|
Record |
Links |
|
Author |
Surmenev, R.A.; Grubova, I.Y.; Neyts, E.; Teresov, A.D.; Koval, N.N.; Epple, M.; Tyurin, A.I.; Pichugin, V.F.; Chaikina, M.V.; Surmeneva, M.A. |
|
|
Title |
Ab initio calculations and a scratch test study of RF-magnetron sputter deposited hydroxyapatite and silicon-containing hydroxyapatite coatings |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Surfaces and interfaces |
Abbreviated Journal |
|
|
|
Volume |
21 |
Issue |
|
Pages |
|
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
A crucial property for implants is their biocompatibility. To ensure biocompatibility, thin coatings of hydroxyapatite (HA) are deposited on the actual implant. In this study, we investigate the effects of the addition of silicate anions to the structure of hydroxyapatite coatings on their adhesion strength via a scratch test and ab initio calculations. We find that both the grain size and adhesion strength decrease with the increase in the silicon content in the HA coating (SiHA). The increase in the silicon content to 1.2 % in the HA coating leads to a decrease in the average crystallite size from 28 to 21 nm, and in the case of 4.6 %, it leads to the formation of an amorphous or nanocrystalline film. The decreases in the grain and crystallite sizes lead to peeling and destruction of the coating from the titanium substrate at lower loads. Further, our ab initio simulations demonstrate an increased number of molecular bonds at the amorphous SiHA-TiO2 interface. However, the experimental results revealed that the structure and grain size have more pronounced effects on the adhesion strength of the coatings. In conclusion, based on the results of the ab initio simulations and the experimental results, we suggest that the presence of Si in the form of silicate ions in the HA coating has a significant impact on the structure, grain size, and number of molecular bonds at the interface and on the adhesion strength of the SiHA coating to the titanium substrate. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000697616300009 |
Publication Date |
2020-10-02 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2468-0230 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.2 |
Times cited |
|
Open Access |
|
|
|
Notes |
|
Approved |
Most recent IF: 6.2; 2020 IF: NA |
|
|
Call Number |
UA @ admin @ c:irua:181685 |
Serial |
7400 |
|
Permanent link to this record |