toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bizindavyi, J.; Verhulst, A.S.; Smets, Q.; Verreck, D.; Sorée, B.; Groeseneken, G. url  doi
openurl 
  Title (down) Band-Tails Tunneling Resolving the Theory-Experiment Discrepancy in Esaki Diodes Type A1 Journal article
  Year 2018 Publication IEEE journal of the Electron Devices Society Abbreviated Journal Ieee J Electron Devi  
  Volume 6 Issue 1 Pages 633-641  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Discrepancies exist between the theoretically predicted and experimentally measured performance of band-to-band tunneling devices, such as Esaki diodes and tunnel field-effect transistors (TFETs). We resolve this discrepancy for highly-doped, direct-bandgap Esaki diodes by successfully calibrating a semi-classical model for high-doping-induced ballistic band-tails tunneling currents at multiple temperatures with two In0.53Ga0.47As Esaki diodes using their SIMS doping profiles, C-V characteristics and their forward-bias current density in the negative differential resistance (NDR) regime. The current swing in the NDR regime is shown not to be linked to the band-tails Urbach energy. We further demonstrate theoretically that the calibrated band-tails contribution is also the dominant band-tails contribution to the subthreshold swing of the corresponding TFETs. Lastly, we verify that the presented procedure is applicable to all direct-bandgap semiconductors by successfully applying it to InAs Esaki diodes in literature.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE, Electron Devices Society Place of Publication New York, N.Y. Editor  
  Language Wos 000435505000013 Publication Date 2018-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-6734 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.141 Times cited 5 Open Access  
  Notes ; J. Bizindavyi gratefully acknowledges FWO-Vlaanderen for a Strategic Basic Research PhD fellowship. ; Approved Most recent IF: 3.141  
  Call Number UA @ lucian @ c:irua:152097UA @ admin @ c:irua:152097 Serial 5014  
Permanent link to this record
 

 
Author Ullah, S.; Hussain, A.; Syed, W.A.; Saqlain, M.A.; Ahmad, I.; Leenaerts, O.; Karim, A. doi  openurl
  Title (down) Band-gap tuning of graphene by Be doping and Be, B co-doping : a DFT study Type A1 Journal article
  Year 2015 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 5 Issue 5 Pages 55762-55773  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract First-principles density functional theory (DFT) calculations were carried out to investigate the structural and electronic properties of beryllium (Be) doped and Be and boron (B) co-doped graphene systems. We observed that not only the concentration of impurity atoms is important to tune the band-gap to some desired level, but also the specific substitution sites play a key role. In our system, which consists of 32 atoms, a maximum of 4Be and, in the co-doped state, 2Be and 3B atom substitutions are investigated. Both dopants are electron deficient relative to C atoms and cause the Fermi level to shift downward (p-type doping). A maximum band gap of 1.44 eV can be achieved on incorporation of 4Be atoms. The introduction of Be is more sensitive in terms of geometry and stability than B. However, in opening the energy gap, Be is more effective than B and N (nitrogen). Our results offer the possibility to modify the band-gap of graphene sufficiently for utilization in diverse electronic device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357803200018 Publication Date 2015-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 33 Open Access  
  Notes ; ; Approved Most recent IF: 3.108; 2015 IF: 3.840  
  Call Number c:irua:127167 Serial 216  
Permanent link to this record
 

 
Author Cunha, S.M.; de Costa, D.R.; Pereira Jr, J.M.; Costa Filho, R.N.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title (down) Band-gap formation and morphing in alpha-T-3 superlattices Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 104 Issue 11 Pages 115409  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrons in alpha-T-3 lattices behave as condensed-matter analogies of integer-spin Dirac fermions. The three atoms making up the unit cell bestow the energy spectrum with an additional energy band that is completely flat, providing unique electronic properties. The interatomic hopping term, alpha, is known to strongly affect the electronic spectrum of the two-dimensional (2D) lattice, allowing it to continuously morph from graphenelike responses to the behavior of fermions in a dice lattice. For pristine lattice structures the energy bands are gapless, but small deviations in the atomic equivalence of the three sublattices will introduce gaps in the spectrum. It is unknown how these affect transport and electronic properties such as the energy spectrum of superlattice minibands. Here we investigate the dependency of these properties on the parameter a accounting for different symmetry-breaking terms, and we show how it affects band-gap formation. Furthermore, we find that superlattices can force band gaps to close and shift in energy. Our results demonstrate that alpha-T-3 superlattices provide a versatile material for 2D band-gap engineering purposes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000696091600003 Publication Date 2021-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:181544 Serial 6972  
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M.; Pereira, J.M. doi  openurl
  Title (down) Band structure, density of states, and transmission in graphene bilayer superlattices Type A1 Journal article
  Year 2009 Publication AIP conference proceedings Abbreviated Journal  
  Volume 1199 Issue Pages 547-548  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The energy spectrum and density of states of graphene bilayer superlattices (SLs) are evaluated. We take into account doping and/or gating of the layers as well as tunnel coupling between them. In addition, we evaluate the transmission through such SLs and through single or double barriers. The transmission exhibits a strong dependence on the direction of the incident wave vector.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000281590800258 Publication Date 2010-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:84893 Serial 217  
Permanent link to this record
 

