for useful discussions. We acknowledge the collaboration with Federica Celegato for AFM analysis and Sara Quercetti for the electrical properties characterization. A. P. and N. P. acknowledge financial support from University of Camerino FAR project CESEMN. We also acknowledge the collaboration within the MultiSuper International Network (http://www.multisuper.org) for exchange of ideas and suggestions. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:150843UA @ admin @ c:irua:150843 Serial 4965  
Permanent link to this record
 

 
Author Yadav, D.K.; Kumar, S.; Saloni; Misra, S.; Yadav, L.; Teli, M.; Sharma, P.; Chaudhary, S.; Kumar, N.; Choi, E.H.; Kim, H.S.; Kim, M.-hyun url  doi
openurl 
  Title Molecular Insights into the Interaction of RONS and Thieno[3,2-c]pyran Analogs with SIRT6/COX-2: A Molecular Dynamics Study Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume (down) 8 Issue 8 Pages 4777  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract SIRT6 and COX-2 are oncogenes target that promote the expression of proinflammatory and pro-survival proteins through a signaling pathway, which leads to increased survival and proliferation of tumor cells. However, COX-2 also suppresses skin tumorigenesis and their relationship with SIRT6, making it an interesting target for the discovery of drugs with anti-inflammatory and anti-cancer properties. Herein, we studied the interaction of thieno[3,2-c] pyran analogs and RONS species with SIRT6 and COX-2 through the use of molecular docking and molecular dynamic simulations. Molecular docking studies revealed the importance of hydrophobic and hydrophilic amino acid residues for the stability. The molecular dynamics study examined conformational changes in the enzymes caused by the binding of the substrates and how those changes affected the stability of the protein-drug complex. The average RMSD values of the backbone atoms in compounds 6 and 10 were calculated from 1000 ps to 10000 ps and were found to be 0.13 nm for both compounds. Similarly, the radius of gyration values for compounds 6 and 10 were found to be 1.87 +/- 0.03 nm and 1.86 +/- 0.02 nm, respectively. The work presented here, will be of great help in lead identification and optimization for early drug discovery.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000427685200002 Publication Date 2018-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 10 Open Access OpenAccess  
  Notes Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:150841 Serial 4974  
Permanent link to this record
 

 
Author Gao, M.; Zhang, Y.; Wang, H.; Guo, B.; Zhang, Q.; Bogaerts, A. pdf  url
doi  openurl
  Title Mode Transition of Filaments in Packed-Bed Dielectric Barrier Discharges Type A1 Journal article
  Year 2018 Publication Catalysts Abbreviated Journal Catalysts  
  Volume (down) 8 Issue 6 Pages 248  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We investigated the mode transition from volume to surface discharge in a packed bed dielectric barrier discharge reactor by a two-dimensional particle-in-cell/Monte Carlo collision method. The calculations are performed at atmospheric pressure for various driving voltages and for gas mixtures with different N2 and O2 compositions. Our results reveal that both a change of the driving voltage and gas mixture can induce mode transition. Upon increasing voltage, a mode transition from hybrid (volume+surface) discharge to pure surface discharge occurs, because the charged species can escape much more easily to the beads and charge the bead surface due to the strong electric field at high driving voltage. This significant surface charging will further enhance the tangential component of the electric field along the dielectric bead surface, yielding surface ionization waves (SIWs). The SIWs will give rise to a high concentration of reactive species on the surface, and thus possibly enhance the surface activity of the beads, which might be of interest for plasma catalysis. Indeed, electron impact excitation and ionization mainly take place near the bead surface. In addition, the propagation speed of SIWs becomes faster with increasing N2 content in the gas mixture, and slower with increasing O2 content, due to the loss of electrons by attachment to O2

molecules. Indeed, the negative O-2 ion density produced by electron impact attachment is much higher than the electron and positive O+2 ion density. The different ionization rates between N2 and O2 gases will create different amounts of electrons and ions on the dielectric bead surface, which might also have effects in plasma catalysis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000436128600027 Publication Date 2018-06-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited 7 Open Access OpenAccess  
  Notes The authors are very grateful to Wei Jiang for the useful discussions on the particle-incell/ Monte-Carlo collision model. Approved Most recent IF: 3.082  
  Call Number PLASMANT @ plasmant @c:irua:152171 Serial 4991  
Permanent link to this record
 

