|
Record |
Links |
|
Author |
Khalilov, U.; Neyts, E.C. |
|
|
Title |
Mechanisms of selective nanocarbon synthesis inside carbon nanotubes |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Carbon |
Abbreviated Journal |
Carbon |
|
|
Volume |
171 |
Issue |
|
Pages |
72-78 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
The possibility of confinement effects inside a carbon nanotube provides new application opportunities, e.g., growth of novel carbon nanostructures. However, the understanding the precise role of catalystfeedstock in the nanostructure synthesis is still elusive. In our simulation-based study, we investigate the Ni-catalyzed growth mechanism of encapsulated carbon nanostructures, viz. double-wall carbon nanotube and graphene nanoribbon, from carbon and hydrocarbon growth precursors, respectively. Specifically, we find that the tube and ribbon growth is determined by a catalyst-vs-feedstock competition effect. We compare our results, i.e., growth mechanism and structure morphology with all available theoretical and experimental data. Our calculations show that all encapsulated nanostructures contain metal (catalyst) atoms and such structures are less stable than their pure counterparts. Therefore, we study the purification mechanism of these structures. In general, this study opens a possible route to the controllable synthesis of tubular and planar carbon nanostructures for today’s nanotechnology. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000598371500009 |
Publication Date |
2020-09-02 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0008-6223 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
6.337 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
Fund of Scientific Research Flanders, 12M1318N ; Universiteit Antwerpen; Flemish Supercomputer Centre; Hercules Foundation; Flemish Government; The authors gratefully acknowledge the financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant number 12M1318N. The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Centre (VSC), funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA, Belgium. |
Approved |
Most recent IF: 6.337 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:172459 |
Serial |
6414 |
|
Permanent link to this record |