toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Simoen, J.; De Meyer, S.; Vanmeert, F.; De Keyser, N.; Avranovich, E.; van der Snickt, G.; Van Loon, A.; Keune, K.; Janssens, K. url  doi
openurl 
  Title Combined Micro- and Macro scale X-ray powder diffraction mapping of degraded Orpiment paint in a 17th century still life painting by Martinus Nellius Type A1 Journal article
  Year 2019 Publication Heritage science Abbreviated Journal  
  Volume 7 Issue 1 Pages 83  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract The spontaneous chemical alteration of artists' pigment materials may be caused by several degradation processes. Some of these are well known while others are still in need of more detailed investigation and documentation. These changes often become apparent as color modifications, either caused by a change in the oxidation state in the original material or the formation of degradation products or salts, via simple or more complex, multistep reactions. Arsenic-based pigments such as orpiment (As2S3) or realgar (alpha-As4S4) are prone to such alterations and are often described as easily oxidizing upon exposure to light. Macroscopic X-ray powder diffraction (MA-XRPD) imaging on a sub area of a still life painting by the 17th century Dutch painter Martinus Nellius was employed in combination with microscopic (mu-) XRPD imaging of a paint cross section taken in the area imaged by MA-XRPD. In this way, the in situ formation of secondary metal arsenate and sulfate species and their migration through the paint layer stack they originate from could be visualized. In the areas originally painted with orpiment, it could be shown that several secondary minerals such as schultenite (PbHAsO4), mimetite (Pb-5(AsO4)(3)Cl), palmierite (K2Pb(SO4)(2)) and syngenite (K2Ca(SO4)(2)center dot H2O) have formed. Closer inspection of the cross-sectioned paint layer stack with mu-XRPD illustrates that the arsenate minerals schultenite and mimetite have precipitated at the interface between the orpiment layer and the layer below that is rich in lead white, i.e. close to the depth of formation of the arsenate ions. The sulfate palmierite has mostly precipitated at the surface and upper layers of the painting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000490592700001 Publication Date 2019-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes ; The authors acknowledge financial support from the NWO (The Hague) Science4Arts 'ReVisRembrandt' project (AvL, JD), the GOA Project Solarpaint (University of Antwerp Research Council) (SdM) and the METOX project (Belgian Federal Science Policy) (FvM). Special thanks go to the support received from FWO, Brussels via projects G056619 N and G054719 N (GvdS, KJ) and from NWO, The Hague via project NICAS/3D2P (KK, NdK). Parts of the MA-XRPD scanner could be purchased thanks to InterReg Project Smart*Light. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163693 Serial 5521  
Permanent link to this record
 

 
Author van Loon, A.; Vandivere, A.; Delaney, J.K.; Dooley, K.A.; De Meyer, S.; Vanmeert, F.; Gonzalez, V.; Janssens, K.; Leonhardt, E.; Haswell, R.; de Groot, S.; D'Imporzano, P.; Davies, G.R. url  doi
openurl 
  Title Beauty is skin deep : the skin tones of Vermeer's Girl with a Pearl Earring Type A1 Journal article
  Year 2019 Publication Heritage science Abbreviated Journal  
  Volume 7 Issue 1 Pages 102  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The soft modelling of the skin tones in Vermeer's Girl with a Pearl Earring (Mauritshuis) has been remarked upon by art historians, and is their main argument to date this painting to c. 1665. This paper describes the materials and techniques Vermeer used to accomplish the smooth flesh tones and facial features of the Girl, which were investigated as part of the 2018 Girl in the Spotlight research project. It combines macroscopic X-ray fluorescence imaging (MA-XRF), reflectance imaging spectroscopy (RIS), and 3D digital microscopy. Vermeer built up the face, beginning with distinct areas of light and dark. He then smoothly blended the final layers to create almost seamless transitions. The combination of advanced imaging techniques highlighted that Vermeer built the soft contour around her face by leaving a 'gap' between the background and the skin. It also revealed details that were otherwise not visible with the naked eye, such as the eyelashes. Macroscopic imaging was complemented by the study of paint cross-sections using: light microscopy, SEM-EDX, FIB-STEM, synchrotron radiation mu-XRPD and FTIR-ATR. Vermeer intentionally used different qualities or grades of lead white in the flesh paints, showing different hydrocerussite/cerussite ratios and particle sizes. Lead isotope analysis showed that the geographic source of lead, from which the different types of lead white were manufactured, was the same: the region of Peak District of Derbyshire, UK. Finally, cross-section analysis identified the formation of new lead species in the paints: lead soaps and palmierite (K2Pb(SO4)(2)), associated with the red lake.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000516736100001 Publication Date 2019-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:167549 Serial 7552  
Permanent link to this record
 