 
Author Dimitrievska, M.; Shea, P.; Kweon, K.E.; Bercx, M.; Varley, J.B.; Tang, W.S.; Skripov, A.V.; Stavila, V.; Udovic, T.J.; Wood, B.C. pdf  url
doi  openurl
  Title Carbon Incorporation and Anion Dynamics as Synergistic Drivers for Ultrafast Diffusion in Superionic LiCB11H12 and NaCB11H12 Type A1 Journal article
  Year 2018 Publication Advanced energy materials Abbreviated Journal Adv Energy Mater  
  Volume (down) 8 Issue 15 Pages 1703422  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The disordered phases of LiCB11H12 and NaCB11H12 possess superb superionic conductivities that make them suitable as solid electrolytes. In these materials, cation diffusion correlates with high orientational mobilities of the CB11H12- anions; however, the precise relationship has yet to be demonstrated. In this work, ab initio molecular dynamics and quasielastic neutron scattering are combined to probe anion reorientations and their mechanistic connection to cation mobility over a range of timescales and temperatures. It is found that anions do not rotate freely, but rather transition rapidly between orientations defined by the cation sublattice symmetry. The symmetry-breaking carbon atom in CB11H12- also plays a critical role by perturbing the energy landscape along the instantaneous orientation of the anion dipole, which couples fluctuations in the cation probability density directly to the anion motion. Anion reorientation rates exceed 3 x 10(10) s(-1), suggesting the underlying energy landscape fluctuates dynamically on diffusion-relevant timescales. Furthermore, carbon is found to modify the orientational preferences of the anions and aid rotational mobility, creating additional symmetry incompatibilities that inhibit ordering. The results suggest that synergy between the anion reorientational dynamics and the carbon-modified cation-anion interaction accounts for the higher ionic conductivity in CB11H12- salts compared with B12H122-.  
  Address  
  Corporate Author Thesis  
  Publisher WILEY-VCH Verlag GmbH & Co. Place of Publication Weinheim Editor  
  Language Wos 000434031400026 Publication Date 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.721 Times cited 20 Open Access OpenAccess  
  Notes ; This work was performed in part under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory (LLNL) under Contract No. DE-AC52-07NA27344 and funded by Laboratory Directed Research and Development Grant 15-ERD-022. Computing support came from the LLNL Institutional Computing Grand Challenge program. This work was also performed in part within the assignment of the Russian Federal Agency of Scientific Organizations (program “Spin” No. 01201463330). The authors gratefully acknowledge support from the Russian Foundation for Basic Research under Grant No. 15-03-01114 and the Ural Branch of the Russian Academy of Sciences under Grant No. 15-9-2-9. A.V.S. gratefully acknowledges travel support from CRDF Global in conjunction with this work under Grant No. FSCX-15-61826-0. M.D. gratefully acknowledges research support from the Hydrogen Materials-Advanced Research Consortium (HyMARC), established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Contract No. DE-AC36-08GO28308. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-1508249. The views, opinions, findings, and conclusions stated herein are those of the authors and do not necessarily reflect those of CRDF Global, or the United States Government or any agency thereof. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. ; Approved Most recent IF: 16.721  
  Call Number UA @ lucian @ c:irua:152045 Serial 5015  
Permanent link to this record
 

 
Author Bueken, B.; Van Velthoven, N.; Willhammar, T.; Stassin, T.; Stassen, I.; Keen, D.A.; Baron, G.V.; Denayer, J.F.M.; Ameloot, R.; Bals, S.; De Vos, D.; Bennett, T.D. pdf  url
doi  openurl
  Title Gel-based morphological design of zirconium metal-organic frameworks Type A1 Journal article
  Year 2017 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume (down) 8 Issue 8 Pages 3939-3948  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero-or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X – H, NH2, NO2, (OH)(2)), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N-2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 mm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000400553000077 Publication Date 2017-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 168 Open Access OpenAccess  
  Notes ; B. B., T. S. and I. S. acknowledge the FWO Flanders (doctoral and post-doctoral grants). T. W. acknowledges a post-doctoral grant from the Swedish Research Council. T. D. B. acknowledges the Royal Society (University Research Fellowship) and Trinity Hall (University of Cambridge) for funding. S. B. and D. D. V. are grateful for funding by Belspo (IAP 7/05 P6/27) and by the FWO Flanders. D. D. V. further acknowledges funding from the European Research Council (project H-CCAT). S. B. acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors acknowledge Arnau Carne and Shuhei Furukawa for assistance with supercritical CO<INF>2</INF> extraction, and Charles Ghesquiere for assistance in synthesis. ; Ecas_Sara Approved Most recent IF: 8.668  
  Call Number UA @ lucian @ c:irua:152643UA @ admin @ c:irua:152643 Serial 5143  
Permanent link to this record
 

 
Author Kutukov, P.; Rumyantseva, M.; Krivetskiy, V.; Filatova, D.; Batuk, M.; Hadermann, J.; Khmelevsky, N.; Aksenenko, A.; Gaskov, A. url  doi
openurl 
  Title Influence of Mono- and Bimetallic PtOx, PdOx, PtPdOx Clusters on CO Sensing by SnO2 Based Gas Sensors Type A1 Journal Article
  Year 2018 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume (down) 8 Issue 11 Pages 917  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract To obtain a nanocrystalline SnO2 matrix and mono- and bimetallic nanocomposites SnO2/Pd, SnO2/Pt, and SnO2/PtPd, a flame spray pyrolysis with subsequent impregnation was used. The materials were characterized using X-ray diffraction (XRD), a single-point BET method, transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The electronic state of the metals in mono- and bimetallic clusters was determined using X-ray photoelectron spectroscopy (XPS). The active surface sites were investigated using the Fourier Transform infrared spectroscopy (FTIR) and thermo-programmed reduction with hydrogen (TPR-H-2) methods. The sensor response of blank SnO2 and nanocomposites had a carbon monoxide (CO) level of 6.7 ppm and was determined in the temperature range 60-300 degrees C in dry (Relative Humidity (RH) = 0%) and humid (RH = 20%) air. The sensor properties of the mono- and bimetallic nanocomposites were analyzed on the basis of information on the electronic state, the distribution of modifiers in SnO2 matrix, and active surface centers. For SnO2/PtPd, the combined effect of the modifiers on the electrophysical properties of SnO2 explained the inversion of sensor response from n- to p-types observed in dry conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451316100052 Publication Date 2018-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited 7 Open Access Not_Open_Access  
  Notes This research was funded by the Russian Ministry of Education and Sciences (Agreement No. 14.613.21.0075, RFMEFI61317X0075). Approved Most recent IF: 3.553  
  Call Number EMAT @ emat @c:irua:155767 Serial 5139  
Permanent link to this record
 