 
Author Schouteden, K.; Zeng, Y.-J.; Lauwaet, K.; Romero, C.P.; Goris, B.; Bals, S.; Van Tendeloo, G.; Lievens, P.; Van Haesendonck, C. pdf  url
doi  openurl
  Title (down) Band structure quantization in nanometer sized ZnO clusters Type A1 Journal article
  Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 5 Issue 9 Pages 3757-3763  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanometer sized ZnO clusters are produced in the gas phase and subsequently deposited on clean Au(111) surfaces under ultra-high vacuum conditions. The zinc blende atomic structure of the approximately spherical ZnO clusters is resolved by high resolution scanning transmission electron microscopy. The large band gap and weak n-type conductivity of individual clusters are determined by scanning tunnelling microscopy and spectroscopy at cryogenic temperatures. The conduction band is found to exhibit clear quantization into discrete energy levels, which can be related to finite-size effects reflecting the zero-dimensional confinement. Our findings illustrate that gas phase cluster production may provide unique possibilities for the controlled fabrication of high purity quantum dots and heterostructures that can be size selected prior to deposition on the desired substrate under controlled ultra-high vacuum conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000317859400026 Publication Date 2013-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 13 Open Access  
  Notes FWO; Hercules; COUNTATOMS Approved Most recent IF: 7.367; 2013 IF: 6.739  
  Call Number UA @ lucian @ c:irua:108518 Serial 219  
Permanent link to this record
 

 
Author Wang, X.F.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title (down) Band structure of a two-dimensional electron gas in the presence of two-dimensional electric and magnetic modulations and a perpendicular magnetic field Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 70 Issue Pages 155312,1-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000224855900054 Publication Date 2004-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:69393 Serial 218  
Permanent link to this record
 

 
Author Bafekry, A.; Mortazavic, B.; Shayesteh, S.F. pdf  doi
openurl 
  Title (down) Band gap and magnetism engineering in Dirac half-metallic Na2C nanosheet via layer thickness, strain and point defects Type A1 Journal article
  Year 2019 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 491 Issue 491 Pages 165565  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Na2C is a novel two-dimensional material with Dirac Half-metal (DHM) characteristic, exhibiting a combination of single-spin massless Dirac fermions and half-semimetal. In this paper based on the first-principles calculations, we studied the mechanical, electronic, magnetic and optical properties of Na2C nanosheet. The elastic modulus of Na2C was measured to 18.5 N/m and isotropic, whereas it shows anisotropic tensile strengths of 2.85 and 2.04 N/m, for the loading along the zigzag and armchair directions, respectively. We found that Na2C, is a DHM with band gap of 0.7 eV in the up-spin channel and has 2 mu(B) magnetic moment per unit cell. In addition, we investigated the effects of number of atomic layers (thickness), electric field and strain on the possibility of further tuning of the electronic and magnetic properties of Na2C. Our calculations show that by increasing the number of layers from monolayer to bulk, a transition from DHM to ferromagnetic metal occurs with a high magnetic moments in the range of 16-30 mu(B). With applying an electric field on the Na2C bilayer (within the ferromagnetic and anti-ferromagnetic orders), energy band gap is slightly increased. In addition our results indicate that the electronic structure can be significantly modified by applying the mechanical straining. In this regard, under the biaxial strain (from 0% to – 8%) or large uniaxial strains (> – 6%), we observed the DHM to ferromagnetic-metal transition. Moreover, vacancy defects and atom substitutions can also effect the electronic and magnetic properties of Na2C nanosheet. Defective Na2C with single and double vacancies, was found to show the metallic response. With various atom substitutions this nanosheet exhibits; ferromagnetic-metal (Si and Be) with 5.2 and 3 mu(B); dilute-magnetic semiconductor (B and N) with 3 and 7 mu(B) magnetic moments, respectively. In the case of B or N atoms replacing the native C atom, the down-spin channel yields about 1 eV band gap. Interestingly, replacing the Na atoms in the native Na2C lattice with the Li can result in the formation of magnetic topological insulator phase with nontrivial band gap in the down-spin channel (25 meV and 0.15 eV) and up-spin channel (0.75 eV), in addition exhibit 8 mu(B) magnetic moment in the ground state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486396100010 Publication Date 2019-07-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 13 Open Access  
  Notes ; B. M. appreciates the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). We acknowledge OpenMX team for OpenMX code. ; Approved Most recent IF: 2.63  
  Call Number UA @ admin @ c:irua:163697 Serial 5408  
Permanent link to this record
 

 
Author Milovanović, S.P.; Andelkovic, M.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title (down) Band flattening in buckled monolayer graphene Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 24 Pages 245427  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The strain fields of periodically buckled graphene induce a periodic pseudomagnetic field (PMF) that modifies the electronic band structure. From the geometry, amplitude, and period of the periodic pseudomagnetic field, we determine the necessary conditions to access the regime of correlated phases by examining the band flattening. As compared to twisted bilayer graphene the proposed system has the advantages that (1) only a single layer of graphene is needed, (2) one is not limited to hexagonal superlattices, and (3) narrower flat bandwidth and larger separation between flat bands can be induced. We, therefore, propose that periodically strained graphene single layers can become a platform for the exploration of exotic many-body phases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000602844600007 Publication Date 2020-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 27 Open Access OpenAccess  
  Notes ; S.P.M. is supported by the Flemish Science Foundation (FWO). We thank E. Y. Andrei, Y. Jiang, and J. Mao for fruitful discussions. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:175021 Serial 6684  
Permanent link to this record
 

 
Author Leenaerts, O.; Vercauteren, S.; Partoens, B. url  doi
openurl 
  Title (down) Band alignment of lateral two-dimensional heterostructures with a transverse dipole Type A1 Journal article
  Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 110 Issue 110 Pages 181602  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract It was recently shown that the electronic band alignment in lateral two-dimensional heterostructures is strongly dependent on the system geometry, such as heterostructure width and layer thickness. This is so even in the absence of polar edge terminations because of the appearance of an interface dipole between the two different materials. In this study, this work is expanded to include two-dimensional materials that possess an electronic dipole over their surface, i.e., in the direction transverse to the crystal plane. To this end, a heterostucture consisting of polar hydrofluorinated graphene and non-polar graphane layers is studied with first-principles calculations. As for nonpolar heterostructures, a significant geometry dependence is observed with two different limits for the band offset. For infinitely wide heterostructures, the potential step in the vacuum is equally divided over the two sides of the heterostructure, resulting in a finite potential step in the heterostructure. For infinitely thick heterostructure slabs, on the other hand, the band offset is reduced, similar to the three-dimensional case.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000400931900014 Publication Date 2017-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 4 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-VI). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI. ; Approved Most recent IF: 3.411  
  Call Number UA @ lucian @ c:irua:143755 Serial 4586  
Permanent link to this record
 

 
Author Ozbal, G.; Senger, R.T.; Sevik, C.; Sevincli, H. doi  openurl
  Title (down) Ballistic thermoelectric properties of monolayer semiconducting transition metal dichalcogenides and oxides Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal  
  Volume 100 Issue 8 Pages 085415  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Combining first-principles calculations with Landauer-Mittiker formalism, ballistic thermoelectric transport properties of semiconducting two-dimensional transition metal dichalcogenides (TMDs) and oxides (TMOs) (namely MX2 with M = Cr, Mo, W, Ti, Zr, Hf; X = O, S, Se, Te) are investigated in their 2H and 1T phases. Having computed structural, as well as ballistic electronic and phononic transport properties for all structures, we report the thermoelectric properties of the semiconducting ones. We find that 2H phases of four of the studied structures have very promising thermoelectric properties, unlike their 1T phases. The maximum room temperature p-type thermoelectric figure of merit (ZT) of 1.57 is obtained for 2H-HfSe2, which can be as high as 3.30 at T = 800 K. Additionally, 2H-ZrSe2, 2H-ZrTe2, and 2H-HfS2 have considerable ZT values (both nand p-type), that are above 1 at room temperature. The 1T phases of Zr and Hf-based oxides possess relatively high power factors, however their high lattice thermal conductance values limit their ZT values to below 1 at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480389100007 Publication Date 2019-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193773 Serial 7549  
Permanent link to this record
 

 
Author Wang, X.F.; Vasilopoulos, P.; Peeters, F.M. doi  openurl
  Title (down) Ballistic spin transport through electronic stub tuners : spin precession, selection, and square-wave transmission Type A1 Journal article
  Year 2002 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 80 Issue 8 Pages 1400-1402  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ballistic spin transport is studied through electronic tuners with double stubs attached to them. The spins precess due to the spin-orbit interaction. Injected polarized spins can exit the structure polarized in the opposite direction. A nearly square-wave spin transmission, with values 1 and 0, can be obtained using a periodic system of symmetric stubs and changing their length or width. The gaps in the transmission can be widened using asymmetric stubs. An additional modulation is obtained upon combining stub structures with different values of the spin-orbit strength. D 2002 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000174009800028 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 49 Open Access  
  Notes Approved Most recent IF: 3.411; 2002 IF: 4.207  
  Call Number UA @ lucian @ c:irua:95131 Serial 215  
Permanent link to this record
 

 
Author Lane, T.L.M.; Andelkovic, M.; Wallbank, J.R.; Covaci, L.; Peeters, F.M.; Fal'ko, V.I. url  doi
openurl 
  Title (down) Ballistic electron channels including weakly protected topological states in delaminated bilayer graphene Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 4 Pages 045301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('We show that delaminations in bilayer graphene (BLG) with electrostatically induced interlayer symmetry can provide one with ballistic channels for electrons with energies inside the electrostatically induced BLG gap. These channels are formed by a combination of valley-polarized evanescent states propagating along the delamination edges (which persist in the presence of a strong magnetic field) and standing waves bouncing between them inside the delaminated region (in a strong magnetic field, these transform into Landau levels in the monolayers). For inverted stackings in BLGs on the left and right of the delamination (AB-2ML-BA or BA-2ML-AB, where 2ML indicates two decoupled monolayers of graphene), the lowest-energy ballistic channels are gapless, have linear dispersion, and appear to be weakly topologically protected. When BLG stackings on both sides of the delamination are the same (AB-2ML-AB or BA-2ML-BA), the lowest-energy ballistic channels are gapped, with a gap epsilon(g) scaling as epsilon(g) alpha W-1 with delamination width and epsilon(g) alpha delta(-1) with the on-layer energy difference in the delaminated part of the structure. Depending on the width, delaminations may also support several \u0022higher-energy\u0022 waveguide modes. Our results are based on both the analytical study of the wave matching of Dirac states and tight-binding model calculations, and we analyze in detail the dependence of the delamination spectrum on the electrostatic conditions in the structure, such as the vertical displacement field.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000419772200005 Publication Date 2018-01-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was funded by EPSRC via EPSRC Grand Engineering Chellenges Grant No. EP/N010345, the Manchester NOWNANO CDT EP/L-1548X, the Flemish Science Foundation (FWO-VI), the European Graphene Flagship project, ERC Synergy grant Hetero2D, and FLAG-ERA project TRANS2DTMD. The authors would like to acknowledge useful discussions with M. Zarenia, S. Slizovskiy, E. McCann, and K. Novesolov. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:148441UA @ admin @ c:irua:148441 Serial 4868  
Permanent link to this record
 

