|   | 
Details
   web
Records
Author Neyts, E.; Eckert, M.; Bogaerts, A.
Title Molecular dynamics simulations of the growth of thin a-C:H films under additional ion bombardment: influence of the growth species and the Ar+ ion kinetic energy Type A1 Journal article
Year 2007 Publication Chemical vapor deposition Abbreviated Journal Chem Vapor Depos
Volume 13 Issue 6/7 Pages 312-318
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000248381800007 Publication Date 2007-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.333 Times cited 14 Open Access
Notes Approved Most recent IF: 1.333; 2007 IF: 1.936
Call Number UA @ lucian @ c:irua:64532 Serial 2176
Permanent link to this record
 

 
Author Neyts, E.; Mao, M.; Eckert, M.; Bogaerts, A.
Title Modeling aspects of plasma-enhanced chemical vapor deposition of carbon-based materials Type H1 Book chapter
Year 2012 Publication Abbreviated Journal
Volume Issue Pages 245-290
Keywords H1 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher CRC Press Place of Publication Boca Raton, Fla Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4398-6676-4 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:107843 Serial 2109
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A.
Title Numerical study of the size-dependent melting mechanisms of nickel nanoclusters Type A1 Journal article
Year 2009 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 113 Issue 7 Pages 2771-2776
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics simulations were used to investigate the size-dependent melting mechanism of nickel nanoclusters of various sizes. The melting process was monitored by the caloric curve, the overall cluster Lindemann index, and the atomic Lindemann index. Size-dependent melting temperatures were determined, and the correct linear dependence on inverse diameter was recovered. We found that the melting mechanism gradually changes from dynamic coexistence melting to surface melting with increasing cluster size. These findings are of importance in better understanding carbon nanotube growth by catalytic chemical vapor deposition as the phase state of the catalyst nanoparticle codetermines the growth mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access
Notes Approved Most recent IF: 4.536; 2009 IF: 4.224
Call Number UA @ lucian @ c:irua:76495 Serial 2410
Permanent link to this record
 

 
Author Neyts, E.
Title Algemene chemie : van atomen tot thermodynamica Type MA2 Book as author
Year 2014 Publication Abbreviated Journal
Volume Issue Pages 317 p.
Keywords MA2 Book as author; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Acco Place of Publication Leuven Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-334-9628-8 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:128094 Serial 4514
Permanent link to this record
 

 
Author Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
Title Capillary Condensation of Water in Graphene Nanocapillaries Type A1 Journal Article
Year 2024 Publication Nano Letters Abbreviated Journal Nano Lett.
Volume 24 Issue 18 Pages 5625-5630
Keywords A1 Journal Article; CMT
Abstract Recent experiments have revealed that the macroscopic Kelvin equation remains surprisingly accurate even for nanoscale capillaries. This phenomenon was so far explained by the oscillatory behavior of the solid−liquid interfacial free energy. We here demonstrate thermodynamic and capillarity inconsistencies with this explanation. After revising the Kelvin equation, we ascribe its validity at nanoscale confinement to the effect of disjoining pressure.

To substantiate our hypothesis, we employed molecular dynamics simulations to evaluate interfacial heat transfer and wetting properties. Our assessments unveil a breakdown in a previously established proportionality between the work of adhesion and the Kapitza conductance at capillary heights below 1.3 nm, where the dominance of the work of adhesion shifts primarily from energy to entropy. Alternatively, the peak density of the initial water layer can effectively probe the work of adhesion. Unlike under bulk conditions, high confinement renders the work of adhesion entropically unfavorable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links
Impact Factor 10.8 Times cited Open Access
Notes This work was supported by Research Foundation-Flanders (FWO, project No. G099219N). The computational resources used in this work were provided by the HPC core facility CalcUA of the University of Antwerp, and the Flemish Supercomputer Center (VSC), funded by FWO and the Flemish Government. Approved Most recent IF: 10.8; 2024 IF: 12.712
Call Number UA @ lucian @ Serial 9123
Permanent link to this record
 

 
Author Khalilov, U.; Vets, C.; Neyts, E.C.
Title Catalyzed growth of encapsulated carbyne Type A1 Journal article
Year 2019 Publication Carbon Abbreviated Journal Carbon
Volume 153 Issue Pages 1-5
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Carbyne is a novel material of current interest in nanotechnology. As is typically the case for nanomaterials, the growth process determines the resulting properties. While endohedral carbyne has been successfully synthesized, its catalyst and feedstock-dependent growth mechanism is still elusive. We here study the nucleation and growth mechanism of different carbon chains in a Ni-containing double walled carbon nanotube using classical molecular dynamics simulations and first-principles calculations. We find that the understanding the competitive role of the metal catalyst and the hydrocarbon is important to control the growth of 1-dimensional carbon chains, including Ni or H-terminated carbyne. Also, we find that the electronic property of the Ni-terminated carbyne can be tuned by steering the H concentration along the chain. These results suggest catalyst-containing carbon nanotubes as a possible synthesis route for carbyne formation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000485054200001 Publication Date 2019-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited Open Access Not_Open_Access
Notes Fund of Scientific Research Flanders (FWO), Belgium, 12M1318N 1S22516N ; Flemish Supercomputer Centre VSC; Hercules Foundation; Flemish Government; University of Antwerp; The authors gratefully acknowledge the financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant numbers 12M1318N and 1S22516N. The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 6.337
Call Number PLASMANT @ plasmant @c:irua:160695 Serial 5187
Permanent link to this record
 

 
Author Mortet, V.; Zhang, L.; Eckert, M.; D'Haen, J.; Soltani, A.; Moreau, M.; Troadec, D.; Neyts, E.; De Jaeger, J.C.; Verbeeck, J.; Bogaerts, A.; Van Tendeloo, G.; Haenen, K.; Wagner, P.
Title Grain size tuning of nanocrystalline chemical vapor deposited diamond by continuous electrical bias growth : experimental and theoretical study Type A1 Journal article
Year 2012 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume 209 Issue 9 Pages 1675-1682
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, a detailed structural and spectroscopic study of nanocrystalline diamond (NCD) thin films grown by a continuous bias assisted CVD growth technique is reported. This technique allows the tuning of grain size and phase purity in the deposited material. The crystalline properties of the films are characterized by SEM, TEM, EELS, and Raman spectroscopy. A clear improvement of the crystalline structure of the nanograined diamond film is observed for low negative bias voltages, while high bias voltages lead to thin films consisting of diamond grains of only ∼10 nm nanometer in size, showing remarkable similarities with so-called ultrananocrystalline diamond. These layers arecharacterized by an increasing amount of sp2-bonded carbon content of the matrix in which the diamond grains are embedded. Classical molecular dynamics simulations support the observed experimental data, giving insight in the underlying mechanism for the observed increase in deposition rate with bias voltage. Furthermore, a high atomic concentration of hydrogen has been determined in these films. Finally, Raman scattering analyses confirm that the Raman line observed at ∼1150 cm−1 cannot be attributed to trans-poly-acetylene, which continues to be reported in literature, reassigning it to a deformation mode of CHx bonds in NCD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000308942100009 Publication Date 2012-09-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 31 Open Access
Notes M.E. and E.N. acknowledge financial support from, respectively, the Institute for Promotion of Innovation through Science and Technology in Flanders (IWT), and the Research Foundation-Flanders (FWO). J.V. gratefully acknowledges financial support from the GOA project “XANES meets ELNES” of the research fund of the University of Antwerp. Calculation support was provided by the University of Antwerp through the core facility CALCUA. G.V.T. acknowledges the ERC grant COUNTATOMS. The work was also financially supported by the joint UAUHasseltMethusalem “NANO” network, the Research Programs G.0068.07 and G.0555.10N of the Research Foundation-Flanders (FWO), the IAP-P6/42 project “Quantum Effects in Clusters and Nanowires”, and by the EU FP7 through the Integrated Infrastructure Initiative “ESMI” (No. 262348), the Marie Curie ITN “MATCON” (PITN-GA-2009-238201), and the Collaborative Project “DINAMO” (No. 245122). Approved Most recent IF: 1.775; 2012 IF: 1.469
Call Number UA @ lucian @ c:irua:101516UA @ admin @ c:irua:101516 Serial 1364
Permanent link to this record
 

 
Author Neyts, E.C.; Brault, P.
Title Molecular Dynamics Simulations for Plasma-Surface Interactions: Molecular Dynamics Simulations… Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600145
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-surface interactions are in general highly complex due to the interplay of many concurrent processes. Molecular dynamics simulations provide insight in some of these processes, subject to the accessible time and length scales, and the availability of suitable force fields. In this introductory tutorial-style review, we aim to describe the current capabilities and limitations of molecular dynamics simulations in this field, restricting ourselves to low-temperature nonthermal plasmas. Attention is paid to the simulation of the various fundamental processes occurring, including sputtering, etching, implantation, and deposition, as well as to what extent the basic plasma components can be accounted for, including ground state and excited species, electric fields, ions, photons, and electrons. A number of examples is provided, giving an bird’s eye overview of the current state of the field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393184600009 Publication Date 2016-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 13 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:141758 Serial 4488
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Vanuytsel, S.; Neyts, E.C.; Bogaerts, A.
Title Phosphatidylserine flip-flop induced by oxidation of the plasma membrane: a better insight by atomic scale modeling Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 10 Pages 1700013
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We perform molecular dynamics simulations to study the flip-flop motion of phosphatidylserine (PS) across the plasma membrane upon increasing oxidation degree of the membrane. Our computational results show that an increase of the oxidation degree in the lipids leads to a decrease of the free energy barrier for translocation of PS through the membrane. In other words, oxidation of the lipids facilitates PS flip-flop motion across the membrane, because in native phospholipid bilayers this is only a “rare event” due to the high energy barriers for the translocation of PS. The present study provides an atomic-scale insight into the mechanisms of the PS flip-flop upon oxidation of lipids, as produced for example by cold atmospheric plasma, in living cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413045800010 Publication Date 2017-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 9 Open Access Not_Open_Access
Notes Fonds Wetenschappelijk Onderzoek, 1200216N ; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:149567 Serial 4910
Permanent link to this record
 

 
Author Tinck, S.; Tillocher, T.; Georgieva, V.; Dussart, R.; Neyts, E.; Bogaerts, A.
Title Concurrent effects of wafer temperature and oxygen fraction on cryogenic silicon etching with SF6/O2plasmas Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 9 Pages 1700018
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cryogenic plasma etching is a promising technique for high-control wafer development with limited plasma induced damage. Cryogenic wafer temperatures effectively reduce surface damage during etching, but the fundamental mechanism is not well understood. In this study, the influences of wafer temperature, gas mixture and substrate bias on the (cryogenic) etch rates of Si with SF6/O2 inductively coupled plasmas are experimentally and computationally investigated. The etch rates are measured in situ with double-point reflectometry and a hybrid computational Monte Carlo – fluid model is applied to calculate plasma properties. This work allows the reader to obtain a better insight in the effects of wafer temperature on the etch rate and to find operating conditions for successful anisotropic (cryo)etching.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000410773200012 Publication Date 2017-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited Open Access Not_Open_Access
Notes Fonds Wetenschappelijk Onderzoek, 0880.212.840 ; Hercules Foundation; Flemish Government (Department EWI); Universiteit Antwerpen; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:145637 Serial 4708
Permanent link to this record
 

 
Author Kovács, A.; Billen, P.; Cornet, I.; Wijnants, M.; Neyts, E.C.
Title Modeling the physicochemical properties of natural deep eutectic solvents : a review Type A1 Journal article
Year 2020 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 13 Issue 15 Pages 3789-3804
Keywords A1 Journal article; Engineering sciences. Technology; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Natural deep eutectic solvents (NADES) are mixtures of naturally derived compounds with a significantly decreased melting point due to the specific interactions among the constituents. NADES have benign properties (low volatility, flammability, toxicity, cost) and tailorable physicochemical properties (by altering the type and molar ratio of constituents), hence they are often considered as a green alternative to common organic solvents. Modeling the relation between their composition and properties is crucial though, both for understanding and predicting their behavior. Several efforts were done to this end, yet this review aims at structuring the present knowledge as an outline for future research. First, we reviewed the key properties of NADES and relate them to their structure based on the available experimental data. Second, we reviewed available modeling methods applicable to NADES. At the molecular level, density functional theory and molecular dynamics allow interpreting density differences and vibrational spectra, and computation of interaction energies. Additionally, properties at the level of the bulk media can be explained and predicted by semi-empirical methods based on ab initio methods (COSMO-RS) and equation of state models (PC-SAFT). Finally, methods based on large datasets are discussed; models based on group contribution methods and machine learning. A combination of bulk media and dataset modeling allows qualitative prediction and interpretation of phase equilibria properties on the one hand, and quantitative prediction of melting point, density, viscosity, surface tension and refractive indices on the other hand. In our view, multiscale modeling, combining the molecular and macroscale methods, will strongly enhance the predictability of NADES properties and their interaction with solutes, yielding truly tailorable solvents to accommodate (bio)chemical reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000541499100001 Publication Date 2020-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access
Notes Approved Most recent IF: 8.4; 2020 IF: 7.226
Call Number UA @ admin @ c:irua:168851 Serial 6770
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Verlackt, C.C.; Khalilov, U.; van Duin, A.C.T.; Bogaerts, A.
Title Inactivation of the endotoxic biomolecule lipid A by oxygen plasma species : a reactive molecular dynamics study Type A1 Journal article
Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 12 Issue 12 Pages 162-171
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Reactive molecular dynamics simulations are performed to study the interaction of reactive oxygen species, such as OH, HO2 and H2O2, with the endotoxic biomolecule lipid A of the gram-negative bacterium Escherichia coli. It is found that the aforementioned plasma species can destroy the lipid A, which consequently results in reducing its toxic activity. All bond dissociation events are initiated by hydrogen-abstraction reactions. However, the mechanisms behind these dissociations are dependent on the impinging plasma species, i.e. a clear difference is observed in the mechanisms upon impact of HO2 radicals and H2O2 molecules on one hand and OH radicals on the other hand. Our simulation results are in good agreement with experimental observations.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000350275400005 Publication Date 2014-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 18 Open Access
Notes Approved Most recent IF: 2.846; 2015 IF: 2.453
Call Number c:irua:123540 Serial 1589
Permanent link to this record
 

 
Author Amini, M.N.; Altantzis, T.; Lobato, I.; Grzelczak, M.; Sánchez-Iglesias, A.; Van Aert, S.; Liz-Marzán, L.M.; Partoens, B.; Bals, S.; Neyts, E.C.
Title Understanding the Effect of Iodide Ions on the Morphology of Gold Nanorods Type A1 Journal article
Year 2018 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume 35 Issue 35 Pages 1800051
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The presence of iodide ions during the growth of gold nanorods strongly affects the shape of the final products, which is proposed to be due to selective iodide adsorption on certain crystallographic facets. Therefore, a detailed structural and morphological characterization of the starting rods is crucial toward understanding this effect. Electron tomography is used to determine the crystallographic indices of the lateral facets of gold nanorods, as well as those present at the tips. Based on this information, density functional theory calculations are used to determine the surface and interface energies of the observed facets and provide insight into the relationship between the amount of iodide ions in the growth solution and the final morphology of anisotropic gold nanoparticles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441893400002 Publication Date 2018-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 6 Open Access OpenAccess
Notes This work was supported by the European Research Council (grant 335078 COLOURATOM to S.B.). T.A., S.V.A. S.B. and E.C.N., acknowledge funding from the Research Foundation Flanders (FWO, Belgium), through project funding (G.0218.14N and G.0369.15N) and a postdoctoral grant to T.A. L.M.L.-M. and M.G. acknowledge funding from the Spanish Ministerio de Economía y Competitividad (grant MAT2013-46101-R). Mozhgan N. Amini and Thomas Altantzis contributed equally to this work. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.474
Call Number EMAT @ emat @c:irua:152998UA @ admin @ c:irua:152998 Serial 5010
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Khalilov, U.; Hamoudi, H.; Neyts, E.C.
Title Effect of chemical modification on electronic transport properties of carbyne Type A1 Journal article
Year 2021 Publication Journal Of Computational Electronics Abbreviated Journal J Comput Electron
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using density functional theory in combination with the Green’s functional formalism, we study the effect of surface functionalization on the electronic transport properties of 1D carbon allotrope—carbyne. We found that both hydrogenation and fluorination result in structural changes and semiconducting to metallic transition. Consequently, the current in the functionalization systems increases significantly due to strong delocalization of electronic states along the carbon chain. We also study the electronic transport in partially hydrogenated carbyne and interface structures consisting of pristine and functionalized carbyne. In the latter case, current rectification is obtained in the system with rectification ratio up to 50%. These findings can be useful for developing carbyne-based structures with tunable electronic transport properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000617664900001 Publication Date 2021-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-8025 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.526 Times cited Open Access OpenAccess
Notes Computational resources were provided by the research computing facilities of Qatar Environment and Energy Research Institute. Calculations are also conducted using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. U. Khalilov gratefully acknowledges financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant number 12M1315N. Approved Most recent IF: 1.526
Call Number PLASMANT @ plasmant @c:irua:176169 Serial 6708
Permanent link to this record
 

 
Author Neyts, E.C.
Title Plasma-Surface Interactions in Plasma Catalysis Type A1 Journal article
Year 2016 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P
Volume 36 Issue 36 Pages 185-212
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper the various elementary plasma—surface interaction processes occurring in plasma catalysis are critically evaluated. Specifically, plasma catalysis at atmospheric pressure is considered. The importance of the various processes is analyzed for the most common plasma catalysis sources, viz. the dielectric barrier discharge and the gliding arc. The role and importance of surface chemical reactions (including adsorption, surface-mediated association and dissociation reactions, and desorption), plasma-induced surface modification, photocatalyst activation, heating, charging, surface discharge formation and electric field enhancement are discussed in the context of plasma catalysis. Numerous examples are provided to demonstrate the importance of the various processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370720800011 Publication Date 2015-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.355 Times cited 66 Open Access
Notes The author is indebted to many colleagues for fruitful discussions. In particular discussions with A. Bogaerts (University of Antwerp, Belgium), H.-H. Kim (AIST, Japan), J. C. Whitehead (University of Manchester, UK) and T. Nozaki (Tokyo Institute of Technology, Japan) are greatfully acknowledged and appreciated. Approved Most recent IF: 2.355
Call Number c:irua:130742 Serial 4004
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title Direct oxidation of methane to methanol on Co embedded N-doped graphene: Comparing the role of N₂O and O₂ as oxidants Type A1 Journal article
Year 2020 Publication Applied Catalysis A-General Abbreviated Journal Appl Catal A-Gen
Volume 602 Issue Pages 117716-10
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, the effects of N-doping into the Co-doped single vacancy (Co-SV-G) and di-vacancy graphene flake (Co-dV-G) are investigated and compared toward direct oxidation of methane to methanol (DOMM) employing two different oxidants (N2O and O-2) using density functional theory (DFT) calculation. We found that DOMM on CoN3-G utilizing the N2O molecule as oxygen-donor proceeds via a two-step reaction with low activation energies. In addition, we found that although CoN3-G might be a good catalyst for methane conversion, it can also catalyze the oxidation of methanol to CO2 and H2O due to the required low activation barriers. Moreover, the adsorption behaviors of CHx (x = 0-4) species and dehydrogenation of CHx (x = 1-4) species on CoN3-G are investigated. We concluded that CoN3-G can be used as an efficient catalyst for DOMM and N-2O reduction at ambient conditions which may serve as a guide for fabricating effective C/N catalysts in energy-related devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000554006800046 Publication Date 2020-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-860x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited Open Access
Notes ; This work was performed with the financial support from the Doctoral Fund of the Antwerp University (NO. BOFLP33099). All the simulations are performed on resources provided by the high-performance computing center of Antwerp University. ; Approved Most recent IF: 5.5; 2020 IF: 4.339
Call Number UA @ admin @ c:irua:171219 Serial 6485
Permanent link to this record
 

 
Author Zhang, Y.-R.; Van Laer, K.; Neyts, E.C.; Bogaerts, A.
Title Can plasma be formed in catalyst pores? A modeling investigation Type A1 Journal article
Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 185 Issue 185 Pages 56-67
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract tWe investigate microdischarge formation inside catalyst pores by a two-dimensional fluid model forvarious pore sizes in the m-range and for various applied voltages. Indeed, this is a poorly understoodphenomenon in plasma catalysis. The calculations are performed for a dielectric barrier discharge inhelium, at atmospheric pressure. The electron and ion densities, electron temperature, electric field andpotential, as well as the electron impact ionization and excitation rate and the densities of excited plasmaspecies, are examined for a better understanding of the characteristics of the plasma inside a pore. Theresults indicate that the pore size and the applied voltage are critical parameters for the formation of amicrodischarge inside a pore. At an applied voltage of 20 kV, our calculations reveal that the ionizationmainly takes place inside the pore, and the electron density shows a significant increase near and inthe pore for pore sizes larger than 200m, whereas the effect of the pore on the total ion density isevident even for 10m pores. When the pore size is fixed at 30m, the presence of the pore has nosignificant influence on the plasma properties at an applied voltage of 2 kV. Upon increasing the voltage,the ionization process is enhanced due to the strong electric field and high electron temperature, andthe ion density shows a remarkable increase near and in the pore for voltages above 10 kV. These resultsindicate that the plasma species can be formed inside pores of structured catalysts (in the m range),and they may interact with the catalyst surface, and affect the plasma catalytic process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000369452000006 Publication Date 2015-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 75 Open Access
Notes This work was supported by the Fund for Scientific ResearchFlanders (FWO) (Grant no. G.0217.14N), the National Natural Sci-ence Foundation of China (Grant no. 11405019), and the ChinaPostdoctoral Science Foundation (Grant no. 2015T80244). Theauthors are very grateful to V. Meynen for the useful discussions oncatalysts. This work was carried out in part using the Turing HPCinfrastructure at the CalcUA core facility of the Universiteit Antwer-pen, a division of the Flemish Supercomputer Center VSC, fundedby the Hercules Foundation, the Flemish Government (departmentEWI) and the University of Antwerp. Approved Most recent IF: 9.446
Call Number c:irua:129808 Serial 3984
Permanent link to this record
 

 
Author Shirazi, M.; Neyts, E.C.; Bogaerts, A.
Title DFT study of Ni-catalyzed plasma dry reforming of methane Type A1 Journal article
Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 205 Issue 205 Pages 605-614
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract tWe investigated the plasma-assisted catalytic reactions for the production of value-added chemicalsfrom Ni-catalyzed plasma dry reforming of methane by means of density functional theory (DFT). Weinspected many activation barriers, from the early stage of adsorption of the major chemical fragmentsderived fromCH4andCO2molecules up to the formation of value-added chemicals at the surface, focusingon the formation of methanol, as well as the hydrogenation of C1and C2hydrocarbon fragments. Theactivation barrier calculations show that the presence of surface-bound H atoms and in some cases alsoremaining chemical fragments at the surface facilitates the formation of products. This implies that thehydrogenation of a chemical fragment on the hydrogenated crystalline surface is energetically favouredcompared to the simple hydrogenation of the chemical fragment at the bare Ni(111) surface. Indeed, thepresence of hydrogen modifies the electronic structure of the surface and the course of the reactions.We therefore conclude that surface-bound H atoms, and to some extent also the remaining chemicalfragments at the crystalline surface, induce the following effects: they facilitate associative desorption ofmethanol and ethane by increasing the rate of H-transfer to the adsorbed fragments while they impedehydrogenation of ethylene to ethane, thus promoting again the desorption of ethylene. Overall, they thusfacilitate the catalytic conversion of the formed fragments from CH4and CO2, into value-added chemicals.Finally, we believe that the retention of methane fragments, especially CH3, in the presence of surface-boundHatoms (as observed here for Ni) can be regarded as an identifier for the proper choice of a catalystfor the production of value-added chemicals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393931000063 Publication Date 2017-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 26 Open Access OpenAccess
Notes Financial support from the Reactive Atmospheric Plasmaprocessing –eDucation network (RAPID), through the EU 7thFramework Programme (grant agreement no. 606889) is grate-fully acknowledged. The calculations were performed using theTuring HPC infrastructure at the CalcUA core facility of the Univer-siteit Antwerpen, a division of the Flemish Supercomputer CenterVSC, funded by the Hercules Foundation, the Flemish Approved Most recent IF: 9.446
Call Number PLASMANT @ plasmant @ c:irua:139514 Serial 4343
Permanent link to this record
 

 
Author Yusupov, M.; Van der Paal, J.; Neyts, E.C.; Bogaerts, A.
Title Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes Type A1 Journal article
Year 2017 Publication Biochimica et biophysica acta : G : general subjects Abbreviated Journal Bba-Gen Subjects
Volume 1861 Issue 1861 Pages 839-847
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Background: Strong electric fields are knownto affect cell membrane permeability,which can be applied for therapeutic purposes, e.g., in cancer therapy. A synergistic enhancement of this effect may be accomplished by the presence of reactive oxygen species (ROS), as generated in cold atmospheric plasmas. Little is known about the synergy between lipid oxidation by ROS and the electric field, nor on howthis affects the cell membrane permeability.

Method: We here conduct molecular dynamics simulations to elucidate the dynamics of the permeation process under the influence of combined lipid oxidation and electroporation. A phospholipid bilayer (PLB), consisting of di-oleoyl-phosphatidylcholine molecules covered with water layers, is used as a model system for the plasma membrane.

Results and conclusions:Weshow howoxidation of the lipids in the PLB leads to an increase of the permeability of the bilayer to ROS, although the permeation free energy barriers still remain relatively high. More importantly, oxidation of the lipids results in a drop of the electric field threshold needed for pore formation (i.e., electroporation) in the PLB. The created pores in the membrane facilitate the penetration of reactive plasma species deep into the cell interior, eventually causing oxidative damage.

General significance: This study is of particular interest for plasma medicine, as plasma generates both ROS and electric fields, but it is also of more general interest for applications where strong electric fields and ROS both come into play.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000397366200012 Publication Date 2017-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-4165 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.702 Times cited Open Access OpenAccess
Notes This work is financially supported by the Fund for Scientific Research Flanders (FWO; grant numbers: 1200216N and 11U5416N). The work was carried out using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flem Approved Most recent IF: 4.702
Call Number PLASMANT @ plasmant @ c:irua:140095 Serial 4413
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Neyts, E.C.
Title Atomic-scale mechanisms of plasma-assisted elimination of nascent base-grown carbon nanotubes Type A1 Journal article
Year 2017 Publication Carbon Abbreviated Journal Carbon
Volume 118 Issue 118 Pages 452-457
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Selective etching allows for obtaining carbon nanotubes with a specific chirality. While plasma-assisted etching has already been used to separate metallic tubes from their semiconducting counterparts, little is known about the nanoscale mechanisms of the etching process. We combine (reactive) molecular dynamics (MD) and force-bias Monte Carlo (tfMC) simulations to study H-etching of CNTs. In particular, during the hydrogenation and subsequent etching of both the carbon cap and the tube, they sequentially transform to different carbon nanostructures, including carbon nanosheet, nanowall, and polyyne chains, before they are completely removed from the surface of a substrate-bound Ni-nanocluster.We also found that onset of the etching process is different in the cases of the cap and the tube, although the overall etching scenario is similar in both cases. The entire hydrogenation/etching process for both cases is analysed in detail, comparing with available theoretical and experimental evidences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401120800053 Publication Date 2017-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 2 Open Access OpenAccess
Notes U. K. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), Belgium (Grant No. 12M1315N). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. The authors also thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 6.337
Call Number PLASMANT @ plasmant @ c:irua:141915 Serial 4531
Permanent link to this record
 

 
Author Aussems, D.U.B.; Bal, K.M.; Morgan, T.W.; van de Sanden, M.C.M.; Neyts, E.C.
Title Mechanisms of elementary hydrogen ion-surface interactions during multilayer graphene etching at high surface temperature as a function of flux Type A1 Journal article
Year 2018 Publication Carbon Abbreviated Journal Carbon
Volume 137 Issue Pages 527-532
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In order to optimize the plasma-synthesis and modification process of carbon nanomaterials for applications such as nanoelectronics and energy storage, a deeper understanding of fundamental hydrogengraphite/graphene interactions is required. Atomistic simulations by Molecular Dynamics have proven to be indispensable to illuminate these phenomena. However, severe time-scale limitations restrict them to very fast processes such as reflection, while slow thermal processes such as surface diffusion and molecular desorption are commonly inaccessible. In this work, we could however reach these thermal processes for the first time at time-scales and surface temperatures (1000 K) similar to high-flux plasma exposure experiments during the simulation of multilayer graphene etching by 5 eV H ions. This was achieved by applying the Collective Variable-Driven Hyperdynamics biasing technique, which extended the inter-impact time over a range of six orders of magnitude, down to a more realistic ion-flux of 1023m2s1. The results show that this not only causes a strong shift from predominant ion-to thermally induced interactions, but also significantly affects the hydrogen uptake and surface evolution. This study thus elucidates H ion-graphite/graphene interaction mechanisms and stresses the importance of including long time-scales in atomistic simulations at high surface temperatures to understand the dynamics of the ion-surface system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000440661700056 Publication Date 2018-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 4 Open Access Not_Open_Access: Available from 25.05.2020
Notes DIFFER is part of the Netherlands Organisation for Scientific Research (NWO). K.M.B. is funded as PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientific Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government e department EWI. Approved Most recent IF: 6.337
Call Number PLASMANT @ plasmant @c:irua:152172 Serial 4993
Permanent link to this record
 

 
Author Khalilov, U.; Neyts, E.C.
Title Mechanisms of selective nanocarbon synthesis inside carbon nanotubes Type A1 Journal article
Year 2021 Publication Carbon Abbreviated Journal Carbon
Volume 171 Issue Pages 72-78
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The possibility of confinement effects inside a carbon nanotube provides new application opportunities, e.g., growth of novel carbon nanostructures. However, the understanding the precise role of catalystfeedstock in the nanostructure synthesis is still elusive. In our simulation-based study, we investigate the Ni-catalyzed growth mechanism of encapsulated carbon nanostructures, viz. double-wall carbon nanotube and graphene nanoribbon, from carbon and hydrocarbon growth precursors, respectively. Specifically, we find that the tube and ribbon growth is determined by a catalyst-vs-feedstock competition effect. We compare our results, i.e., growth mechanism and structure morphology with all available theoretical and experimental data. Our calculations show that all encapsulated nanostructures contain metal (catalyst) atoms and such structures are less stable than their pure counterparts. Therefore, we study the purification mechanism of these structures. In general, this study opens a possible route to the controllable synthesis of tubular and planar carbon nanostructures for today’s nanotechnology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000598371500009 Publication Date 2020-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.337 Times cited Open Access OpenAccess
Notes Fund of Scientific Research Flanders, 12M1318N ; Universiteit Antwerpen; Flemish Supercomputer Centre; Hercules Foundation; Flemish Government; The authors gratefully acknowledge the financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant number 12M1318N. The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Centre (VSC), funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA, Belgium. Approved Most recent IF: 6.337
Call Number PLASMANT @ plasmant @c:irua:172459 Serial 6414
Permanent link to this record
 

 
Author Fukuhara, S.; Bal, K.M.; Neyts, E.C.; Shibuta, Y.
Title Entropic and enthalpic factors determining the thermodynamics and kinetics of carbon segregation from transition metal nanoparticles Type A1 Journal article
Year 2021 Publication Carbon Abbreviated Journal Carbon
Volume 171 Issue Pages 806-813
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The free energy surface (FES) for carbon segregation from nickel nanoparticles is obtained from advanced molecular dynamics simulations. A suitable reaction coordinate is developed that can distinguish dissolved carbon atoms from segregated dimers, chains and junctions on the nanoparticle surface. Because of the typically long segregation time scale (up to ms), metadynamics simulations along the developed reaction coordinate are used to construct FES over a wide range of temperatures and carbon concentrations. The FES revealed the relative stability of different stages in the segregation process, and free energy barriers and rates of the individual steps could then be calculated and decomposed into enthalpic and entropic contributions. As the carbon concentration in the nickel nanoparticle increases, segregated carbon becomes more stable in terms of both enthalpy and entropy. The activation free energy of the reaction also decreases with the increase of carbon concentration, which can be mainly attributed to entropic effects. These insights and the methodology developed to obtain them improve our understanding of carbon segregation process across materials science in general, and the nucleation and growth of carbon nanotube in particular.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000598371500084 Publication Date 2020-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited Open Access OpenAccess
Notes Scientific Research, 19H02415 ; JSPS, 18J22727 ; Japan Society for the Promotion of Science; JSPS; JSPS; FWO; Research Foundation; Flanders, 12ZI420N ; This work was supported by Grant-in-Aid for Scientific Research (B) (No.19H02415) and Grant-in-Aid for JSPS Research Fellow (No.18J22727) from Japan Society for the Promotion of Science (JSPS), Japan. S.F. was supported by JSPS through the Program for 812 Approved Most recent IF: 6.337
Call Number PLASMANT @ plasmant @c:irua:172452 Serial 6421
Permanent link to this record
 

 
Author Brault, P.; Neyts, E.C.
Title Molecular dynamics simulations of supported metal nanocatalyst formation by plasma sputtering Type A1 Journal article
Year 2015 Publication Catalysis today Abbreviated Journal Catal Today
Volume 256 Issue 256 Pages 3-12
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Magnetron sputtering is a widely used physical vapor deposition technique for deposition and formation of nanocatalyst thin films and clusters. Nevertheless, so far only few studies investigated this formation process at the fundamental level. We here review atomic scale molecular dynamics simulations aimed at elucidating the nanocatalyst growth process through magnetron sputtering. We first introduce the basic magnetron sputtering background and machinery of molecular dynamics simulations, and then describe the studies conducted in this field so far. We also present a perspective view on how the field may be developed further.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000360085300002 Publication Date 2015-02-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.636 Times cited 18 Open Access
Notes Approved Most recent IF: 4.636; 2015 IF: 3.893
Call Number c:irua:127408 Serial 2174
Permanent link to this record
 

 
Author Neyts, E.C.; Ostrikov, K.(K.)
Title Nanoscale thermodynamic aspects of plasma catalysis Type A1 Journal article
Year 2015 Publication Catalysis today Abbreviated Journal Catal Today
Volume 256 Issue 256 Pages 23-28
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis continues to gain increasing scientific interest, both in established fields like toxic waste abatement and emerging fields like greenhouse gas conversion into value-added chemicals. Attention is typically focused on the obtained conversion process selectivity, rates and energy efficiency. Much less attention is usually paid to the underlying mechanistic aspects of the processes that occur. In this contribution, we critically examine a number of fundamentally important nanoscale thermodynamic aspects of plasma catalysis, which are very relevant to these processes but so far have been overlooked or insufficiently covered in the plasma catalysis literature.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000360085300004 Publication Date 2015-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.636 Times cited 14 Open Access
Notes Approved Most recent IF: 4.636; 2015 IF: 3.893
Call Number c:irua:127409 Serial 2274
Permanent link to this record
 

 
Author Huygh, S.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C.
Title Development of a ReaxFF reactive force field for intrinsic point defects in titanium dioxide Type A1 Journal article
Year 2014 Publication Computational materials science Abbreviated Journal Comp Mater Sci
Volume 95 Issue Pages 579-591
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A reactive ReaxFF force field is developed for studying the influence of intrinsic point defects on the chemistry with TiO2 condensed phases. The force field parameters are optimized to ab initio data for the equations of state, relative phase stabilities for titanium and titanium dioxide, potential energy differences for (TiO2)n-clusters (n = 116). Also data for intrinsic point defects in anatase were added. These data contain formation energies for interstitial titanium and oxygen vacancies, diffusion barriers of the oxygen vacancies and molecular oxygen adsorption on a reduced anatase (101) surface. Employing the resulting force field, we study the influence of concentration of oxygen vacancies and expansion or compression of an anatase surface on the diffusion of the oxygen vacancies. Also the barrier for oxygen diffusion in the subsurface region is evaluated using this force field. This diffusion barrier of 27.7 kcal/mol indicates that the lateral redistribution of oxygen vacancies on the surface and in the subsurface will be dominated by their diffusion in the subsurface, since both this barrier as well as the barriers for diffusion from the surface to the subsurface and vice versa (17.07 kcal/mol and 21.91 kcal/mol, respectively, as calculated with DFT), are significantly lower than for diffusion on the surface (61.12 kcal/mol as calculated with DFT).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000343781700077 Publication Date 2014-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0256; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.292 Times cited 15 Open Access
Notes Approved Most recent IF: 2.292; 2014 IF: 2.131
Call Number UA @ lucian @ c:irua:119409 Serial 682
Permanent link to this record
 

 
Author Fukuhara, S.; Bal, K.M.; Neyts, E.C.; Shibuta, Y.
Title Accelerated molecular dynamics simulation of large systems with parallel collective variable-driven hyperdynamics Type A1 Journal article
Year 2020 Publication Computational Materials Science Abbreviated Journal Comp Mater Sci
Volume 177 Issue Pages 109581
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The limitation in time and length scale is a major issue of molecular dynamics (MD) simulation. Although several methods have been developed to extend the MD time scale, their performance usually deteriorates with increasing system size. Therefore, an acceleration method which is applicable to large systems is required to bridge the gap between the MD simulations and target phenomena. In this study, an accelerated MD method for large system is developed based on the collective variable-driven hyperdynamics (CVHD) method [K.M. Bal and E.C. Neyts, 2015]. The key idea is to run CVHD in parallel with rate control and accelerate multiple possible events simultaneously. Using this novel method, carbon diffusion in bcc-iron bicrystal with grain boundary is examined as an application for practical materials. Carbon atoms reaching at the grain boundary are trapped whereas carbon atoms in the bulk region diffuse randomly, and both dynamic regimes can be simultaneously accelerated with the parallel CVHD technique.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000519576300001 Publication Date 2020-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited Open Access
Notes JSPS, J22727 ; Japan Society for the Promotion of Science; This work was supported by Grant-in-Aid for Scientific Research (B) (No.19H02415) and Grant-in-Aid for JSPS Research Fellow (No.18J22727) from Japan Society for the Promotion of Science (JSPS), Japan. S.F. was supported by JSPS through the Program for Leading Graduate Schools (MERIT). Data availability The data required to reproduce these findings are available from the corresponding authors upon reasonable request. Approved Most recent IF: 3.3; 2020 IF: 2.292
Call Number PLASMANT @ plasmant @c:irua:166773 Serial 6333
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Neek-Amal, M.; Partoens, B.; Neyts, E.C.
Title The formation of Cr2O3 nanoclusters over graphene sheet and carbon nanotubes Type A1 Journal article
Year 2017 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
Volume 687 Issue Pages 188-193
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000412453700030 Publication Date 2017-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.815 Times cited 2 Open Access Not_Open_Access: Available from 01.11.2019
Notes ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 1.815
Call Number UA @ lucian @ c:irua:146646 Serial 4795
Permanent link to this record
 

 
Author Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
Title Comment on “Misinterpretation of the Shuttleworth equation” Type A1 Journal Article
Year 2024 Publication Scripta Materialia Abbreviated Journal Scripta Materialia
Volume 250 Issue Pages 116186
Keywords A1 Journal Article; CMT
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462 ISBN Additional Links
Impact Factor 6 Times cited Open Access
Notes Research Foundation Flanders; Approved Most recent IF: 6; 2024 IF: 3.747
Call Number UA @ lucian @ CMT Serial 9116
Permanent link to this record
 

 
Author Surmenev, R.A.; Grubova, I.Y.; Neyts, E.; Teresov, A.D.; Koval, N.N.; Epple, M.; Tyurin, A.I.; Pichugin, V.F.; Chaikina, M.V.; Surmeneva, M.A.
Title Ab initio calculations and a scratch test study of RF-magnetron sputter deposited hydroxyapatite and silicon-containing hydroxyapatite coatings Type A1 Journal article
Year 2020 Publication Surfaces and interfaces Abbreviated Journal
Volume 21 Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A crucial property for implants is their biocompatibility. To ensure biocompatibility, thin coatings of hydroxyapatite (HA) are deposited on the actual implant. In this study, we investigate the effects of the addition of silicate anions to the structure of hydroxyapatite coatings on their adhesion strength via a scratch test and ab initio calculations. We find that both the grain size and adhesion strength decrease with the increase in the silicon content in the HA coating (SiHA). The increase in the silicon content to 1.2 % in the HA coating leads to a decrease in the average crystallite size from 28 to 21 nm, and in the case of 4.6 %, it leads to the formation of an amorphous or nanocrystalline film. The decreases in the grain and crystallite sizes lead to peeling and destruction of the coating from the titanium substrate at lower loads. Further, our ab initio simulations demonstrate an increased number of molecular bonds at the amorphous SiHA-TiO2 interface. However, the experimental results revealed that the structure and grain size have more pronounced effects on the adhesion strength of the coatings. In conclusion, based on the results of the ab initio simulations and the experimental results, we suggest that the presence of Si in the form of silicate ions in the HA coating has a significant impact on the structure, grain size, and number of molecular bonds at the interface and on the adhesion strength of the SiHA coating to the titanium substrate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000697616300009 Publication Date 2020-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.2 Times cited Open Access
Notes Approved Most recent IF: 6.2; 2020 IF: NA
Call Number UA @ admin @ c:irua:181685 Serial 7400
Permanent link to this record