 
Author Theofanidis, S.A.; Galvita, V.V.; Poelman, H.; Dharanipragada, N.V.R.A.; Longo, A.; Meledina, M.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B. url  doi
openurl 
  Title Fe-containing magnesium aluminate support for stability and carbon control during methane reforming Type A1 Journal article
  Year 2018 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume (down) 8 Issue 7 Pages 5983-5995  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report a MgFexAl2-xO4 synthetic spinel, where x varies from 0 to 0.26, as support for Ni-based catalysts, offering stability and carbon control under various conditions of methane reforming. By incorporation of Fe into a magnesium aluminate spine!, a support is created with redox functionality and high thermal stability, as concluded from temporal analysis of products (TAP) experiments and redox cycling, respectively. A diffusion coefficient of 3 x 10(-17) m(2) s(-1) was estimated for lattice oxygen at 993 K from TAP experiments. X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) modeling identified that the incorporation of iron occurs as Fe3+ in the octahedral sites of the spinel lattice, replacing aluminum. Simulation of the X-ray absorption near edge structure (XANES) spectrum of the reduced support showed that 60 +/- 10% of iron was reduced from 3+ to 2+ at 1073 K, while there was no formation of metallic iron. A series of Ni/MgFexAl2-xO4 catalysts, where x varies from 0 to 0.26, was synthesized and reduced, yielding a supported Ni-Fe alloy. The evolution of the catalyst structure during H-2 temperature-programmed reduction (TPR) and CO2 temperature-programmed oxidation (TPO) was examined using time-resolved in situ XRD and XANES. During reforming, iron in both the support and alloy keeps control of carbon accumulation, as confirmed by O-2-TPO on the spent catalysts. By fine tuning the amount of Fe in MgFexAl2-xO4, a supported alloy was obtained with a Ni/Fe molar ratio of similar to 10, which was active for reforming and stable. By comparison of the performance of Ni-based catalysts with Fe either incorporated into or deposited onto the support, the location of Fe within the support proved crucial for the stability and carbon mitigation under reforming conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000438475100034 Publication Date 2018-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited 18 Open Access OpenAccess  
  Notes ; This work was supported by the FAST industrialization by Catalyst Research and Development (FASTCARD) project, which is a Large Scale Collaborative Project supported by the European Commission in the 7th Framework Programme (GA no 604277), the “Long Term Structural Methusalem Funding by the Flemish Government”, the Interuniversity Attraction Poles Programme, IAP7/5, Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) in supplying financing of travel costs and beam time at the DUBBLE beamline of the ESRF. The authors acknowledge the assistance from the DUBBLE (ESRF, XAS campaign 26-01-1048) and ROCK staff (SOLEIL, proposal 201502561). The authors equally acknowledge support from a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d'Avenir” program (reference: ANR-10-EQPX-45) for the ROCK beamline and from Lukas Buelens and Rakesh Batchu (Laboratory for Chemical Technology, Ghent University) for the STEM measurements and TAP experiments, respectively. ; Approved Most recent IF: 10.614  
  Call Number UA @ lucian @ c:irua:153178 Serial 5102  
Permanent link to this record
 

 
Author Snoeckx, R.; Wang, W.; Zhang, X.; Cha, M.S.; Bogaerts, A. url  doi
openurl 
  Title Plasma-based multi-reforming for Gas-To-Liquid: tuning the plasma chemistry towards methanol Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume (down) 8 Issue 1 Pages 15929  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Because of its unique properties, plasma technology has gained much prominence in the

microelectronics industry. Recently, environmental and energy applications of plasmas have gained a lot of attention. In this area, the focus is on converting CO 2 and reforming hydrocarbons, with the goal of developing an efficient single-step ‘gas-to-liquid’ (GTL) process. Here we show that applying tri-reforming principles to plasma—further called ‘plasma-based multi-reforming’—allows us to better control the plasma chemistry and thus the formed products. To demonstrate this, we used chemical kinetics calculations supported by experiments and reveal that better control of the plasma chemistry can be achieved by adding O 2 or H 2 O to a mixture containing CH 4 and CO 2 (diluted in N 2 ). Moreover, by adding O 2 and H 2 O simultaneously, we can tune the plasma chemistry even further, improving the conversions, thermal efficiency and methanol yield. Unlike thermocatalytic reforming, plasma-based reforming is capable of producing methanol in a single step; and compared with traditional plasma-based dry reforming, plasma-based multi-reforming increases the methanol yield by more than seven times and the thermal efficiency by 49%, as revealed by our model calculations. Thus, we believe that by using plasma-based multi-reforming, ‘gas-to-liquid’ conversion may be made efficient and scalable.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000448589200005 Publication Date 2018-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Competitive Research Funding from King Abdullah University of Science and Technology (KAUST), the European Marie Skłodowska-Curie Individual Fellowship “GlidArc” within Horizon2020 (Grant No. 657304), the Fund for Scientific Research Flanders (FWO) (grant nos G.0217.14 N, G.0254.14 N and G.0383.16 N) and the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). This work was carried out, in part, using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:154868 Serial 5066  
Permanent link to this record
 

 
Author Sankaran, K.J.; Deshmukh, S.; Korneychuk, S.; Yeh, C.-J.; Thomas, J.P.; Drijkoningen, S.; Pobedinskas, P.; Van Bael, M.K.; Verbeeck, J.; Leou, K.-C.; Leung, K.-T.; Roy, S.S.; Lin, I.-N.; Haenen, K. pdf  doi
openurl 
  Title Fabrication, microstructure, and enhanced thermionic electron emission properties of vertically aligned nitrogen-doped nanocrystalline diamond nanorods Type A1 Journal article
  Year 2018 Publication MRS communications Abbreviated Journal Mrs Commun  
  Volume (down) 8 Issue 3 Pages 1311-1320  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Vertically aligned nitrogen-doped nanocrystalline diamond nanorods are fabricated from nitrogen-doped nanocrystalline diamond films using reactive ion etching in oxygen plasma. These nanorods show enhanced thermionic electron emission (TEE) characteristics, viz.. a high current density of 12.0 mA/cm(2) and a work function value of 4.5 eV with an applied voltage of 3 Vat 923 K. The enhanced TEE characteristics of these nanorods are ascribed to the induction of nanographitic phases at the grain boundaries and the field penetration effect through the local field enhancement from nanorods owing to a high aspect ratio and an excellent field enhancement factor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000448887900089 Publication Date 2018-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2159-6859; 2159-6867 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.01 Times cited 1 Open Access  
  Notes The authors thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. The Hercules Foundation Flanders is acknowledged for financial support of the Raman equipment. The Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S.K. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. K.J. Sankaran and P. Pobedinskas are Postdoctoral Fellows of FWO. Approved Most recent IF: 3.01  
  Call Number UA @ admin @ c:irua:155521 Serial 5364  
Permanent link to this record
 

 
Author Trashin, S.; Rahemi, V.; Ramji, K.; Neven, L.; Gorun, S.M.; De Wael, K. url  doi
openurl 
  Title Singlet oxygen-based electrosensing by molecular photosensitizers Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (down) 8 Issue Pages 16108  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Enzyme-based electrochemical biosensors are an inspiration for the development of (bio)analytical techniques. However, the instability and reproducibility of the reactivity of enzymes, combined with the need for chemical reagents for sensing remain challenges for the construction of useful devices. Here we present a sensing strategy inspired by the advantages of enzymes and photoelectrochemical sensing, namely the integration of aerobic photocatalysis and electrochemical analysis. The photosensitizer, a bioinspired perfluorinated Zn phthalocyanine, generates singlet-oxygen from air under visible light illumination and oxidizes analytes, yielding electrochemically-detectable products while resisting the oxidizing species it produces. Compared with enzymatic detection methods, the proposed strategy uses air instead of internally added reactive reagents, features intrinsic baseline correction via on/off light switching and shows C-F bonds-type enhanced stability. It also affords selectivity imparted by the catalytic process and nano-level detection, such as 20 nM amoxicillin in μl sample volumes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405466200002 Publication Date 2017-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 26 Open Access  
  Notes ; Evonik is thanked for providing samples of silicon and titanium oxides. Support from the National Science Foundation (SMG) for a portion of this work is gratefully acknowledged. FWO and UAntwerpen (BOF) are acknowledged for financial support. ; Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:144538 Serial 5833  
Permanent link to this record
 

 
Author Hernandez Parrodi, J.C.; Lucas, H.; Gigantino, M.; Sauve, G.; Esguerra, J.L.; Einhäupl, P.; Vollprecht, D.; Pomberger, R.; Friedrich, B.; Van Acker, K.; Krook, J.; Svensson, N.; Van Passel, S. url  doi
openurl 
  Title Integration of resource recovery into current waste management through (enhanced) landfill mining Type A1 Journal article
  Year 2019 Publication Detritus Abbreviated Journal  
  Volume (down) Volume 08 - December 2019 Issue Volume 08 - December 2019 Pages 1  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract Europe has somewhere between 150,000 and 500,000 landfill sites, with an estimated 90% of them being “non-sanitary” landfills, predating the EU Landfill Directive of 1999/31/EC. These older landfills tend to be filled with municipal solid waste and often lack any environmental protection technology. “ Doing nothing”, state-of-theart aftercare or remediating them depends largely on technical, societal and economic conditions which vary between countries. Beside “ doing nothing' and landfill aftercare, there are different scenarios in landfill mining, from re-landfilling the waste into ”sanitary landfills" to seizing the opportunity for a combined resource-recovery and remediation strategy. This review article addresses present and future issues and potential opportunities for landfill mining as an embedded strategy in current waste management systems through a multi-disciplinary approach. In particular, three general landfill mining strategies are addressed with varying extents of resource recovery. These are discussed in relation to the main targets of landfill mining: (i) reduction of the landfill volume (technical), (ii) reduction of risks and impacts (environmental) and (iii) increase in resource recovery and overall profitability (economic). Geophysical methods could be used to determine the characteristics of the landfilled waste and subsurface structures without the need of an invasive exploration, which could greatly reduce exploration costs and time, as well as be useful to develop a procedure to either discard or select the most appropriate sites for (E)LFM. Material and energy recovery from land-filled waste can be achieved through mechanical processing coupled with thermochemical valorization technologies and residues upcycling techniques. Gasification could enable the upcycling of residues after thermal treatment into a new range of eco-friendly construction materials based on inorganic polymers and glass-ceramics. The multi-criteria assessment is directly influenced by waste- and technology related factors, which together with site-specific conditions, market and regulatory aspects, influence the environmental, economic and societal impacts of (E)LFM projects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000504065300012 Publication Date 2019-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes ; This research has been funded by the European Union ' s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 721185 “NEW-MINE” (EU Training Network for Resource Recovery through Enhanced Landfill Mining; www.new-mine.eu). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165759 Serial 6219  
Permanent link to this record
 

 
Author Van Dael, M.; Marquez, N.; Reumerman, P.; Pelkmans, L.; Kuppens, T.; Van Passel, S. doi  openurl
  Title Development and techno-economic evaluation of a biorefinery based on biomass (waste) streams : case study in the Netherlands Type A1 Journal article
  Year 2014 Publication Biofuels Bioproducts & Biorefining-Biofpr Abbreviated Journal Biofuel Bioprod Bior  
  Volume (down) 8 Issue 5 Pages 635-644  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract In this paper, the technical and economic advantages of combining conversion technologies into a multi-dimensional plant primarily using regional biomass residues are investigated. The main objective is to show how locally available biomass can be used more efficiently as a source for renewable energy and bio-based products. Therefore, not only is the theoretical perspective considered, but also a reality check for the local situation is taken into account. Although industrial attitude toward biorefineries is positive, the efficient production of a portfolio of bio-based products has not yet been implemented. A biorefinery concept for Moerdijk (the Netherlands) was developed, focusing on grass refining, production of pyrolysis oil, biodiesel production, and bio-LNG production. Grass refining is the most experimental technique of all proposed conversion techniques. In terms of development, pyrolysis oil and bio-LNG production are in the demonstration phase. Anaerobic digestion and biodiesel production are proven techniques. It is shown that this concept allows for synergies with regard to the utilization of residue flows from internal processes. Furthermore, it is demonstrated that by integrating different conversion technologies, an economically feasible concept can be developed in which technologies, currently residing in a demonstration phase, can also be brought to the market. (c) 2013 Society of Chemical Industry and John Wiley & Sons, Ltd  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000342662200015 Publication Date 2013-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-104x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.694 Times cited 18 Open Access  
  Notes ; We would like to thank the editor and the anonymous referees for their helpful suggestions and insightful comments that have significantly improved the paper. The Energy Conversion Parks (ECP) project is funded by the Interreg IVa – Flanders-Netherlands program from the European Fund for Regional Development that stimulates cross-border projects. Also the Dutch Ministry of Economic Affairs, the Flemish Government, the Provinces of Noord-Brabant (NL), Zeeland (NL), Limburg (BE) and the partners (VITO, Avans University of Applied Sciences, Wageningen University and Research, Hasselt University, and Zeeland University of Applied Sciences) themselves are co-financing the project. We also would like to express our gratitude toward the organization of the 2nd Iberoamerican Congress on Biorefineries in Jaen (Spain) for giving us the opportunity to present and thereby fine-tune our work. ; Approved Most recent IF: 3.694; 2014 IF: 4.214  
  Call Number UA @ admin @ c:irua:127541 Serial 6180  
Permanent link to this record
 

 
Author Spreitzer, M.; Klement, D.; Egoavil, R.; Verbeeck, J.; Kovac, J.; Zaloznik, A.; Koster, G.; Van Tendeloo, G.; Suvorov, D.; Rijnders, G. url  doi
openurl 
  Title Growth mechanism of epitaxial SrTiO3 on a (1 x 2) + (2 x 1) reconstructed Sr(1/2 ML)/Si(001) surface Type A1 Journal article
  Year 2020 Publication Journal Of Materials Chemistry C Abbreviated Journal J Mater Chem C  
  Volume (down) 8 Issue 2 Pages 518-527  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sub-monolayer control over the growth at silicon-oxide interfaces is a prerequisite for epitaxial integration of complex oxides with the Si platform, enriching it with a variety of functionalities. However, the control over this integration is hindered by the intense reaction of the constituents. The most suitable buffer material for Si passivation is metallic strontium. When it is overgrown with a layer of SrTiO3 (STO) it can serve as a pseudo-substrate for the integration with functional oxides. In our study we determined a mechanism for epitaxial integration of STO with a (1 x 2) + (2 x 1) reconstructed Sr(1/2 ML)/Si(001) surface using all-pulsed laser deposition (PLD) technology. A detailed analysis of the initial deposition parameters was performed, which enabled us to develop a complete protocol for integration, taking into account the peculiarities of the PLD growth, STO critical thickness, and process thermal budget, in order to kinetically trap the reaction between STO and Si and thus to minimize the thickness of the interface layer. The as-prepared oxide layer exhibits STO(001)8Si(001) out-of-plane and STO[110]8Si[100] in-plane orientation and together with recent advances in large-scale PLD tools these results represent a new technological solution for the implementation of oxide electronics on demand.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000506852400036 Publication Date 2019-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.4 Times cited 12 Open Access OpenAccess  
  Notes ; The research was financially supported by the Slovenian Research Agency (Project No. P2-0091, J2-9237) and Ministry of Education, Science and Sport of the Republic of Slovenia (SIOX projects). This work was also funded by the European Union Council under the 7th Framework Program grant no. NMP3-LA-2010-246102 IFOX. J. V. and G. V. T. acknowledge funding from the Fund for Scientific Research Flanders under project no. G.0044.13N. ; Approved Most recent IF: 6.4; 2020 IF: 5.256  
  Call Number UA @ admin @ c:irua:165672 Serial 6298  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: