|
Record |
Links |
|
Author |
Simoen, J.; De Meyer, S.; Vanmeert, F.; De Keyser, N.; Avranovich, E.; van der Snickt, G.; Van Loon, A.; Keune, K.; Janssens, K. |
|
|
Title |
Combined Micro- and Macro scale X-ray powder diffraction mapping of degraded Orpiment paint in a 17th century still life painting by Martinus Nellius |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
Heritage science |
Abbreviated Journal |
|
|
|
Volume |
7 |
Issue |
1 |
Pages |
83 |
|
|
Keywords |
A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES) |
|
|
Abstract |
The spontaneous chemical alteration of artists' pigment materials may be caused by several degradation processes. Some of these are well known while others are still in need of more detailed investigation and documentation. These changes often become apparent as color modifications, either caused by a change in the oxidation state in the original material or the formation of degradation products or salts, via simple or more complex, multistep reactions. Arsenic-based pigments such as orpiment (As2S3) or realgar (alpha-As4S4) are prone to such alterations and are often described as easily oxidizing upon exposure to light. Macroscopic X-ray powder diffraction (MA-XRPD) imaging on a sub area of a still life painting by the 17th century Dutch painter Martinus Nellius was employed in combination with microscopic (mu-) XRPD imaging of a paint cross section taken in the area imaged by MA-XRPD. In this way, the in situ formation of secondary metal arsenate and sulfate species and their migration through the paint layer stack they originate from could be visualized. In the areas originally painted with orpiment, it could be shown that several secondary minerals such as schultenite (PbHAsO4), mimetite (Pb-5(AsO4)(3)Cl), palmierite (K2Pb(SO4)(2)) and syngenite (K2Ca(SO4)(2)center dot H2O) have formed. Closer inspection of the cross-sectioned paint layer stack with mu-XRPD illustrates that the arsenate minerals schultenite and mimetite have precipitated at the interface between the orpiment layer and the layer below that is rich in lead white, i.e. close to the depth of formation of the arsenate ions. The sulfate palmierite has mostly precipitated at the surface and upper layers of the painting. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000490592700001 |
Publication Date |
2019-10-16 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2050-7445 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
|
Times cited |
2 |
Open Access |
|
|
|
Notes |
; The authors acknowledge financial support from the NWO (The Hague) Science4Arts 'ReVisRembrandt' project (AvL, JD), the GOA Project Solarpaint (University of Antwerp Research Council) (SdM) and the METOX project (Belgian Federal Science Policy) (FvM). Special thanks go to the support received from FWO, Brussels via projects G056619 N and G054719 N (GvdS, KJ) and from NWO, The Hague via project NICAS/3D2P (KK, NdK). Parts of the MA-XRPD scanner could be purchased thanks to InterReg Project Smart*Light. ; |
Approved |
Most recent IF: NA |
|
|
Call Number |
UA @ admin @ c:irua:163693 |
Serial |
5521 |
|
Permanent link to this record |