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Abstract: Stone monuments and buildings are susceptible to weathering. Carbonate-based stones are
especially vulnerable in acidic environments, whereas magmatic acidic stones are more susceptible
to chemical weathering in basic environments. To slow down surface corrosion of limestone and
marble artworks/buildings, protective coatings which inhibit calcite dissolution have been proposed.
In this work, samples from two stone types with different porosity were treated with ammonium
oxalate (AmOx) to create a protective layer of calcium oxalate (CaOx) using the previously developed
brushing method. Two different synchrotron microscopy experiments were performed to determine
its protective capability. X-ray powder diffraction (SR-µ-XRPD) in transmission geometry allowed
visualization of the distributions of calcium carbonate and oxalates along the sample depths. In a
second step, X-ray fluorescence (SR-µ-XRF) was used to check the efficiency/integrity of the protective
surface coating layer. This was done by measuring the sulfur distribution on the stone surface after
exposing the protected stones to sulfuric acid. XRPD showed the formation of a protective oxalate
layer with a thickness of 5–15 µm on the less porous stone, while a 20–30 µm thick layer formed
on the more porous stone. The XRF study showed that the optimal treatment time depends on the
stone porosity. Increasing the treatment time from 1 to 3 h resulted in a decreased efficiency of the
protective layer for the low porosity stone. We assume that this is due to the formation of vertical
channels (cracks) in the protective layer.

Keywords: ammonium oxalate; calcium oxalate; stone monuments; synchrotron based µXRD;
synchrotron based µXRF

1. Introduction

In all historical time periods up to the present day, limestone and marble have been
commonly used building materials. However, due to their mineral composition and poros-
ity they are susceptible to weathering, especially in acidic environments often caused by air
pollution which leads to dissolution of calcite (CaCO3). The dissolution rate of calcite is a
function of pH, amounting to ∼10−10 mol/(cm2 s) at pH 5.6 [1] and notably increases with
lower pH [2]. To slow down or even prevent surface corrosion of limestone and marble art-
works/buildings, protective coatings which inhibit calcite dissolution have been proposed.
There have been two main routes pursued: (i) the development of organic protectives that
modify the wettability of marble surfaces and (ii) the development of inorganic protectives
that form a superficial layer with reduced (acid) solubility [3]. Although effective, organic
protectives (such as acrylic resins and fluorinated polymers) exhibit several limitations
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in terms of their compatibility with the stone substrate as well as their durability [3,4].
Recently, novel organic coatings based on methacrylate co-polymers have been developed
for cultural heritage [5,6]. In turn, inorganic protectives generally exhibit a limited effective-
ness [3,7]. The most widely used inorganic treatment aims to form a passivating layer of
calcium oxalate monohydrate (whewellite) that covers the marble surface. Calcium oxalate
(CaOx) is formed through the reaction of calcite (CaCO3) with an aqueous solution of
ammonium oxalate (AmOx) [3,8,9]. In the last few years, several alternatives to AmOx for
the formation of a protective calcium oxalate layer have been investigated. The ammonium
salts of oxamate (AmOxam) and monomethyloxalate (AmMeox), structurally related to
AmOx, were synthesized and characterized as protecting agents/fillers for calcareous stone
substrates. Both compounds feature an improved solubility in water and alcoholic-water
mixtures with respect to AmOx [10]. Furthermore, a treatment with oxalic acid has been
investigated for the formation of protective CaOx rims on marble surface [11]. The created
CaOx rims on the surface of marble showed a higher acid resistance [11], but an acidic
treatment of carbonate-based stones remains questionable from a conservator point of
view. From 2011, an alternative approach to calcium oxalate has been explored in the
form of hydroxyapatite (HAP) and calcium phosphates (CaP) [12]. Although in some
ways superior to calcium oxalate protection, its application still shows some problems. For
instance, even small amounts of magnesium significantly alter the formation of calcium
phosphates [12].

In our previous research [13,14], we developed a procedure for applying ammonium
oxalate (AmOx) by a brushing method with the aim of protecting monumental limestone
objects. The efficiency of the brushing procedure for creating the protective CaOx layer was
compared with the typical poultice treatment and with an immersion method. Synchrotron-
based X-ray powder diffraction (SR-XRPD) measurements carried out in reflection mode
revealed that whewellite (CaC2O4·H2O) and weddellite (CaC2O4·2H2O) readily formed
on the samples treated by AmOx brushing [13]; while for the other methods (poultice and
immersion), only whewellite was formed. The thickness of the whewellite layer did not
exceed 40 µm and no clear relation between the thickness of the formed oxalate layer and
the treatment time could be observed. SR-µ-FTIR measurements showed that the surface of
the treated stone was not evenly covered with calcium oxalate at the microscopic level [13].
This was consistent with SEM observations of the treated surfaces that showed that CaOx
was growing in clusters, resulting in an uneven surface coverage. Longer treatment times
gave rise to larger oxalate crystals.

