|
Record |
Links |
|
Author |
Aussems, D.U.B.; Bal, K. M.; Morgan, T.W.; van de Sanden, M.C.M.; Neyts, E.C. |
|
|
Title |
Atomistic simulations of graphite etching at realistic time scales |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Chemical science |
Abbreviated Journal |
Chem Sci |
|
|
Volume |
8 |
Issue |
10 |
Pages |
7160-7168 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Hydrogen–graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe timescale
limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of 1020 m2 s1. The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C–C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching – chemical erosion – is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000411730500055 |
Publication Date |
2017-08-24 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2041-6520 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
8.668 |
Times cited |
3 |
Open Access |
OpenAccess |
|
|
Notes |
DIFFER is part of the Netherlands Organisation for Scientic Research (NWO). K. M. B. is funded as a PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientic Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI. |
Approved |
Most recent IF: 8.668 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:145519 |
Serial |
4707 |
|
Permanent link to this record |