|
Record |
Links |
|
Author |
Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M. |
|
|
Title |
Capillary Condensation of Water in Graphene Nanocapillaries |
Type |
A1 Journal Article |
|
Year |
2024 |
Publication |
Nano Letters |
Abbreviated Journal |
Nano Lett. |
|
|
Volume |
24 |
Issue |
18 |
Pages |
5625-5630 |
|
|
Keywords |
A1 Journal Article; CMT |
|
|
Abstract |
Recent experiments have revealed that the macroscopic Kelvin equation remains surprisingly accurate even for nanoscale capillaries. This phenomenon was so far explained by the oscillatory behavior of the solid−liquid interfacial free energy. We here demonstrate thermodynamic and capillarity inconsistencies with this explanation. After revising the Kelvin equation, we ascribe its validity at nanoscale confinement to the effect of disjoining pressure.
To substantiate our hypothesis, we employed molecular dynamics simulations to evaluate interfacial heat transfer and wetting properties. Our assessments unveil a breakdown in a previously established proportionality between the work of adhesion and the Kapitza conductance at capillary heights below 1.3 nm, where the dominance of the work of adhesion shifts primarily from energy to entropy. Alternatively, the peak density of the initial water layer can effectively probe the work of adhesion. Unlike under bulk conditions, high confinement renders the work of adhesion entropically unfavorable. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
001227815000001 |
Publication Date |
2024-05-08 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1530-6984 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
10.8 |
Times cited |
|
Open Access |
|
|
|
Notes |
This work was supported by Research Foundation-Flanders (FWO, project No. G099219N). The computational resources used in this work were provided by the HPC core facility CalcUA of the University of Antwerp, and the Flemish Supercomputer Center (VSC), funded by FWO and the Flemish Government. |
Approved |
Most recent IF: 10.8; 2024 IF: 12.712 |
|
|
Call Number |
UA @ lucian @c:irua:206331 |
Serial |
9123 |
|
Permanent link to this record |