 
Author van Loon, A.; Noble, P.; de Man, D.; Alfeld, M.; Callewaert, T.; van der Snickt, G.; Janssens, K.; Dik, J. url  doi
openurl 
  Title The role of smalt in complex pigment mixtures in Rembrandt'sHomer1663: combining MA-XRF imaging, microanalysis, paint reconstructions and OCT Type A1 Journal article
  Year 2020 Publication Heritage science Abbreviated Journal  
  Volume 8 Issue 1 Pages 90-19  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract As part of the NWO Science4ArtsREVISRembrandtproject (2012-2018), novel chemical imaging techniques were developed and applied to the study of Rembrandt's late experimental painting technique (1651-1669). One of the unique features in his late paintings is his abundant use of smalt: a blue cobalt glass pigment that he often combined with organic lake pigments, earth pigments and blacks. Since most of these smalt-containing paints have discolored over time, we wanted to find out more about how these paintings may have originally looked, and what the role of smalt was in his paint. This paper reports on the use of smalt in complex pigment mixtures in Rembrandt'sHomer(1663), Mauritshuis, The Hague. Macroscopic X-ray fluorescence imaging (MA-XRF) assisted by computational analysis, in combination with SEM-EDX analysis of paint cross-sections, provides new information about the distribution and composition of the smalt paints in the painting. Paint reconstructions were carried out to investigate the effect of different percentages of smalt on the overall color, the drying properties, translucency and texture of the paint. Results show that the influence of (the originally blue) smalt on the intended color of the paint of theHomeris minimal. However, in mixtures with high percentages of smalt, or when combined with more transparent pigments, it was concluded that the smalt did produce a cooler and darker paint. It was also found that the admixture of opaque pigments reduced the translucent character of the smalt. The drying tests show that the paints with (cobalt-containing) smalt dried five times faster compared to those with glass (without cobalt). Most significantly, the texture of the paint was strongly influenced by adding smalt, creating a more irregular surface topography with clearly pronounced brushstrokes. Optical coherence tomography (OCT) was used as an additional tool to reveal differences in translucency and texture between the different paint reconstructions. In conclusion, this study confirmed earlier assumptions that Rembrandt used substantial amounts of smalt in his late paintings, not for its blue color, but to give volume and texture to his paints, to deepen their colors and to make them dry faster.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000565893700001 Publication Date 2020-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited Open Access  
  Notes Approved Most recent IF: 2.5; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:171995 Serial 8659  
Permanent link to this record
 

 
Author Al-Emam, E.; Soenen, H.; Caen, J.; Janssens, K. url  doi
openurl 
  Title Characterization of polyvinyl alcohol-borax/agarose (PVA-B/AG) double network hydrogel utilized for the cleaning of works of art Type A1 Journal article
  Year 2020 Publication Heritage science Abbreviated Journal  
  Volume 8 Issue 1 Pages 106  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract Since cleaning of artworks may cause undesirable physicochemical alterations and is a nonreversible procedure, it is mandatory to adopt the proper cleaning procedure. Such a procedure should remove undesired materials whilst preserving the original surface. In this regard, numerous gels have been developed and exploited for the cleaning of various artwork surfaces. Lately, agarose (AG) and polyvinyl alcohol-borax (PVA-B) hydrogels have been widely employed as cleaning tools by conservators. Both hydrogels show some limitations in specific cleaning practices. In this work, we investigated the influence of including increased levels of agarose into PVA-B systems. For this reason, we performed a detailed characterization on the double network (DN) hydrogel including the chemical structure, the liquid phase retention, the rheological behavior, and the self-healing behavior of various PVA-B/AG double network hydrogels. These new hydrogels revealed better properties than PVA-B hydrogels and obviated their limitations. The inclusion of AG into PVA-B systems enhanced the liquid retention capacity, shape-stability, and mechanical strength of the blend. Furthermore, AG minimized the expelling/syneresis issue that occurs when loading PVA-B systems with low polarity solvents or chelating agents. The resultant double network hydrogel exhibits relevant self-healing properties. The PVA-B/AG double network is a new and useful cleaning tool that can be added to the conservators' tool-kit. It is ideal for cleaning procedures dealing with porous and complex structured surfaces, vertical surfaces and for long time applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000580572500001 Publication Date 2020-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited 1 Open Access  
  Notes ; Ehab Al-Emam thanks the Egyptian Ministry of Higher Education for funding his Ph.D. scholarship in addition to being grateful to University of Antwerp for additional funding. ; Approved Most recent IF: 2.5; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:173594 Serial 6466  
Permanent link to this record
 

 
Author Simonsen, K.P.; Poulsen, J.N.; Vanmeert, F.; Ryhl-Svendsen, M.; Bendix, J.; Sanyova, J.; Janssens, K.; Mederos-Henry, F. url  doi
openurl 
  Title Formation of zinc oxalate from zinc white in various oil binding media: the influence of atmospheric carbon dioxide by reaction with 13CO2 Type A1 Journal article
  Year 2020 Publication Heritage science Abbreviated Journal  
  Volume 8 Issue 1 Pages 126  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The formation of metal oxalates in paintings has recently gained a great deal of interest within the field of heritage science as several types of oxalate compounds have been identified in oil paintings. The present work investigates the formation of metal oxalates in linseed oil in the presence of the artists' pigments zinc white, calcite, lead white, zinc yellow, chrome yellow, cadmium yellow, cobalt violet, and verdigris. The oil paint films were artificially photo-aged by exposure to UVA light at low and high relative humidity, and afterwards analysed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The results showed that, compared to the other pigments investigated, zinc white is especially prone to metal oxalate formation and that high humidity is a crucial factor in this process. Consequently, the reactivity and photo-aging of ZnO in various oil binding media was investigated further under simulated solar radiation and at high relative humidity levels. ATR-FTIR showed that zinc oxalate is formed in all oil binding media while X-ray powder diffraction (PXRD) revealed it was mainly present in an amorphous state. To examine whether atmospheric CO2(g) has any influence on the formation of zinc oxalate, experiments with isotopically enriched (CO2(g))-C-13 were performed. Based on ATR-FTIR measurements, neither (ZnC2O4)-C-13 nor (ZnCO3)-C-13 were formed which suggests that the carbon source for the oxalate formation is most likely the paint itself (and its oil component) and not the surrounding atmosphere.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000596527000001 Publication Date 2020-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited Open Access  
  Notes Approved Most recent IF: 2.5; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:174381 Serial 7979  
Permanent link to this record
 

 
Author Al-Emam, E.; Motawea, A.G.; Caen, J.; Janssens, K. url  doi
openurl 
  Title Soot removal from ancient Egyptian complex painted surfaces using a double network gel : empirical tests on the ceiling of the sanctuary of Osiris in the temple of Seti I-Abydos Type A1 Journal article
  Year 2021 Publication Heritage science Abbreviated Journal  
  Volume 9 Issue 1 Pages 1-10  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract In this study, we evaluated the ease of removal of soot layers from ancient wall paintings by employing double network gels as a controllable and safe cleaning method. The ceiling of the temple of Seti I (Abydos, Egypt) is covered with thick layers of soot; this is especially the case in the sanctuary of Osiris. These layers may have been accumulated during the occupation of the temple by Christians, fleeing the Romans in the first centuries A.D. Soot particulates are one of the most common deposits to be removed during conservation-restoration activities of ancient Egyptian wall paintings. They usually mask the painted reliefs and reduce the permeability of the painted surface. A Polyvinyl alcohol-borax/agarose (PVA-B/AG) double network gel was selected for this task since its properties were expected to be compatible with the cleaning treatment requirements. The gel is characterized by its flexibility, permitting to take the shape of the reliefs, while also having self-healing properties, featuring shape stability and an appropriate capacity to retain liquid. The gel was loaded with several cleaning reagents that proved to be effective for soot removal. Soot removal tests were conducted with these gel composites. The cleaned surfaces were evaluated with the naked eye, a digital microscope, and color measurements in order to select the best gel composite. The gel composite, loaded with a solution of 5% ammonia, 0.3% ammonium carbonate, and 0.3% EDTA yielded the most satisfactory results and allowed to safely remove a crust of thick soot layers from the surface. Thus, during the final phase of the study, it was used successfully to clean a larger area of the ceiling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000604977300001 Publication Date 2021-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174948 Serial 8557  
Permanent link to this record
 

 
Author Derks, K.; van der Snickt, G.; Legrand, S.; van der Stighelen, K.; Janssens, K. url  doi
openurl 
  Title The dark halo technique in the oeuvre of Michael Sweerts and other Flemish and Dutch baroque painters. A 17th c. empirical solution to mitigate the optical 'simultaneous contrast' effect? Type A1 Journal article
  Year 2022 Publication Heritage science Abbreviated Journal  
  Volume 10 Issue 1 Pages 5  
  Keywords A1 Journal article; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Although the topic is rarely addressed in literature, a significant number of baroque paintings exhibit dark, halo-like shapes around the contours of the dramatis personae. Close examination of both finished and unfinished works suggests that this intriguing feature was a practical tool that helped the artist in the early painting stages. When applying the final brushwork, the halo lost its function, with some artists undertaking efforts to hide it. Although their visibility might not have been intended by the artists, today this dark paint beneath the surface is partially visible through the upper paint layers. Moreover, the disclosure of many halos using infrared photography (IRP), infrared reflectography (IRR) and macro X-ray fluorescence imaging (MA-XRF), additional to those that can be observed visually, suggests that this was a common and established element of 17th-century painting practice in Western Europe. Building on an existing hypothesis, we argue that halos can be considered as a solution to an optical problem that arose when baroque painters reversed the traditional, 15th- and 16th-century painting sequence of working from background to foreground. Instead, they started with the dominant parts of a composition, such as the face of a sitter. In that case, a temporary halo can provide the essential tonal reference to anticipate the chromatic impact of the final dark colored background on the adjacent delicate carnations. In particular, we attempt to clarify the prevalence of dark halos as a response to optical effects such as 'simultaneous contrast' and 'the crispening effect', described in literature only centuries later. As such, the recently termed 'ring condition' can be seen as the present-day equivalent of the 'halo solution' that was seemingly empirically or intuitively developed by 17th-century artists. Modern studies in visual perception proves that by laying a black ring around a target color, the optical impact of a surrounding color can be efficiently neutralized. Finally, by delving into works by Michael Sweerts, it becomes clear that resourceful artists might have adapted the halo technique and the underlying principles to their individual challenges, such as dealing with differently colored grounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000739965700001 Publication Date 2022-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.5  
  Call Number UA @ admin @ c:irua:185458 Serial 7217  
Permanent link to this record
 

 
Author Ortega Saez, N.; Arno, R.; Marchetti, A.; Cauberghs, S.; Janssens, K.; Van der Snickt, G.; Al-Emam, E. url  doi
openurl 
  Title Towards a novel strategy for soot removal from water-soluble materials : the synergetic effect of hydrogels and cyclomethicone on gelatine emulsion-based photographs Type A1 Journal article
  Year 2023 Publication Heritage science Abbreviated Journal  
  Volume 11 Issue 1 Pages 78-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Gels are a popular cleaning method for paper conservators and a lot of research has been done concerning gel cleaning of paper objects over the last 15 years. Despite the close interconnection between the conservation fields of paper and photographic material, research on using gels for cleaning photographs is very scarce. However, gels can provide an excellent cleaning method for photographic material. Cleaning silver gelatine prints with aqueous solvents is very complex due to the hydrophilic properties and fragility of the gelatine layer which makes mechanical cleaning difficult. The properties of gels ensure better control over the flow and evaporation of the solvent, facilitating the cleaning process. This study is the first insight into the viability of using gellan gum gel and polyvinyl acetate-borax (PVAc-borax) gel to clean contaminants from the surface of silver gelatine photographs. It is based on self-made samples that were artificially aged and contaminated with soot. Water, ethanol (EtOH), and Kodak Photo-flo were studied as solvents to remove the soot from the silver gelatine-based prints. These solvents were loaded into the aforementioned gels and applied to the samples in two different methods. These gel cleaning methods were subsequently compared with traditional cleaning methods. In addition, the usage of cyclomethicone D4 as a protective mask for the gelatine layer was studied. Measuring methods used to evaluate the cleaning were visual comparison, microscopic observation, and densitometry. ATR-FTIR measurements were also conducted to investigate potential side-effects of the cleaning methods on the prints, such as unwanted chemical transformations or the presence of gel residues after the treatments. Most of the gel cleaning methods within this study proved to be inadequate, with the exception of the gellan gum gel loaded with 30% EtOH. It was used as a granulated gel applied mechanically on a print saturated with cyclomethicone (octamethylcyclotetrasiloxane D4). Cyclomethicone proved to be a very effective protective barrier for the water-sensitive gelatine layer with minimal reduction in cleaning effectiveness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000970139500001 Publication Date 2023-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.5; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:196445 Serial 8945  
Permanent link to this record
 

 
Author Terzano, R.; Denecke, M.A.; Falkenberg, G.; Miller, B.; Paterson, D.; Janssens, K. url  doi
openurl 
  Title Recent advances in analysis of trace elements in environmental samples by X-ray based techniques (IUPAC Technical Report) Type A1 Journal article
  Year 2019 Publication Pure and applied chemistry Abbreviated Journal Pure Appl Chem  
  Volume 91 Issue 6 Pages 1029-1063  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Trace elements analysis is a fundamental challenge in environmental sciences. Scientists measure trace elements in environmental media in order to assess the quality and safety of ecosystems and to quantify the burden of anthropogenic pollution. Among the available analytical techniques, X-ray based methods are particularly powerful, as they can quantify trace elements in situ. Chemical extraction is not required, as is the case for many other analytical techniques. In the last few years, the potential for X-ray techniques to be applied in the environmental sciences has dramatically increased due to developments in laboratory instruments and synchrotron radiation facilities with improved sensitivity and spatial resolution. In this report, we summarize the principles of the X-ray based analytical techniques most frequently employed to study trace elements in environmental samples. We report on the most recent developments in laboratory and synchrotron techniques, as well as advances in instrumentation, with a special attention on X-ray sources, detectors, and optics. Lastly, we inform readers on recent applications of X-ray based analysis to different environmental matrices, such as soil, sediments, waters, wastes, living organisms, geological samples, and atmospheric particulate, and we report examples of sample preparation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000471262400011 Publication Date 2019-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-4545 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.626 Times cited 3 Open Access  
  Notes ; This document was developed as a part of IUPAC, Funder Id: http://dx.doi.org/ 10.13039/100006987, Project #2016-019-2-600 “Trace elements analysis of environmental samples with X-rays: from synchrotron to lab and from lab to synchrotron” led by Roberto Terzano (Task Group Chair). Task Group Members for this project were: Melissa Anne Denecke, Gerald Falkenberg, Armin Gross, Koen Janssens, Bradley Miller, David Paterson, Ryan Tappero, Fang-Jie Zhao. Their contribution to the project is gratefully acknowledged. ; Approved Most recent IF: 2.626  
  Call Number UA @ admin @ c:irua:161369 Serial 5803  
Permanent link to this record
 

 
Author Singh, B.R.; Timsina, Y.N.; Lind, O.C.; Cagno, S.; Janssens, K. url  doi
openurl 
  Title Zinc and iron concentration as affected by nitrogen fertilization and their localization in wheat grain Type A1 Journal article
  Year 2018 Publication Frontiers in plant science Abbreviated Journal Front Plant Sci  
  Volume 9 Issue 9 Pages  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Nearly half of the world cereal production comes from soils low or marginal in plant available zinc, leading to unsustainable and poor quality grain production. Therefore, the effects of nitrogen (N) rate and application time on zinc (Zn) and iron (Fe) concentration in wheat grain were investigated. Wheat (Triticum aestivum var. Krabat) was grown in a growth chamber with 8 and 16 h of day and night periods, respectively. The N rates were 29, 43, and 57 mg N kg(-1) soil, equivalent to 80, 120, and 160 kg N ha(-1). Zinc and Fe were applied at 10 mg kg(-1) growth media. In one of the N treatments, additional Zn and Fe through foliar spray (6 mg of Zn or Fe in 10 ml water / pot) was applied. Micro-analytical localization of Zn and Fe within grain was performed using scanning macro-X-ray fluorescence (MA-XRF) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The following data were obtained: grain and straw yield pot 1, 1000 grains weight, number of grains pot 1, whole grain protein content, concentration of Zn and Fe in the grains. Grain yield increased from 80 to 120 kg N ha(-1) rates only and decreased at 160 kg N ha(-1) g. Relatively higher protein content and Zn and Fe concentration in the grain were recorded with the split N application of 160 kg N ha(-1). Soil and foliar supply of Zn and Fe (Zn + Fes+f), with a single application of 120 kg N ha(-1) N at sowing, increased the concentration of Zn by 46% and of Fe by 35%, as compared to their growth media application only. Line scans of freshly cut areas of sliced grains showed co-localization of Zn and Fe within germ, crease and aleurone. We thus conclude that split application of N at 160 kg ha(-1) at sowing and stem elongation, in combination with soil and foliar application of Zn and Fe, can be a good agricultural practice to enhance protein content and the Zn and Fe concentration in grain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000427034400002 Publication Date 2018-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-462x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.298 Times cited 8 Open Access  
  Notes ; The research part of this master study was financed by the project “Mineral Improved Food and Feed Crops for Human and Animal Health” (Project No. 332160UA) and by a grant from the Norwegian Ministry of Foreign Affairs under the Program for Higher Education, Research and Development (HERD) in Western Balkan. The financial assistance for conducting this study is gratefully acknowledged. We also acknowledge the assistance by CERAD: this study has been funded by the Norwegian Research Council through its Centre of Excellence (CoE) funding scheme (Project No. 223268/F50). This research was supported by the Hercules Foundation (Brussels, Belgium) under grant AUHA09004 and FWO (Brussels, Belgium) Project Nos. G.0C12.13 and G.01769.09. ; Approved Most recent IF: 4.298  
  Call Number UA @ admin @ c:irua:149859 Serial 5924  
Permanent link to this record
 

 
Author Hillen, M.; Legrand, S.; Dirkx, Y.; Janssens, K.; van der Snickt, G.; Caen, J.; Steenackers, G. url  doi
openurl 
  Title Cluster analysis of IR thermography data for differentiating glass types in historical leaded-glass windows Type A1 Journal article
  Year 2020 Publication Applied Sciences-Basel Abbreviated Journal Appl Sci-Basel  
  Volume 10 Issue 12 Pages 4255-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Cultural Heritage Sciences (ARCHES); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Infrared thermography is a fast, non-destructive and contactless testing technique which is increasingly used in heritage science. The aim of this study was to assess the ability of infrared thermography, in combination with a data clustering approach, to differentiate between the different types of historical glass that were included in a colorless leaded-glass windows during previous restoration interventions. Inspection of the thermograms and the application of two data mining techniques on the thermal data, i.e., k-means clustering and hierarchical clustering, allowed identifying different groups of window panes that show a different thermal behavior. Both clustering approaches arrive at similar groupings of the glass with a clear separation of three types. However, the lead cames that hold the glass panes appear to have a substantial impact on the thermal behavior of the surrounding glass, thus preventing classification of the smallest glass panes. For the larger panes, this was not a critical issue as the center of the glass remained unaffected. Subtle visual color differences between panes, implying a variation in coloring metal ions, was not always distinguished by IRT. Nevertheless, data clustering assisted infrared thermography shows potential as an efficient and swift method for documenting the material intervention history of leaded-glass windows during or in preparation of conservation treatments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000549351800001 Publication Date 2020-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access  
  Notes Approved Most recent IF: 2.7; 2020 IF: 1.679  
  Call Number UA @ admin @ c:irua:170012 Serial 7674  
Permanent link to this record
 

 
Author Hillen, M.; Sels, S.; Ribbens, B.; Verspeek, S.; Janssens, K.; Van der Snickt, G.; Steenackers, G. url  doi
openurl 
  Title Qualitative Comparison of Lock-in Thermography (LIT) and Pulse Phase Thermography (PPT) in Mid-Wave and Long-Wave Infrared for the Inspection of Paintings Type A1 Journal article
  Year 2023 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel  
  Volume 13 Issue 7 Pages 1-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract When studying paintings with active infrared thermography (IRT), minimizing the temperature fluctuations and thermal shock during a measurement becomes important. Under these conditions, it might be beneficial to use lock-in thermography instead of the conventionally used pulse thermography (PT). This study compared the observations made with lock-in thermography (LIT) and pulse phase thermography (PPT) with halogen light excitation. Three distinctly different paintings were examined. The LIT measurements caused smaller temperature fluctuations and, overall, the phase images appeared to have a higher contrast and less noise. However, in the PPT phase images, the upper paint layer was less visible, an aspect which is of particular interest when trying to observe subsurface defects or the structure of the support. The influence of the spectral range of the cameras on the results was also investigated. All measurements were taken with a mid-wave infrared (MWIR) and long wave infrared (LWIR) camera. The results show that there is a significant number of direct reflection artifacts, caused by the use of the halogen light sources when using the MWIR camera. Adding a long-pass filter to the MWIR camera eliminated most of these artifacts. All results are presented in a side-by-side comparison.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000972133900001 Publication Date 2023-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7; 2023 IF: 1.679  
  Call Number UA @ admin @ c:irua:194898 Serial 7333  
Permanent link to this record
 

 
Author Peeters, J.; Steenackers, G.; Sfarra, S.; Legrand, S.; Ibarra-Castanedo, C.; Janssens, K.; van der Snickt, G. url  doi
openurl 
  Title IR reflectography and active thermography on artworks : the added value of the 1.53 µm band Type A1 Journal article
  Year 2018 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel  
  Volume 8 Issue 1 Pages 50  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Infrared Radiation (IR) artwork inspection is typically performed through active thermography and reflectography with different setups and cameras. While Infrared Radiation Reflectography (IRR) is an established technique in the museum field, exploiting mainly the IR-A (0.71.4 µm) band to probe for hidden layers and modifications within the paint stratigraphy system, active thermography operating in the IR-C range (35 μ m) is less frequently employed with the aim to visualize structural defects and features deeper inside the build-up. In this work, we assess to which extent the less investigated IR-B band (1.53 μ m) can combine the information obtained from both setups. The application of IR-B systems is relatively rare as there are only a limited amount of commercial systems available due to the technical complexity of the lens coating. This is mainly added as a so-called broadband option on regular Mid-wave infrared radiation (MWIR) (IR-C/35 μ m) cameras to increase sensitivity for high temperature applications in industry. In particular, four objects were studied in both reflectographic and thermographic mode in the IR-B spectral range and their results benchmarked with IR-A and IR-C images. For multispectral application, a single benchmark is made with macroscopic reflection mode Fourier transform infrared (MA-rFTIR) results. IR-B proved valuable for visualisation of underdrawings, pencil marks, canvas fibres and wooden grain structures and potential pathways for additional applications such as pigment identification in multispectral mode or characterization of the support (panels, canvas) are indicated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424388800050 Publication Date 2018-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.679 Times cited 4 Open Access  
  Notes ; This research has been funded by the University of Antwerp and the Institute for the Promotion of Innovation by Science and Technology in Flanders (VLAIO) by the support to the TETRA project 'SINT: Smart Integration of Numerical modelling and Thermal inspection' with project number HBC.2017.0032. Furthermore, the research leading to these results has received funding from the Research Foundation Flanders (FWO) travel grant V4.010.16N and the Stimpro stimuli of UAntwerpen under project ID 32864. We would like to end with a special thanks to the MiViM research chair of Prof. Xavier Maldague and the support of the full team in supporting the preliminary measurements of this research. ; Approved Most recent IF: 1.679  
  Call Number UA @ admin @ c:irua:149164 Serial 5677  
Permanent link to this record
 

 
Author Mudronja, D.; Vanmeert, F.; Fazinic, S.; Janssens, K.; Tibljas, D.; Desnica, V. url  doi
openurl 
  Title Protection of stone monuments using a brushing treatment with ammonium oxalate Type A1 Journal article
  Year 2021 Publication Coatings Abbreviated Journal Coatings  
  Volume 11 Issue 4 Pages 379  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Stone monuments and buildings are susceptible to weathering. Carbonate-based stones are especially vulnerable in acidic environments, whereas magmatic acidic stones are more susceptible to chemical weathering in basic environments. To slow down surface corrosion of limestone and marble artworks/buildings, protective coatings which inhibit calcite dissolution have been proposed. In this work, samples from two stone types with different porosity were treated with ammonium oxalate (AmOx) to create a protective layer of calcium oxalate (CaOx) using the previously developed brushing method. Two different synchrotron microscopy experiments were performed to determine its protective capability. X-ray powder diffraction (SR-mu-XRPD) in transmission geometry allowed visualization of the distributions of calcium carbonate and oxalates along the sample depths. In a second step, X-ray fluorescence (SR-mu-XRF) was used to check the efficiency/integrity of the protective surface coating layer. This was done by measuring the sulfur distribution on the stone surface after exposing the protected stones to sulfuric acid. XRPD showed the formation of a protective oxalate layer with a thickness of 5-15 mu m on the less porous stone, while a 20-30 mu m thick layer formed on the more porous stone. The XRF study showed that the optimal treatment time depends on the stone porosity. Increasing the treatment time from 1 to 3 h resulted in a decreased efficiency of the protective layer for the low porosity stone. We assume that this is due to the formation of vertical channels (cracks) in the protective layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000642940900001 Publication Date 2021-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-6412 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.175 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.175  
  Call Number UA @ admin @ c:irua:178271 Serial 8428  
Permanent link to this record
 

 
Author Cotte, M.; Gonzalez, V.; Vanmeert, F.; Monico, L.; Dejoie, C.; Burghammer, M.; Huder, L.; de Nolf, W.; Fisher, S.; Fazlic, I.; Chauffeton, C.; Wallez, G.; Jimenez, N.; Albert-Tortosa, F.; Salvado, N.; Possenti, E.; Colombo, C.; Ghirardello, M.; Comelli, D.; Avranovich Clerici, E.; Vivani, R.; Romani, A.; Costantino, C.; Janssens, K.; Taniguchi, Y.; McCarthy, J.; Reichert, H.; Susini, J. url  doi
openurl 
  Title The “Historical Materials BAG” : a new facilitated access to synchrotron X-ray diffraction analyses for cultural heritage materials at the European Synchrotron Radiation Facility Type A1 Journal article
  Year 2022 Publication Molecules: a journal of synthetic chemistry and natural product chemistry Abbreviated Journal Molecules  
  Volume 27 Issue 6 Pages 1997-21  
  Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract The European Synchrotron Radiation Facility (ESRF) has recently commissioned the new Extremely Brilliant Source (EBS). The gain in brightness as well as the continuous development of beamline instruments boosts the beamline performances, in particular in terms of accelerated data acquisition. This has motivated the development of new access modes as an alternative to standard proposals for access to beamtime, in particular via the “block allocation group” (BAG) mode. Here, we present the recently implemented “historical materials BAG”: a community proposal giving to 10 European institutes the opportunity for guaranteed beamtime at two X-ray powder diffraction (XRPD) beamlines-ID13, for 2D high lateral resolution XRPD mapping, and ID22 for high angular resolution XRPD bulk analyses-with a particular focus on applications to cultural heritage. The capabilities offered by these instruments, the specific hardware and software developments to facilitate and speed-up data acquisition and data processing are detailed, and the first results from this new access are illustrated with recent applications to pigments, paintings, ceramics and wood.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000776369800001 Publication Date 2022-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1420-3049 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:188053 Serial 7218  
Permanent link to this record
 

 
Author Avranovich Clerici, E.; De Meyer, S.; Vanmeert, F.; Legrand, S.; Monico, L.; Miliani, C.; Janssens, K. url  doi
openurl 
  Title Multi-scale X-ray imaging of the pigment discoloration processes triggered by chlorine compounds in the Upper Basilica of Saint Francis of Assisi Type A1 Journal article
  Year 2023 Publication Molecules: a journal of synthetic chemistry and natural product chemistry Abbreviated Journal  
  Volume 28 Issue 16 Pages 6106-6123  
  Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract In this paper, the chromatic alteration of various types of paints, present on mural painting fragments derived from the vaults of The Upper Basilica of Saint Francis of Assisi in Italy (12th-13th century), is studied using synchrotron radiation. Six painted mural fragments, several square centimeters in size, were available for analysis, originating from the ceiling paintings attributed to Cimabue and Giotto; they correspond to originally white, blue/green, and brown/yellow/orange areas showing discoloration. As well as collecting macroscopic X-ray fluorescence and diffraction maps from the entire fragments in the laboratory and at the SOLEIL synchrotron, corresponding paint cross-sections were also analyzed using microscopic X-ray fluorescence and powder diffraction mapping at the PETRA-III synchrotron. Numerous secondary products were observed on the painted surfaces, such as (a) copper tri-hydroxychloride in green/blue areas; (b) corderoite and calomel in vermillion red/cinnabar-rich paints; (c) plattnerite and/or scrutinyite assumed to be oxidation products of (hydro)cerussite (2PbCO(3)center dot Pb(OH)(2)) in the white areas, and (d) the calcium oxalates whewellite and weddellite. An extensive presence of chlorinated metal salts points to the central role of chlorine-containing compounds during the degradation of the 800-year-old paint, leading to, among other things, the formation of the rare mineral cumengeite (21PbCl(2)center dot 20Cu(OH) (2) center dot 6H(2)O).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001056388600001 Publication Date 2023-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1420-3049 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.6; 2023 IF: 2.861  
  Call Number UA @ admin @ c:irua:199265 Serial 8902  
Permanent link to this record
 

 
Author Al-Emam, E.; Beltran, V.; De Meyer, S.; Nuyts, G.; Wetemans, V.; De Wael, K.; Caen, J.; Janssens, K. url  doi
openurl 
  Title Removal of a past varnish treatment from a 19th-century Belgian wall painting by means of a solvent-loaded double network hydrogel Type A1 Journal article
  Year 2021 Publication Polymers Abbreviated Journal Polymers-Basel  
  Volume 13 Issue 16 Pages 2651-20  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Polymeric materials have been used by painting conservator-restorers as consolidants and/or varnishes for wall paintings. The application of these materials is carried out when confronting loose paint layers or as a protective coating. However, these materials deteriorate and cause physiochemical alterations to the treated surface. In the past, the monumental neo-gothic wall painting 'The Last Judgment' in the chapel of Sint-Jan Berchmanscollege in Antwerp, Belgium was treated with a synthetic polymeric material. This varnish deteriorated significantly and turned brown, obscuring the paint layers. Given also that the varnish was applied to some parts of the wall painting and did not cover the entire surface, it was necessary to remove it in order to restore the original appearance of the wall painting. Previous attempts carried out by conservator-restorers made use of traditional cleaning methods, which led to damage of the fragile paint layers. Therefore, gel cleaning was proposed as a less invasive and more controllable method for gently softening and removing the varnish. The work started by identifying the paint stratigraphy and the deteriorated varnish via optical microscopy (OM), scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy. A polyvinyl alcohol-borax/agarose (PVA-B/AG) hydrogel loaded with a number of solvents/solvent mixtures was employed in a series of tests to select the most suitable hydrogel composite. By means of the hydrogel composite loaded with 10% propylene carbonate, it was possible to safely remove the brown varnish layer. The results were verified by visual examinations (under visible light 'VIS' and ultraviolet light 'UV') as well as OM and FTIR spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000690248000001 Publication Date 2021-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4360 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.364 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.364  
  Call Number UA @ admin @ c:irua:181567 Serial 8470  
Permanent link to this record
 

 
Author Steenackers, G.; Peeters, J.; Janssens, K. url  openurl
  Title Sublayer composition evaluation of Artwork using active thermography Type P1 Proceeding
  Year 2018 Publication Quantitative infrared thermography T2 – QIRT 2018 : 14th Quantitative InfraRed Thermography Conference Abbreviated Journal  
  Volume Issue Pages 503-506  
  Keywords P1 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Infrared artwork inspection is typically performed through active thermography and infrared reflectography (IRR) with different setups and cameras. While IRR is an established technique in the museum field, exploiting mainly the IR-A (0.7 – 1.4 mu m) band to probe for hidden layers and modifications within the paint stratigraphy system, active thermography operating in the IR-C range (3 -5 mu m) is less frequently employed with the aim to visualize structural defects and features deeper inside the build-up. In this work, we investigate the usability of an IR-B+C system to identify overpainted works of art below a relatively thick absorbing layer of lead white paint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-3-940283-94-8 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes ; This research was funded by the University of Antwerp and the Institute for the Promotion of Innovation by Science and Technology in Flanders (VLAIO) via support for the TETRA project, “SINT: Smart Integration of Numerical modeling and Thermal inspection,” project number HBC.2017.0032. The researchers received funding from the Antwerp University IOF-council through project PSID-34924 entitled “Fast Broadband Lock-In Thermography for Fragile Structures Using System Identification.” ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:153415 Serial 5854  
Permanent link to this record
 

 
Author Derks, K.; Youchaeva, M.; Van der Snickt, G.; Van der Stighelen, K.; Janssens, K. url  openurl
  Title Reconstructing Sweerts : practical insights into the historical dark halo technique based on paint reconstructions Type P1 Proceeding
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages 259-271 T2 - Alla maniera : technical art history  
  Keywords P1 Proceeding; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-90-429-5216-4 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:203062 Serial 9082  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: