|
Record |
Links |
|
Author |
Kutukov, P.; Rumyantseva, M.; Krivetskiy, V.; Filatova, D.; Batuk, M.; Hadermann, J.; Khmelevsky, N.; Aksenenko, A.; Gaskov, A. |
|
|
Title |
Influence of Mono- and Bimetallic PtOx, PdOx, PtPdOx Clusters on CO Sensing by SnO2 Based Gas Sensors |
Type |
A1 Journal Article |
|
Year |
2018 |
Publication |
Nanomaterials |
Abbreviated Journal |
Nanomaterials-Basel |
|
|
Volume |
8 |
Issue |
11 |
Pages |
917 |
|
|
Keywords |
A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ; |
|
|
Abstract |
To obtain a nanocrystalline SnO2 matrix and mono- and bimetallic nanocomposites SnO2/Pd, SnO2/Pt, and SnO2/PtPd, a flame spray pyrolysis with subsequent impregnation was used. The materials were characterized using X-ray diffraction (XRD), a single-point BET method, transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The electronic state of the metals in mono- and bimetallic clusters was determined using X-ray photoelectron spectroscopy (XPS). The active surface sites were investigated using the Fourier Transform infrared spectroscopy (FTIR) and thermo-programmed reduction with hydrogen (TPR-H-2) methods. The sensor response of blank SnO2 and nanocomposites had a carbon monoxide (CO) level of 6.7 ppm and was determined in the temperature range 60-300 degrees C in dry (Relative Humidity (RH) = 0%) and humid (RH = 20%) air. The sensor properties of the mono- and bimetallic nanocomposites were analyzed on the basis of information on the electronic state, the distribution of modifiers in SnO2 matrix, and active surface centers. For SnO2/PtPd, the combined effect of the modifiers on the electrophysical properties of SnO2 explained the inversion of sensor response from n- to p-types observed in dry conditions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000451316100052 |
Publication Date |
2018-11-07 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2079-4991 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.553 |
Times cited |
7 |
Open Access |
Not_Open_Access |
|
|
Notes |
This research was funded by the Russian Ministry of Education and Sciences (Agreement No. 14.613.21.0075, RFMEFI61317X0075). |
Approved |
Most recent IF: 3.553 |
|
|
Call Number |
EMAT @ emat @c:irua:155767 |
Serial |
5139 |
|
Permanent link to this record |