The aim of the present work has been to obtain a more detailed insight into the
formation of the protective calcium oxalate layer on stone monument surfaces and to
further optimize the ammonium oxalate treatment following the brushing method. In the
first part of this research, selected limestone (Veselje) and marble (Carrara) model samples
with different porosity were treated using the previously developed brushing method [13]
to increase the acid resistance of the stone. Using SR-µ-XRPD mapping experiments in
transmission mode on sheet-shaped subsamples of the treated stones, the depth distribution
of the created protective layers could be analyzed. For the second part of this research,
the treated stones were exposed to 2% sulfuric acid for a period of 1 min. While SR-FTIR
micro-scanning was used in our previous study to map the oxalate distribution on the
surface of the treated stones [14], the quality of the obtained spectral datasets was limited
because of large Reststrahlen bands which resulted in a high background noise. Therefore,
in the present study, the formation of gypsum, which is the result of the reaction between
calcite and the acid, is monitored using scanning SR-µ-XRF, exploiting the fact that sulfur
is only present in trace quantities in marble and limestone building materials.

2. Materials and Methods
2.1. Materials

For this research two types of stones were selected: Cretaceous limestone, commer-
cially called Veselje, and Carrara marble. Veselje is a light-grey limestone mainly composed
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of rudist shell clasts and has a porosity of 6.2%. Petrologically it is determined as bioclastic
packestone/wackestone to bioclastic floatstone. Carrara marble is a white marble charac-
terized by a granoblastic polygonal structure with subrectilinear contacts among the calcite
crystals with porosity of 2%.

AmOx solutions (5%) were prepared from ammonium oxalate monohydrate 99.5%
(C2H8N2O4·H2O), CAS No. 6009-70-7 (Acros Organics, part of Thermo Fisher Scientific,
Geel, Belgium). A mixture of 2/3 arbocel 1000 and 1/3 arbocel 200 was used as poultice.

A solution of sulfuric acid (2%, pH 3) was made using sulfuric acid (95–97%) from
Merck KGaA, Darmstadt, Germany, buffered to pH 3 with NH4OH (25%) from Alkaloid
AD Skopje, Republic of North Macedonia.

For the preparation of the thin sections for the SR-µ-XRPD investigations, polycar-
bonate sheets with dimensions of 50 × 20 × 1 mm3 were used. Samples were glued to the
polycarbonate sheets with Canada balsam, CAS No. 8007-47-4 (Kremer Pigmente GmbH &
Co.KG, Aichstetten, Germany).

2.2. Sample Preparation

Both stone types were first cut to 5 × 2.5 × 3 cm3 parallelepipeds. After that, they
were treated with 5% AmOx solution following 1 and 3 h brushing treatments [13]. Ap-
proximately 2 mL of 5% AmOx solution was used to cover 1 cm2 of stone surface during
1 h brushing treatment (ten 1 min brushing cycles every 6 min during 1 h) [13]. To facilitate
the SR-µ-XRPD investigations, 2 mm thick sections were made. For this reason, after 24 h
of drying, the samples were glued with Canada balsam to polycarbonate sheets. After the
glue dried, 2 mm thick thin sections were made by cutting the part from the parallelepiped
that was not glued to the polycarbonate sheets. The polycarbonate sheets provided a good
support for the stone samples during the cutting process and prevented the thin sections
from crumbling. No visible cracks or damage induced by the mechanical cutting was noted
on the 2 mm thin sections.

A second set of samples was prepared from Veselje limestone and Carrara marble
treated with 5% AmOx solution, again using 1 and 3 h brushing treatments [13]. After
thorough drying for one week, the samples were exposed to 2% sulfuric acid (pH 3) for
one minute using a poultice. After acid exposure, the samples were washed by immersion
in deionized water for 1–2 s to wash out any unreacted acid. After drying, small cubes of
5 × 5 × 5 mm3 were cut out from the larger stone blocks for SR-µ-XRF analysis.

2.3. Analytical Techniques

Before and after the AmOx treatment, colorimetric measurements were carried out to
observe possible color changes of the stone surface induced by the treatment. Colorimetric
measurements were carried out using a fiber optics reflectance spectrometer under a
45◦/45◦ geometry, employing an Ocean Optics USB4000 spectrometer (Ocean Insight,
Ostfildern, Germany) coupled with an HL-2000 halogen lamp, standard illuminant D65
and observer 2◦. The colorimetric properties and reflectance spectra were recorded on
untreated and treated samples on the exact same position and under the same orientation.
To evaluate changes in sample color a CIE 1976 L*a*b* color system was used, where a
color difference between two measurements is simply calculated as the Euclidean distance
in CIELab color space and denoted as ∆E*. A value for ∆E* under 2.3 is regarded as a value
below which not even a trained observer’s eye can notice the difference [15], for ∆E* < 3
the effect is hardly perceptible, for 3 < ∆E* < 6 is perceptible but acceptable, and for 6 < ∆E*
two colors are regarded as being different [16].

In order to visualize the depth profiles and surface distributions of the created protec-
tive oxalate layers, SR-µ-XRPD (Synchrotron SOLEIL, L’Orme des Merisiers Saint-Aubin,
France) was performed on the 2 mm thin samples.

SR-µ-XRPD measurements were performed at the DiffAbs beamline of SOLEIL (Saint-
Aubin, France). Thin sections of the samples were measured in transmission geometry
using a focused X-ray beam (10.5 × 6.5 µm2 (hor. × vert.)) with a primary energy of about
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18.5 keV. XRD patterns were collected using a Rayonix SX165 area detector (Rayonix, L.L.C.
Evanston, IL, USA) positioned about 55 cm behind the sample. On each sample, a mapping
experiment was performed with a step size of 10 × 5 µm2 (hor. × vert.) and an acquisition
time of 10 s per pixel. Each map consisted of 21 vertical lines covering a horizontal area
of 200 µm. The diffraction patterns (Figure 1) were analyzed by the XRDUA software
package [17].

Figure 1. Diffractogram obtained on sample VES_A5_3 after an exposure of 10 s showing the presence of calcite (blue),
weddellite (green), and whewellite (pink). The Miller indices for the reflections of weddellite and whewellite that are
used for the calculation of the layer thickness and penetration depth are given. The ‘*’ symbols indicate diffraction signals
originating from the dried glue. The inset shows the corresponding 2D diffraction image. The lower intensity in the bottom
part of the diffraction image is due to a lead foil that was added to protect the detector from the primary.

In order to test the integrity and efficiency of the created protective layers, samples
from the second set were measured using µ-XRF at the XRF end-station, Elettra synchrotron
facility in Trieste. The surfaces of the treated model samples that were exposed to sulfuric
acid were scanned using a primary X-ray beam of 3850 eV and a beam size of 50× 250 µm2.
Surface areas of about 5× 5 mm2 or 8× 8 mm2 were analyzed with steps of 0.3× 0.15 mm2

and 5 s dwell time in order to map sulfur K X-ray intensities. The primary beam energy
was set to 3850 eV to avoid large Ca-K XRF signals from the samples. This was necessary
since Ca-K escape peaks coincide with the S-Kα signal, as demonstrated in Figure 2. Two-
dimensional surface distribution maps of sulfur were measured as well as cumulative
sulfur intensities over the measured areas spanning 25 and 64 mm2. The XRF data was
analyzed using Origin statistical software for the creation of the surface distribution maps.



Coatings 2021, 11, 379 5 of 10

Figure 2. Comparison of XRF spectra on Carrara marble samples obtained with 3.85 keV and 10 keV excitation energies.

3. Results and Discussion
3.1. Colorimetric Analysis of Stone Surface

Colorimetric analysis carried out on the samples before and after the treatment showed
only slight changes in color. The ∆E* values for Carrara marble after 1 and 3 h and Veselje
limestone after 1 and 3 h compared to the untreated surfaces were ∆E∗CAR A5_1 = 2.07,
∆E∗CAR A5_3 = 4.98, ∆E∗VES A5_1 = 2.77, and ∆E∗VES A5_3 = 0.35, respectively.
Therefore, it can be concluded that the proposed treatment does not significantly modify
the color of the stone surfaces.

3.2. Thickness of Oxalate Protective Layers

Depth profiles were defined using the approach that was followed in our previous
research [13]. A total of two criteria for the calcium oxalate layer thickness were defined: the
depth after which the amount of whewellite dropped below 50% of the amount measured
on the surface (thickness of the protective layer) and the depth after which no more oxalate
was observed (penetration depth). These values were determined by using a Gaussian
profile function for single-peak fitting of several intense diffraction peaks of the phases
under investigation, i.e., reflection (020), (121) and (141) for weddellite, and (100) and (040)
for whewellite, see Table 1. For the limit of detection, it was taken that the peak height of
the respective weddellite or whewellite diffraction line needed to be larger than 10 times
the standard deviation of the background signal.

Comparison of the two brushing treatments (1 and 3 h treatment) on two different stones
showed that on the less porous Carrara marble the thickness of the oxalate layer increased with
longer treatments, from 6 µm to 11 µm and 9 µm to 17 µm, respectively for weddellite (WD)
and whewellite (WH) (see Table 1). Furthermore, the penetration depth of both weddellite
and whewellite significantly increases with longer treatment times, from 10 µm to 25 µm for
WD and from 20 µm to 30 µm for WH (Table 1). An increase in the measured diffraction
intensity of both calcium oxalates is visible for the 3 h treatment (Figure 3).



Coatings 2021, 11, 379 6 of 10

Table 1. Oxalate layer thickness and penetration depth for the Carrara marble (CAR) and Veselje
limestone (VES) for 1 h (A5_1) and 3 h (A5_3). Values shown are averaged over the entire map
(21 lines) with standard deviations (1 s) in parentheses. WD = weddellite; WH = whewellite.

Oxalate Layer Thickness (µm)

WD (020) WD (121) WD (141) WH (100) WH (040)

CAR_A5_1 6 (2) 6 (2) 6 (2) 10 (7) 8 (3)
CAR_A5_3 11 (9) 11 (8) 13 (9) 18 (9) 17 (8)
VES_A5_1 11 (9) 12 (9) 13 (9) 17 (8) 15 (7)
VES_A5_3 9 (3) 10 (3) 11 (3) 12 (3) 11 (2)

Oxalate Penetration Depth (µm)

WD (020) WD (121) WD (141) WH (100) WH (040)

CAR_A5_1 12 (2) 11 (3) 12 (3) 21 (6) 21 (8)
CAR_A5_3 25 (10) 24 (7) 28 (7) 32 (5) 29 (5)
VES_A5_1 21 (10) 17 (9) 29 (6) 80 (27) 85 (22)
VES_A5_3 19 (7) 20 (5) 22 (5) 212 (93) 188 (78)

Figure 3. Depth profiles of weddellite (141) and whewellite (040) reflections for Carrara marble (left) and Veselje limestone
(right) for the brushing treatment of 1 h (top) and 3 h (bottom). These profiles are the averaged results over the entire map
(21 lines). The corresponding distribution maps of weddellite and whewellite are shown as insets in each graph. The darker
color indicates a higher oxalate intensity at the top of the sample.
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On the more porous Veselje stone, the thickness of the protective layer (Table 1 and
Figure 3) remained unchanged for both treatment times (<15 µm). The penetration depth
of weddellite (Table 1) also showed approximately the same for both treatment times
(roughly 20 µm), while the penetration depth of whewellite showed a strong increase,
around 200 µm with the 3 h treatment compared to 80 µm for the 1 h treatment. The
diffraction intensity of whewellite for the 3 h treatment dropped rapidly over a depth of
50 µm. Again, the measured diffraction intensity of both calcium oxalates in the protective
layer was higher for the longer treatment time, showing the increased formation of both
oxalates close to/at the surface of the stones (Figure 3). Because of the higher porosity of
Veselje limestone, the AmOx solution can more easily penetrate deeper within the calcite
matrix, giving rise to a thicker protective oxalate layer.

3.3. Efficiency of Oxalate Protective Layers

Figure 4 shows two-dimensional S-K XRF maps obtained at the Elettra XRF beam line
for the Veselje limestone treated with brushing 1 h (up) and 3 h (down) treatments after
exposure to sulfuric acid together with the photomicrograph of the related stones.

Figure 4. Right: 2D S-K XRF map from the surface of the Veselje limestone treated with AmOx brushing for 1 h (up) and 3 h
(down) after exposure to sulfuric acid. Left: photomicrograph of related stones.

The 2D map related to the 1 h treatment was obtained with an exposure time of
0.5 s/pixel, while for the 3 h treatment an exposure time of 10 s/pixel was used. For the
sake of clarity, the corresponding intensity scales presented at the right side of the maps
are adjusted to sulfur K X-ray counts per second/pixel for both maps. It is clear that the
amount of sulfur shown in the maps is much lower for the treatment of 3 h when compared
to the map related to the 1 h treatment. Since the presence of sulfur can be linked to the
formation of gypsum, this clearly indicates that the 3 h treatment is much more efficient
at protecting the surface of the stones from acids than the 1 h treatment. Indeed, in the
areas that are not efficiently covered by the protective oxalate layer, gypsum will be created
(2CaCO3 + 2H2SO4 → 2CaSO4·2H2O + 2CO2↑), yielding a high S-K XRF intensity. On the
other hand, in areas that are efficiently covered with the oxalate protective layer, gypsum
will not form.
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We can also compare cumulative S K X-ray intensity rates for both maps by summing
the contributions from all the pixels and normalizing them to the total collection time.

Figure 5 shows such normalized cumulative XRF spectra obtained for the brushing
treatments of both Veselje limestone and Carrara marble for one and three hours. In the
case of Veselje limestone, the 3 h brushing treatment showed a much lower cumulative
sulfur signal rate compared to the 1 h treatment. This is in line with the above conclusion
from the comparison of the 2D maps, and confirms that on average the protective layer
after 3 h treatment functions more efficiently compared to the 1 h treatment. However, in
the case of Carrara marble, an unexpected result was obtained. For Carrara marble, the
1 h brushing treatment showed a lower sulfur cumulative signal rate compared to the 3 h
treatment, indicating that less CaSO4·2H2O is formed after the shorter treatment time. This
suggests that the 3 h treatment yields a poorer protective layer for Carrara marble. For
marble that was not exposed to sulfuric acid the detected presence of sulfur is negligible
(as it should be the case for both marble and Veselje limestone), confirming that creation of
gypsum on the stone surface is the only source of sulfur.

Figure 5. Cumulative XRF spectra showing count rates (c/s) for S-K X-rays for the 1 (A5/1) and 3 h (A5/3) brushing
treatment of Veselje limestone (left) and Carrara marble (right) A negligible amount of sulfur present in untreated marble is
also shown (CAR).

This unexpected result seems to be in line with the recent findings published in
2018 [18]. A possible explanation for these results could be found in the formation of
vertical channels that penetrate the CaOx protective layer. These channels are necessary
for the AmOx solution to reach the underlying calcium carbonate, which corresponds
with the findings from Sassoni et al. [12]. The channels are formed after the original
calcium carbonate surface is covered with the CaOx protective layer, and AmOx is still
present on the surface. In this case, such vertical channels would allow AmOx to reach
the underlying calcium carbonate. Consequently, sulfuric acid can also use these channels
to reach the calcite substrate, giving rise to an increased formation of gypsum, hence
increasing the measured S-K XRF intensity for the longer treatment time on the less porous
Carrara Marble.

4. Conclusions

SR-µ-XRPD imaging in transmission mode of the protective CaOx layer on less porous
Carrara marble showed that the thickness of the protective layer is between 5 and 15 µm
depending on the treatment time. Both whewellite and weddellite were found until depths
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of 30 µm below the stone surface. On the more porous limestone (Veselje), the thickness
of the protective layer is between 10 and 15 µm irrespective of the treatment time. The
formation of whewellite reaches depths up to 200 µm, whereas weddellite forms only at
depths up to 30 µm. A longer treatment time creates a slightly thicker protective layer for
the less porous stone (approximately 5 µm thicker), whereas on the more porous stone the
effect of treatment time on the thickness of the protective layer seems negligible. On Veselje
limestone, thicker protective layers are formed than on the Carrara marble because of the
difference in porosity. Indeed, a higher porosity allows the AmOx solution to react more
easily with calcite that lies deeper underneath the surface.

The evaluation of the integrity and effectiveness of the CaOx protective layer following
the exposure to sulfuric acid showed somewhat unexpected results. On Veselje limestone,
the brushing treatment of 3 h clearly showed a decrease in the formation of gypsum,
indicating a better surface protection by the oxalate layer when compared to the 1 h
treatment. However, on the less porous marble an opposite result was obtained. Carrara
marble stones treated with the brushing method for 3 h showed a much higher S-K XRF
intensity compared to the 1 h treatment. This indicates that the integrity of the protective
layer decreases from a one-hour to a three-hour treatment, possibly due to the creation of
vertical channels in the protective layer.

For real monuments, the creation of these vertical channels will lead to an increased
penetration of water or acidic rain leading to the breakup of the protective layer. The
difference in time frame for the development of these vertical channels, and hence the
destruction of the protective layer between marble and limestone, can be connected to the
difference in the porosity between the different stone types. To overcome this problem, it
should be necessary to finalize the AmOx treatment of stone monuments once the protective
CaOx layer is formed on the surface. Therefore, we can conclude that for the brushing
treatment with AmOx of marble with 2% porosity, the treatment should not proceed for
longer than 1 h. In case of the limestone with 7% porosity, brushing treatment can continue
to at least 3 h.

Further tests on stones with a different porosity are needed to better estimate the
required treatment brushing treatment time. Furthermore, the effect of the treatment time
of the alternative poultice treatment on the integrity of the protective layers also needs to
be tested.
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