 
Author Pourghaderi, M.A.; Magnus, W.; Sorée, B.; Meuris, M.; de Meyer, K.; Heyns, M. doi  openurl
  Title (down) Ballistic current in metal-oxide-semiconductor field-effect transistors: the role of device topology Type A1 Journal article
  Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 106 Issue 5 Pages 053702,1-053702,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study we investigate the effect of device topology on the ballistic current in n-channel metal-oxide-semiconductor field-effect transistors. Comparison of the nanoscale planar and double-gate devices reveals that, down to a certain thickness of the double gate film, the ballistic current flowing in the double gate device is twice as large compared to its planar counterpart. On the other hand, further thinning of the film beyond this threshold is found to change noticeably the confinement and transport characteristics, which are strongly depending on the film material and the surface orientation. For double gate Ge and Si devices there exists a critical film thickness below which the transverse gate field is no longer effectively screened by the inversion layer electron gas and mutual inversion of the two gates is turned on. In the case of GaAs and other similar IIIV compounds, a decrease in the film thickness may drastically change the occupation of the L-valleys and therefore amend the transport properties. The simulation results show that, in both cases, the ballistic current and the transconductance are considerably enhanced.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000269850300052 Publication Date 2009-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.068; 2009 IF: 2.072  
  Call Number UA @ lucian @ c:irua:79744 Serial 214  
Permanent link to this record
 

 
Author Pierard, N.; Fonseca, A.; Colomer, J.-F.; Bossuot, C.; Benoit, J.-M.; Van Tendeloo, G.; Pirard, J.-P.; Nagy, J.B. pdf  doi
openurl 
  Title (down) Ball milling effect on the structure of single-wall carbon nanotubes Type A1 Journal article
  Year 2004 Publication Carbon Abbreviated Journal Carbon  
  Volume 42 Issue 8/9 Pages 1691-1697  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000221948000035 Publication Date 2004-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 133 Open Access  
  Notes Pai/Iuap P5/01 Approved Most recent IF: 6.337; 2004 IF: 3.331  
  Call Number UA @ lucian @ c:irua:54866 Serial 213  
Permanent link to this record
 

 
Author Erbe, M.; Hänisch, J.; Hühne, R.; Freudenberg, T.; Kirchner, A.; Molina-Luna, L.; Damm, C.; Van Tendeloo, G.; Kaskel, S.; Schultz, L.; Holzapfel, B. pdf  doi
openurl 
  Title (down) BaHfO3artificial pinning centres in TFA-MOD-derived YBCO and GdBCO thin films Type A1 Journal article
  Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 28 Issue 28 Pages 114002  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Chemical solution deposition (CSD) is a promising way to realize REBa2Cu3O7−x (REBCO;RE = rare earth (here Y, Gd))-coated conductors with high performance in applied magnetic fields. However, the preparation process contains numerous parameters which need to be tuned to achieve high-quality films. Therefore, we investigated the growth of REBCO thin films containing nanometre-scale BaHfO3 (BHO) particles as pinning centres for magnetic flux lines, with emphasis on the influence of crystallization temperature and substrate on the microstructure and superconductivity. Conductivity, microscopy and x-ray investigations show an enhanced performance of BHO nano-composites in comparison to pristine REBCO. Further, those measurements reveal the superiority of GdBCO to YBCO—e.g. by inductive critical current densities, Jc, at self-field and 77 K. YBCO is outperformed by more than 1 MA cm−2 with Jc values of up to 5.0 MA cm−2 for 265 nm thick layers of GdBCO(BHO) on lanthanum aluminate. Transport in-field Jc measurements demonstrate high pinning force maxima of around 4 GN m−3 for YBCO(BHO) and GdBCO(BHO). However, the irreversibility fields are appreciably higher for GdBCO. The critical temperature was not significantly reduced upon BHO addition to both YBCO and GdBCO, indicating a low tendency for Hf diffusion into the REBCO matrix. Angular-dependent Jc measurements show a reduction of the anisotropy in the same order of magnitude for both REBCO compounds. Theoretical models suggest that more than one sort of pinning centre is active in all CSD films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366193000003 Publication Date 2015-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 36 Open Access  
  Notes Experimental work was mainly done at IFW Dresden. We thank Juliane Scheiter and Dr Jens Ingolf Mönch of IFW Dresden for technical assistance. The research leading to these results received funding from EUROTAPES, a collaborative project funded by the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. NMP-LA-2012-280 432. L Molina-Luna and G Van Tendeloo acknowledge funding from the European Research Council (ERC grant nr. 24 691-COUNTATOMS). Approved Most recent IF: 2.878; 2015 IF: 2.325  
  Call Number c:irua:129200 Serial 3941  
Permanent link to this record
 

 
Author Shaw, P.; Kumar, N.; Kwak, H.S.; Park, J.H.; Uhm, H.S.; Bogaerts, A.; Choi, E.H.; Attri, P. url  doi
openurl 
  Title (down) Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue 1 Pages 11268  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract There is a growing body of literature that recognizes the importance of plasma treated water (PTW)for inactivation of microorganism. However, very little attention has been paid to the role of reactive nitrogen species (RNS) in deactivation of bacteria. The aim of this study is to explore the role of RNS in bacterial killing, and to develop a plasma system with increased sterilization efficiency. To increase the concentration of reactive oxygen and nitrogen species (RONS) in solution, we have used vapor systems (DI water/HNO3 at different wt%) combined with plasma using N2 as working gas. The results show that the addition of the vapor system yields higher RONS contents. Furthermore, PTW produced by N2 + 0.5 wt% HNO3 vapor comprises a large amount of both RNS and ROS, while PTW created by N2 + H2O vapor consists of a large amount of ROS, but much less RNS. Interestingly, we observed more deactivation of E. Coli with PTW created by N2 + 0.5 wt% HNO3 vapor plasma as compared to PTW generated by the other plasma systems. This work provides new insight into the role of RNS along with ROS for deactivation of bacteria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000439805700029 Publication Date 2018-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 17 Open Access OpenAccess  
  Notes We gratefully acknowledge the Leading Foreign Research Institute Recruitment program (Grant # NRF- 2016K1A4A3914113) throughout the Basic Science Research Program of the National Research Foundation (NRF) of Korea and in part by Kwangwoon University 2018. JHP thanks to NRF Grant No. NRF- 2017R1D1A1B03033495. We also acknowledge financial support from the Research Foundation – Flanders (FWO) (Grant Number 12J5617N) and from the European Marie Skłodowska-Curie Individual Fellowship “Anticancer-PAM” within Horizon 2020 (Grant Number 743546). Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:152821 Serial 5003  
Permanent link to this record
 

 
Author Annegarn, H.J.; Van Grieken, R.E.; Dibby, D.M.; Von Blottnitz, F. pdf  doi
openurl 
  Title (down) Background aerosol composition in the Namib Desert, South West-Africa (Namibia) Type A1 Journal article
  Year 1983 Publication Atmospheric environment : an international journal Abbreviated Journal  
  Volume 17 Issue 10 Pages 2045-2053  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A remote site in the Namib Desert was selected for sampling background aerosols in southern Africa, as one of a wide network of stations spanning the Southern Hemisphere in a programme designed to measure the background concentrations of trace elements in the atmosphere. A series of samples was collected over a 6-month period using a single-orifice cascade impactor, which fractionated the particles into six size groups. Analysis was performed using particle-induced X-ray emission (PIXE), yielding results for S, Cl, K, Ca, Ti, Mn, Fe, Br and Sr, and occasionally also for V, Cr, Ni, Cu, Zn and Pb. No direct correlations with wind direction were observed excluding strong local or regional sources of particles. K, Ca, Ti, Mn and Fe can be identified with a dust dispersion source. Cl, large particle S and Br, and part of the K and Sr are derived from sea spray. Relative to the soil components small particle K is not enriched as it normally is in regions with less scarce vegetation. Cr, V, Ni, Cu, Zn and Pb concentrations and enrichments in the aerosol are lower than practically all values measured at any other location hitherto. The concentration of the small particle sulphur, 200 ng m−3, is believed to be related to anaerobic conditions and plankton blooms in the ocean upwelling zones off Namibia.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1983RP58300017 Publication Date 2003-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:113623 Serial 7545  
Permanent link to this record
 

 
Author Devolder, T.; Bultynck, O.; Bouquin, P.; Nguyen, V.D.; Rao, S.; Wan, D.; Sorée, B.; Radu, I.P.; Kar, G.S.; Couet, S. url  doi
openurl 
  Title (down) Back hopping in spin transfer torque switching of perpendicularly magnetized tunnel junctions Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 18 Pages 184406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We analyze the phenomenon of back hopping in spin-torque induced switching of the magnetization in perpendicularly magnetized tunnel junctions. The analysis is based on single-shot time-resolved conductance measurements of the pulse-induced back hopping. Studying several material variants reveals that the back hopping is a feature of the nominally fixed system of the tunnel junction. The back hopping is found to proceed by two sequential switching events that lead to a final state P' of conductance close to-but distinct from-that of the conventional parallel state. The P' state does not exist at remanence. It generally relaxes to the conventional antiparallel state if the current is removed. The P' state involves a switching of the sole spin-polarizing part of the fixed layers. The analysis of literature indicates that back hopping occurs only when the spin-polarizing layer is too weakly coupled to the rest of the fixed system, which justifies a posteriori the mitigation strategies of back hopping that were implemented empirically in spin-transfer-torque magnetic random access memories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000587594900005 Publication Date 2020-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes ; This work was supported in part by the IMEC's Industrial Affiliation Program on STT-MRAM device, and in part by the imec IIAP core CMOS and the Beyond CMOS program of Intel Corporation. T. D. and P. B. thank Jonathan Z. Sun for constructive discussions on the BH phenomenon. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:173524 Serial 6458  
Permanent link to this record
 

 
Author Li, M.-R.; Deng, Z.; Lapidus, S.H.; Stephens, P.W.; Segre, C.U.; Croft, M.; Sena, R.P.; Hadermann, J.; Walker, D.; Greenblatt, M. pdf  doi
openurl 
  Title (down) Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9: in Search of Jahn-Teller Distorted Cr(II) Oxide Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue 55 Pages 10135-10142  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A novel 6H-type hexagonal perovskite Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9 was prepared at high pressure (6 GPa) and temperature (1773 K). Both transmission electron microscopy and synchrotron powder X-ray diffraction data demonstrate that Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9 crystallizes in P6(3)/mmc with face-shared (Cr0.97(1)Te0.03(1))O-6 octahedral pairs interconnected with TeO6 octahedra via corner-sharing. Structure analysis shows a mixed Cr2+/Cr3+ valence state with similar to 10% Cr2+. The existence of Cr2+ in Ba-3(Cr0.10(1)2+Cr0.87(1)3+Te0.036+)(2)TeO9 is further evidenced by X-ray absorption near-edge spectroscopy. Magnetic properties measurements show a paramagnetic response down to 4 K and a small glassy-state curvature at low temperature. In this work, the octahedral Cr2+O6 component is stabilized in an oxide material for the first time; the expected Jahn-Teller distortion of high-spin (d(4)) Cr2+ is not found, which is attributed to the small proportion of Cr2+ (similar to 10%) and the face-sharing arrangement of CrO6 octahedral pairs, which structurally disfavor axial distortion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000385785700026 Publication Date 2016-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 2 Open Access  
  Notes Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:140313 Serial 4440  
Permanent link to this record
 

 
Author Yang, T.; Perkisas, T.; Hadermann, J.; Croft, M.; Ignatov, A.; Greenblatt, M. pdf  doi
openurl 
  Title (down) B-site ordered perovskite LaSrMnNbO6 : synthesis, structure and antiferromagnetism Type A1 Journal article
  Year 2010 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 183 Issue 11 Pages 2689-2694  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract LaSrMnNbO6 has been synthesized by high temperature solid state reaction under 1% H2/Ar dynamic flow. The structure is determined by Rietveld refinement of the powder X-ray diffraction data. It crystallizes in the monoclinic space group P21/n with the unit cell parameters: a=5.69187(12), b=5.74732(10), c=8.07018(15) Å and β=90.0504(29)°, which were also confirmed by electron diffraction. The Mn2+ and Nb5+ ions, whose valence states are confirmed by X-ray absorption near-edge spectroscopy, are almost completely ordered over the B-site (<1% inversion) of the perovskite structure due to the large differences of both cationic size (0.19 Å) and charge. The octahedral framework displays significant tilting distortion according to Glazers tilt system a−b−c+. Upon heating, LaSrMnNbO6 decomposes at 690 °C under O2 flow or at 775 °C in air. The magnetic susceptibility data indicate the presence of long-range antiferromagnetic ordering at TN=8 K; the experimentally observed effective paramagnetic moment, μeff=5.76 μB for high spin Mn2+ (3d5, S=5/2) is in good agreement with the calculated value (μcalcd=5.92 μB).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000284179800028 Publication Date 2010-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 13 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 2.299; 2010 IF: 2.261  
  Call Number UA @ lucian @ c:irua:85805 Serial 212  
Permanent link to this record
 

 
Author Gonzalez-Quiroga, A.; Kulkarni, S.R.; Vandewalle, L.; Perreault, P.; Goel, C.; Heynderickx, G.J.; van Geem, K.M.; Marin, G.B. pdf  doi
openurl 
  Title (down) Azimuthal and radial flow patterns of 1g-Geldart B-type particles in a gas-solid vortex reactor Type A1 Journal article
  Year 2019 Publication Powder technology Abbreviated Journal  
  Volume 354 Issue Pages 410-422  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Processes requiring intensive interfacial momentum, mass and heat exchange between gases and particulate solids can be greatly enhanced by operating in a centrifugal field. This is realized in the Gas-Solid Vortex Reactor (GSVR) with centrifugal accelerations up to two orders of magnitude higher than the Earth's gravitational acceleration. Here, the flow patterns of two 1g-Geldart B-type particles are experimentally assessed, over the gas inlet velocity range 82–126 m s−1, in an 80 mm diameter and 15 mm height GSVR. The particles are monosized aluminum spheres of 0.5 mm diameter, and walnut shell in the sieve fraction 0.50–0.56 mm and aspect ratio 1.3 ± 0.2. Two dimensional Particle Image Velocimetry combined with Digital Image Analysis and pressure measurements revealed that periodic fluctuations in solids azimuthal and radial velocity between gas inlet slots are strongly related to the average solids azimuthal velocity and bed uniformity. Aluminum particles feature steeper changes in azimuthal velocity and more attenuated changes in radial velocity than walnut shell particles. Within the assessed gas inlet velocity range the solids bed of aluminum exhibits average azimuthal velocities and bed voidages 40–50% and ≈10% lower than those of walnut shell. The aerodynamic response time of the particles, i.e. ρsdp2/18μg, emerged as an important parameter to assess the influence of the carrier gas jet on the radial deflection of the particles and the interaction solids bed-outer wall. Too low aerodynamic response time relates to nonuniformity in bed voidage due to solids radial velocity fluctuations. Excessive aerodynamic response time indicates low solids azimuthal velocities due to solids bed-outer wall friction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000490625500041 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032-5910 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:162120 Serial 7543  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title (down) Axion insulator states in a topological insulator proximitized to magnetic insulators : a tight-binding characterization Type A1 Journal article
  Year 2022 Publication Physical review materials Abbreviated Journal  
  Volume 6 Issue 7 Pages 074205-74208  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The recent discovery of axion states in materials such as antiferromagnetic topological insulators has boosted investigations of the magnetoelectric response in topological insulators and their promise towards realizing dissipationless topological electronics. In this paper, we develop a tight-binding methodology to explore the emergence of axion states in Bi2Se3 in proximity to magnetic insulators on the top and bottom surfaces. The topological protection of the surface states is lifted by a time-reversal-breaking perturbation due to the proximity of a magnetic insulator, and a gap is opened on the surfaces, giving rise to half-quantized Hall conductance and a zero Hall plateau-evidencing an axion insulator state. We developed a real-space tight-binding Hamiltonian for Bi2Se3 using first-principles data. Transport properties of the system were obtained within the Landauer-Buttiker formalism, and we discuss the creation of axion states through Hall conductance and a zero Hall plateau at the surfaces, as a function of proximitized magnetization and corresponding potentials at the surfaces, as well as the thickness of the topological insulator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000832387000006 Publication Date 2022-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited 4 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.4  
  Call Number UA @ admin @ c:irua:189498 Serial 7130  
Permanent link to this record
 

 
Author van Espen, P.; Janssens, K.; Nobels, J. pdf  doi
openurl 
  Title (down) AXIL-PC, software for the analysis of complex-x-ray spectra Type A1 Journal article
  Year 1986 Publication Chemometrics and intelligent laboratory systems Abbreviated Journal  
  Volume 1 Issue 1 Pages 109-114  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Chemometrics (Mitac 3)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1986K579000015 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-7439 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149781 Serial 5487  
Permanent link to this record
 

 
Author Bogaerts, A.; Grozeva, M. doi  openurl
  Title (down) Axial non-uniformity of longitudinal hollow cathode discharges for laser applications: numerical modeling and comparison with experiments Type A1 Journal article
  Year 2002 Publication Applied physics: B: photo-physics and laser chemistry Abbreviated Journal Appl Phys B-Lasers O  
  Volume 75 Issue Pages 731-738  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000180587100019 Publication Date 2004-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0946-2171;1432-0649; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.696 Times cited 8 Open Access  
  Notes Approved Most recent IF: 1.696; 2002 IF: 2.080  
  Call Number UA @ lucian @ c:irua:44007 Serial 211  
Permanent link to this record
 

 
Author Fedotov, S.S.; Khasanova, N.R.; Samarin, A.S.; Drozhzhin, O.A.; Batuk, D.; Karakulina, O.M.; Hadermann, J.; Abakumov, A.M.; Antipov, E.V. pdf  url
doi  openurl
  Title (down) AVPO4F (A = Li, K): A 4 V Cathode Material for High-Power Rechargeable Batteries Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 411-415  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A novel potassium-based fluoride-phosphate, KVPO4F, with a KTiOPO4 (KTP) type structure is synthesized and characterized. About 85% of potassium has been electrochemically extracted on oxidation producing a cathode material with attractive performance for Li-ion batteries. The material operates at the electrode potential near 4V vs Li/Li+ exhibiting a sloping voltage profile, extremely low polarization, small volume change of about 2% and excellent rate capability, maintaining more than 75% of the initial capacity at 40C discharge rate without significant fading.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368949900002 Publication Date 2016-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 46 Open Access  
  Notes The authors kindly thank Dr. S. N. Putilin for XRD measurements, Dr. O. A. Shlyakhtin for the assistance in cryochemical synthesis, Ph.D. students A. A. Sadovnikov and E. A. Karpukhina for SEM imaging and FTIR spectra respectively. The work was partly supported by Russian Science Foundation (grant 16-19-00190), Skoltech Center for Electrochemical Energy Storage and Moscow State University Devel-opment Program up to 2020. J. Hadermann, O.M. Karakulina and A.M. Abakumov acknowledge support from FWO under grant G040116N. Approved Most recent IF: 9.466  
  Call Number c:irua:131583 Serial 4001  
Permanent link to this record
 

 
Author Biondo, O.; van Deursen, C.F.A.M.; Hughes, A.; van de Steeg, A.; Bongers, W.; van de Sanden, M.C.M.; van Rooij, G.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Avoiding solid carbon deposition in plasma-based dry reforming of methane Type A1 Journal Article
  Year 2023 Publication Green Chemistry Abbreviated Journal Green Chem.  
  Volume 25 Issue 24 Pages 10485-10497  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Solid carbon deposition is a persistent challenge in dry reforming of methane (DRM), affecting both classical and plasma-based processes. In this work, we use a microwave plasma in reverse vortex flow configuration to overcome this issue in CO<sub>2</sub>/CH<sub>4</sub>plasmas. Indeed, this configuration efficiently mitigates carbon deposition, enabling operation even with pure CH<sub>4</sub>feed gas, in contrast to other configurations. At the same time, high reactor performance is achieved, with CO<sub>2</sub>and CH<sub>4</sub>conversions reaching 33% and 44% respectively, at an energy cost of 14 kJ L<sup>−1</sup>for a CO<sub>2</sub> : CH<sub>4</sub>ratio of 1 : 1. Laser scattering and optical emission imaging demonstrate that the shorter residence time in reverse vortex flow lowers the gas temperature in the discharge, facilitating a shift from full to partial CH<sub>4</sub>pyrolysis. This underscores the pivotal role of flow configuration in directing process selectivity, a crucial factor in complex chemistries like CO<sub>2</sub>/CH<sub>4</sub>mixtures and very important for industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001110100100001 Publication Date 2023-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.8 Times cited Open Access  
  Notes Universiteit Antwerpen; Nederlandse Organisatie voor Wetenschappelijk Onderzoek; HORIZON EUROPE Marie Sklodowska-Curie Actions, 813393 ; Approved Most recent IF: 9.8; 2023 IF: 9.125  
  Call Number PLASMANT @ plasmant @c:irua:202138 Serial 8978  
Permanent link to this record
 

 
Author Kundu, S.; Kundu, P.; Van Tendeloo, G.; Ravishankar, N. pdf  doi
openurl 
  Title (down) Au2Sx/CdS nanorods by cation exchange : mechanistic insights into the competition between cation-exchange and metal ion reduction Type A1 Journal article
  Year 2014 Publication Small Abbreviated Journal Small  
  Volume 10 Issue 19 Pages 3895-3900  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Thumbnail image of graphical abstract It is well known that metals with higher electron affinity like Au tend to undergo reduction rather than cation-exchange. It is experimentally shown that under certain conditions cation-exchange is dominant over reduction. Thermodynamic calculation further consolidates the understanding and paves the way for better predictability of cation-exchange/reduction reactions for other systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000344451900011 Publication Date 2014-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 8 Open Access  
  Notes countatoms Approved Most recent IF: 8.643; 2014 IF: 8.368  
  Call Number UA @ lucian @ c:irua:118010 Serial 3514  
Permanent link to this record
 

 
Author Xie, Y.; Van Tendeloo, M.; Zhu, W.; Peng, L.; Vlaeminck, S.E. pdf  doi
openurl 
  Title (down) Autotrophic nitrogen polishing of secondary effluents : Alkaline pH and residual nitrate control S0-driven denitratation for downstream anammox treatment Type A1 Journal article
  Year 2023 Publication Journal of Water Process Engineering Abbreviated Journal  
  Volume 56 Issue Pages 104402-104409  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Energy-lean nitrogen removal technologies, such as partial nitritation/anammox, often encounter effluent issues due to elevated nitrate and ammonium levels. This study proposed a novel autotrophic polishing strategy coupling sulfur-driven denitratation with anammox. To explore the denitratation potential in obtaining stable and sufficient nitrite accumulation, the effects of pH, residual nitrate level, and biomass-specific nitrate loading rate (BSNLR) were investigated in an S0-packed bed reactor at low hydraulic retention time (i.e., 0.2 h). Implementing pH and residual nitrate control strategies would be easier in practice than BSNLR control to polish secondary effluent. Alkaline pH values could realize successful nitrite accumulation without residual nitrate, and further intensify the accumulation under increased residual nitrate levels. The nitrate level was positively correlated with the nitrite accumulation efficiency. At pH 8.5 and nitrate concentration of 1.0 ± 0.8 mg N L−1, sulfur-driven denitratation could successfully maintain nitrite accumulation of 6.4 ± 1.0 mg NO2−-N L−1, ideally for the downstream anammox in case of residual ammonium levels of around 5 mg N L−1. Since Thiobacillus members play a key role in managing nitrite accumulation, their abundance should be guaranteed in the practical application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001103341400001 Publication Date 2023-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-7144 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7 Times cited Open Access Not_Open_Access: Available from 18.04.2024  
  Notes Approved Most recent IF: 7; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:200036 Serial 8835  
Permanent link to this record
 

 
Author Zhong, Z.; Aveyard, R.; Rieger, B.; Bals, S.; Palenstijn, W.J.; Batenburg, K.J. pdf  url
doi  openurl
  Title (down) Automatic correction of nonlinear damping effects in HAADF-STEM tomography for nanomaterials of discrete compositions Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 184 Issue 184 Pages 57-65  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('HAADF-STEM tomography is a common technique for characterizing the three-dimensional morphology of nanomaterials. In conventional tomographic reconstruction algorithms, the image intensity is assumed to be a linear projection of a physical property of the specimen. However, this assumption of linearity is not completely valid due to the nonlinear damping of signal intensities. The nonlinear damping effects increase w.r.t the specimen thickness and lead to so-called \u0022cupping artifacts\u0022, due to a mismatch with the linear model used in the reconstruction algorithm. Moreover, nonlinear damping effects can strongly limit the applicability of advanced reconstruction approaches such as Total Variation Minimization and discrete tomography. In this paper, we propose an algorithm for automatically correcting the nonlinear effects and the subsequent cupping artifacts. It is applicable to samples in which chemical compositions can be segmented based on image gray levels. The correction is realized by iteratively estimating the nonlinear relationship between projection intensity and sample thickness, based on which the projections are linearized. The correction and reconstruction algorithms are tested on simulated and experimental data. (C) 2017 Elsevier B.V. All rights reserved.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000417779800008 Publication Date 2017-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 8 Open Access OpenAccess  
  Notes ; This research is supported by the Dutch Technology Foundation STW (http:// www.stw.nl/), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs, Agriculture and Innovation under project number 13314. Funding from the European Research Council (Starting grant no. COLOURATOMS 335078) is acknowledged by S. Bals. The authors would like to thank Dr. Thomas Altantzis and Dr. Bart Goris for providing the experimental data, and Prof. Dr. Luis M. Liz-Marzan for providing the investigated samples. ; ecas_sara Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:148501UA @ admin @ c:irua:148501 Serial 4867  
Permanent link to this record
 

 
Author Van Dyck, P.; Markowicz, A.; Van Grieken, R. doi  openurl
  Title (down) Automatic absorption correction in x-ray fluorescence analysis of intermediate thickness samples using a dual external reference signal Type A1 Journal article
  Year 1980 Publication X-ray spectrometry Abbreviated Journal  
  Volume 9 Issue 2 Pages 70-76  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A method has been investigated which allows calculations from the X-ray fluorescence spectra of the absorption coefficients at any energy for any sample, without any additional measurement. Use is made of the ratio of the characteristic X-ray signals from a Zr wire positioned in front of the sample and from a Pd foil placed behind the sample, both in a fixed geometry. From the experimentally measured absorption coefficient at the Pd L energy (2.9 keV), the coefficients for higher energies are calculated. By the use of an iterative computer routine in which corrections for the enhancement of the Pd foil by the sample are also included, an accuracy of 2% or better on the absorption coefficient determination can be reached for homogenous samples in one measurement. Grain-size and heterogeneity effects induce inaccuracies on the absorption coefficient determinations which might well reach 20% for particulate samples like intermediate thickness deposits of geological materials. This approach thus has the same limitations as the classical transmission method for such heterogeneous samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1980JN16500007 Publication Date 2005-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116483 Serial 7541  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: