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Two-dimensional(2D) periodic electric modulations of a 2D electron gas split each Landau level into the
well-known butterfly-type spectrum described by a Harper-type equation multiplied by an envelope function.
This equation is slightly modified for 2D magnetic modulations but the spectrum remains qualitatively the
same. The same holds if both types of modulations are present. The modulation strengths do not affect the
structure of the butterfly-type spectrum, they only change its scale or its envelope. The latter is described by the
ratio a of the flux quantumh/e to the flux per unit cell. Exact numerical and approximate analytical results are
presented for the energy spectrum as a function of the magnetic field. For integera the internal structure
collapses into a band for all cases. The bandwidth at the Fermi energy depends on the modulation strength, the
electron density, and, when both modulations are present, on the phase difference between them. In the latter
case if the modulations have ap /2 phase difference, the bandwidth at the Fermi energy is nearly independent
of the magnetic field and the commensurability oscillations of the diffusive contribution to the resistivity
disappear.
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I. INTRODUCTION

In the last 15 years the magnetotransport of the two-
dimensional electron gas(2DEG), subjected to periodic po-
tential modulations, has attracted considerable experimental
and theoretical attention. For one-dimensional(1D) modula-
tions oscillations of the magnetoresistivity tensorrmn have
been observed,1 at low magnetic fieldsB, distinctly different
in period and temperature dependence from the usual
Shubnikov-de Haas ones observed at higherB. These oscil-
lations reflect the commensurability between two length
scales:2 the cyclotron diameter at the Fermi level 2Rc

=2Î2pne,
2, wherene is the electron density,, the magnetic

length, anda the period of the potential modulation.
The situation is similar but less clearcut for 2D electric

modulations from both a theoretical3,4 and an experimental5

point of view. In general, for 2D modulations a tight-binding
treatment shows that each Landau level exhibits the well-
known butterfly-type spectrum described by a Harper-type
equation. For sinusoidal modulations the energy spectrum
resulting from the numerical solution of this equation shows,
when the energyE is measured in units ofVmFnsumd, m=x, y,
with Vm the modulation potential andFnsumd the Laguerre
polynomial, a nontrivial structure as a function ofa=F /F0,
whereF0=h/e is the flux quantum andF the flux per unit
cell: For a=p/q rational, with q, p integers and relative
prime, each Landau level is split intop subbands.6 To our
knowledge, despite various efforts7 there is no conclusive
experimental evidence for this structure yet presumably be-
cause the small gaps between these subbands are closed due
to disorder in samples of not exceptionally high mobilities.
By neglecting those small gaps we recently accounted8 for
the observed9 oscillations in the amplitude of the commen-
surability oscillations, as a function of the flux through the
unit cell of the 2D modulation lattice, that could not be fully

explained by earlier semiclassical theories.3 The high resis-
tivity peaks observed fora integer were due to collisional
contributions and show up only for short-period modula-
tions.

In view of recent work on 1D magnetic modulations,10,11

it is of interest to present a tight-binding treatment of 2D
magnetic modulations in order to see the similarity and the
differences between the former and the latter as well as be-
tween 2D electric and magnetic modulations. So far we are
aware only of the work of Ref. 12 which considered only a
2D magnetic modulation and did not show any spectra as a
function of a=q/p. In addition, we would like to present
such a treatment when both types of modulations are present.
The reason for considering the latter case is that from experi-
mentally known methods of producing amagneticmodula-
tion one expects that the magnetic10 or superconducting
stripes,11 periodically placed on top of a 2DEG, also act like
electrical gates and induce anelectric modulation of the
2DEG. As shown in our previous work on transport13 and the
related band structure,14 the phase difference between the
two 1D modulations can have important consequences and
even suppress theWeissoscillations; this prediction was later
confirmed experimentally.10 We show here that similar ef-
fects must occur for 2D modulations with ap /2 phase dif-
ference since the bandwidth at the Fermi energy is nearly
independent of the magnetic field and the commensurability
oscillations of the diffusive contribution to the resistivity dis-
appear. Further, as for 1D modulations,13 the bandwidth at
the Fermi energy for a purely electric modulation oscillates,
as a function of the magnetic field, inantiphasewith that for
a purely magnetic one. In addition, we show how a small
broadening can close the very small gaps in the density of
states fora=q/p rational.

In the next section we derive the relevant Harper-type
equations and solve them exactly, fora rational, and analyti-
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cally, for a integer, to obtain the one-electron eigenfunctions
and eigenvalues. We also present the density of states and the
bandwidth at the Fermi energy. Various numerical results are
presented in Sec. III and concluding remarks in Sec. IV.

II. FORMALISM

We consider a 2DEG in thesx,yd plane under a perpen-
dicular magnetic fieldB, modulated weakly and periodically
along thex andy directions, and accompanied by a 2D elec-
tric modulation of the same period. In Fourier space the total
electric and magnetic fields can be expressed, respectively,
by a vector potential

Asr d = x̂o
g

Ag
xeig·r + ŷSBx+ o

g
Ag

yeig·rD s1d

and by a scalar potential

fsr d = o
g

fge
ig·r . s2d

Hereax=2p /Kx anday=2p /Ky are the lattice periods of the
imposed modulations andg= x̂nxKx+ ŷnyKy is the corre-
sponding reciprocal lattice vector withnx, ny integers. For
¹ ·A =0, which can be satisfied in most practical situations,
we haveAg

xgx+Ag
ygy=0 and the magnetic field reads

B = ¹ 3 A = ẑSB + o
g

Bg
zeig·rD , s3d

with Bg
z= igxAg

y− igyAg
x the Fourier component of the mag-

netic modulation.
Neglecting the spin of the electron and the Zeeman term,

the one-electron Hamiltonian of the 2DEG reads

H = fp + eAsr dg2/2m* + Vsr d = px
2/2m* + spy + eBxd2/2m*

+
e

m* o
g

eig·rsAg
xpx + Ag

ypy + eBxAg
yd +

e2

2m* o
g

Dge
ig·r

+ o
g

Vge
ig·r , s4d

where p is the momentum operator,Dg=og8sAg−g8
x Ag8

x

+Ag−g8
y Ag8

y d is the square term of the vector potential, and
Vg=−efg is the Fourier transform of the electric potential.

In the absence of both modulations, i.e., forBg
z=0 and

fg=0, the system has an energy spectrum of Landau levels
En="vcsn+1/2d. In the Landau gauge, the corresponding
wave functions are

kr un,kyl ; cn,ky
= Ly

−1/2 expsikyydfnsx + x0d s5d

with x0= l2ky, l2=" /eB, andfnsxd the normalized harmonic
oscillator function. Constraining the center of the cyclotron
orbit −x0 to be within the sample and using periodic bound-
ary condition alongy, gives the degeneracy of the Landau
levels asLxLy/2pl2=N, with Lx and Ly the sample dimen-
sions. We chooseN to be an integer.

A. Tight-binding treatment

In the presence ofweak1D modulation, when coupling
between different Landau levels due to modulation is negli-

gible, the Landau levels are broadened into bands and their
bandwidth oscillates with the uniform fieldB. The eigen-
states of the system and its energy spectrum can be calcu-
lated using perturbation theory13 or following a tight-binding
treatment.15

For 2D modulations, the situation is much more compli-
cated and in general the eigenstates cannot be the same as
those without modulation. A tight-binding method16 used by
Hofstadter6 to treat a 2DEG with strong electric modulation
but weak perpendicular magnetic field results in a
“butterfly”-type energy spectrum. Neglecting coupling be-
tween different Landau levels, we can express the eigenstates
as linear combinations of the states without modulation for
each Landau level.17 In the following, we will show that
using the same method, the electron states in the presence of
both electric and magnetic modulations can also be obtained.
Notice, however, that in this method the parametera is re-
placed by its inverse,18 i.e., in what follows we will havea
=F0/F=q/p.

For weakmodulations, i.e., forBg
z!B and Vg!"vc, we

neglect the coupling between Landau levels. Then from Eq.
(4) we obtain, for thenth Landau level, the matrix elements

kn,ky8uHun,kyl = Endky8,ky
+ o

g
Uge

−il 2gxs2ky+gyd/2dky8,ky+gy
,

s6d

whereUg is the effective potential

Ug = VgFnsQd + se"/m* dBg
zGnsQd + se2/2m* dDgFnsQd,

s7d

with Fnsxd=exps−x/2dLnsxd, Gnsxd=−s] /]xdFnsxd, Q= l2sgx
2

+gy
2d /2, andLnsxd the Laguerre polynomial of ordern.
From Eq.(6) we see that if only the modulation along the

x direction is present, i.e., forgy=0, there results only a level
broadening for each state but no coupling between different
states. As noticed earlier,9,15 the modulation along they di-
rection, however, introduces a coupling between the states
kn,kyu andkn,ky+Kyu. This leads to the folding of the energy
band and the formation of a Brillouin zone along they di-
rection. Then we can assume a wave function of the form:
in,zl=olclsn,zdun,ky+lKyl with l=1,2, . . . ,M for integer
M =Nay/Ly. The secular equationHin,zl=En,zin,zl then be-
comes

o
l

hHl8l − sEn,z − Enddl8ljclsn,zd = 0, s8d

with Hl8l=ogdl8,l+gy/Ky
Ug expf−il 2gxs2ky+sl8+ldKyd /2g.

For sinusoidal modulations and rational values ofa Eq. (8)
becomes an extension of Harper’s equation, see below.

For a rational value of

a = F0/F = 2pl2/axay = q/p s9d

with q andp integers and relative prime, theM-dimensional
matrix Hl,l8 satisfies the periodic conditionHl+p,l8+p=Hl,l8.
Due to the peculiar character of the harmonic function cen-
tered atx0= l2ky, this corresponds to an effective spatial pe-
riodicity of the Hamilitonian with periodpl2Ky=qax and
Bloch-type extensive states along thex direction emerge as a
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general property of the superlattice. It is convenient17 to in-
troduce a Bloch-type basisiun,s,kx,kyli with a quantum
numberkx, the momentum of electrons along thex direction,

iun,s,kx,kyli = sNxd1/2o
b=1

Nx

e−il 2kxfky+sbp+sdKygun,ky + sbp + sdKyl,

s10d

whereNx=Lx/qax is assumed an integer by choosingLx.
In this basis the eigenstate of the Hamiltonian reads

in, j ,kx,kyll = o
s=1

p

ussn, j ,kx,kydiun,s,kx,kyli. s11d

Since uss. . .d obeys the relation us+psn, j ,kx,kyd
=ussn, j ,kx,kyd, it is a periodic function ofs and the M
3M Hamiltonian matrix is reduced into ap3p one with
elements

fhn
spdskdgs8,s = o

g
d̃fgy/Kyg,s8−s

spd Un,g expf− il 2sgxky − gykx + sgxKy

+ gxgy/2dg, s12d

and

d̃fgy/Kyg,s8−s
spd = H1 if fgy/Kyg = s8 − s or s8 − s+ p

0 otherwise,
J

s13d

fgy/Kyg is gy/Ky modulo p, kxP f0,2p /qaxg, ky

P f0,2p /ayg, and s=1,2, . . . ,p. Each Landau level is split
into p minibands with energy denoted byEn,s

spdskx,kyd.
In this paper we will discuss in detail the energy spectrum

and the density of states(DOS) of a 2DEG in a constant
magnetic field B with a weak magnetic modulationB
=fem* vx cossKxxd+em* vy cossKyydgẑ and a weak electric
modulation of the potentialV=Vx cossKxx+wxd+Vy cossKyy
+wyd with wx, wy the phase differences between the respec-
tive components of the potential. The corresponding effec-
tive potential is found to be

Un = o
g

Un,ge
ig·r = VxFnsuxd

3cossKxx + wxd + VyFnsuydcossKyy + wyd

+ "vxGnsuxdcossKxxd + "vyGnsuydcossKyxd

+ exf1 − Fns4uxdcoss2Kxxdg + eyf1 − Fns4uydcoss2Kyydg,

s14d

with um= l2Km
2 /2 and em=m* vm

2 /4Km
2, m=x, y. With

En,s
spdskx,kyd;En,z the corresponding secular equation Eq.(8)

becomes

−
ey

2
Fns4uydfCl−2 + Cl+2g + hex + ey − exFns4uxdcosf2l2Kxsky

+ lKydg + "vxGnsuxdcosfl2Kxsky + lKydg

+ VxFnsuxdcosfl2Kxsky + lKyd − wxg − sEn,z − EndjCl

+
1

2
f"vyGnsuyd + VyFnsuydeiwygCl−1 +

1

2
f"vyGnsuyd

+ VyFnsuyde−iwygCl+1 = 0. s15d

For a=2l2KxKy=q/p rational, withp, q integers and rela-
tive prime, the exact solution of this difference equation is
obtained numerically by rewriting it in the form of a
matrix,6,17 of dimensionp, and solving the resulting eigen-
value problem with the details given above. It will be shown
below.

For a pure electric modulation Eq.(15) holds with the
terms~em and~vm set equal to zero while for a pure mag-
netic modulation the terms~Vm vanish; in either case we set
fm=0. Comparing these two cases, we see that Eq.(15)
should lead to the same overall spectrum if"vmGnsumd
=VmFnsumd provided we neglect the very small quadratic
terms~em. Examples of these spectra will be shown in Sec.
III.

B. Results for a integer

For a=2l2KxKy integer the dependence of the quantity
{…} in Eq. (15) on l drops out sincel is an integer. Then
Eq. (15) admits the exponential solutionsCl=C0 expsijld;
the resulting energy eigenvalue is

En
s1dskx,kyd = En + exf1 − Fns4uxdcos 2hg

+ eyf1 − Fns4uydcos 2jg + "vxGnsuxdcosh

+ "vyGnsuydcosj + VxFnsuxdcossh − wxd

+ VyFnsuydcossj + wyd, s16d

wherej=kx,
2Ky andh=ky,

2Kx. This is a simple sinusoidal
band as when only one modulation is present.8 The corre-
sponding eigenvectors are labeled with the additional quan-
tum number js0øjø2pd : ucnkyjl=C0op expsijldun,ky

+lKyl. The orthonormality condition givesj=kx,
2Ky and

C0=,sKy/Lxd1/2 by normalization.
If we set Vx=Vy=0 in Eq. (16), we see that the only

difference from the case of a pure electric 2D modulation is
the presence of the termsem, which are proportional tovm

2,
on the first line of Eq.(16); however, these terms are very
weak compared to those on the second and third line~vm.
Further, it is instructive to contrast the spectrum, given by
Eq. (16), for a pure electric 2D modulations"vm=0d with
that for a pure magnetic 2D modulationsVm=0d as done for
Eq. (15). We then see explicitly that the two spectra are the
same provided"vmGnsumd=VmFnsumd. This means that the
results of a pure electric modulation can be mimicked by
those of a pure magnetic one and vice versa. Notice, how-
ever, that this equivalence does not hold for those values of
um for which the factorsGnsumd or Fnsumd vanish since they
are not the same in both cases. The same conclusion was
reached in Ref. 12 with the corresponding spectrum evalu-
ated by first-order perturbation theory.

In the absence of modulations we have the discrete Lan-
dau levelsEn. In their presence Eq.(16) shows that these
levels are broadened into the bandsEn

s1dskx,kyd with explicit
sinusoidal dependence onkx and ky. If we neglect the very
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small terms~em on the first line and takewx=wy=0 for sim-
plicity, their bandwidth is given byDEnsux,uyd=2fVxFnsuxd
+VyFnsuyd+"vxGnsuxd+"vyGnsuydg and it oscillates with the
field B. The related velocity componentssvm=s1/
"ds]En

s1dsky,kxd /]kmd ,m=x,yd resulting from Eq.(16) are

vx = − sl2Ky/"dfVyFnsuydsinsj + wyd + "vyGnsuydsinj

− 2eyFns4uydsin 2jg, s17d

vy = − sl2Kx/"dfVxFnsuxdsinsh − wxd + "vxGnsuxdsinh

− 2exFns4uxdsin 2hg. s18d

The broadening of the Landau levels into bands that gives
rise to these velocity components has important conse-
quences for transport4 especially when the fine structure of
the exact energy spectrum is not resolved due to disorder.8

The main consequence is a nonvanishingdiffusivecontribu-
tion to the conductivity which is absent when the modula-
tions are not present.

In the following we will show that we can use the expres-
sion of the energy spectrum Eq.(16) and the velocity opera-
tors Eqs.(17) and (18) for a integer to approximately esti-
mate the physical properties of the 2DEG system for any
value ofa.

C. Density of states

The energy spectrum given byEn,s
spdskx,kyd is qualitatively

different from the unmodulated spectrum, given byEn, and
from the corresponding 1D modulation spectrum given by
En+FnsuxdcosKxx0. These differences are also reflected in
the density of states(DOS) defined by

DsEd = 2 o
n,s,kx,ky

dfE − En,s
spdskx,kydg. s19d

For a Lorenzian broadening of widthG, thed function in the
above equation should be replaced bys1/pdG /G2+fE
−En,s

spdskx,kydg2.
The result for a integer is obtained by replacing

En,s
spdskx,kyd by En,s

s1dskx,kyd in Eq. (19). For a 2D modulation
with rectangular symmetry, corresponding to Eq.(16), the
DOS becomes

DsEd = D0o
n=0

` E
0

2p

djhfVxFnsuxd + "vxGnsuxdg2 − fE − En

− hVyFnsuyd − "vyGnsuydjcosjg2j−1/2, s20d

whereD0=LyLx/p3,2. The radicant in Eq.(20) must be posi-
tive.

III. RESULTS AND DISCUSSION

A. In-phase, antiphase modulations

The results presented so far are valid for rectangular
modulations. However, as the various expressions and results
become simpler for square modulations, we will consider
only the latter. For a square modulation whereKx=Ky=K,

wx=wy=w, Vx=Vy=V, vx=vy=v, the secular Eq.(8), with-
out the square terms~em due to the magnetic modulation, is
Harper’s equation withw=0 if the modulations are in phase
andw=p if they are in antiphase; in these cases Eq.(8) takes
the form

Cl−1/2 + Cl+1/2 + Cl cossll2K2 + Kx0d − Clen,z = 0,

s21d

whereen,z=sEn,z−End / fVFnsud±"vGnsudg. The resulting en-
ergy spectrum is the “butterfly” spectrumen,s

spdskx,kyd
P f−2,2g modulated by an envelope function determined by
the modulations

En,s
spdskx,kyd = En + fVFnsud ± "vGnsudgen,s

spdskx,kyd, s22d

where the upper(lower) sign is for in-phase(antiphase)
modulations.

The spectrum fora integer and the corresponding wave
function were used previously8 as an approximation, for all
values of the magnetic field, and successfully described mag-
netotransport of a 2DEG in the presence of a 2D electric
modulation in the case that the fine structure of the exact
spectrum is not resolved. This approximation implies the re-
placement ofen,s

spdskx,kyd by en,1
s1dskx,kyd=cosj+cosh in Eq.

(22), which becomes

En,s
spdskx,kyd < En + fVFnsud ± "vGnsudgscosj + coshd.

s23d

In the following the resulting spectrum will be referred to as
approximate band structure or approximate spectrum.

The edge of the approximate band is the envelope of the
exact energy spectrum. Employing the asymptotic expres-
sions of the Laguerre polynomials forn@1, the correspond-
ing bandwidth is estimated as

DEnsud . 4sp2nud−1/4Ṽs1 + d̃2d1/2usins2Înu− p/4 + bdu,
s24d

with d̃=s"v / ṼdÎn/u, Ṽ=V±"v /4u and b

=arctanf±sṼ/"vdÎu/ng, so that the flat band condition isb
<mp+p /4−2Înu where n is the Landau index andu
=K2l2/2. For 1/4u!În/u or a@16np, which is valid for
typical parameters discussed in this paper, we can further

approximateṼ with V and d̃ with d=s"v /VdÎn/u. Because
b=p for a pure electric modulation andb=0 for a pure
magnetic modulation, the two modulations are phase shifted
and their interplay will influence the results of transport ex-
periments.

In Fig. 1 we plot the envelope function of the energy
spectrum for Landau levelsn=0 ton=10 as a function of the
cyclotron energy"vc. For the same modulation strengthV
="v0=0.1 meV the ratio between the band broadenings is
determined by the value ofd, cf. Eq. (24). For a perioda
=200 nm, cf. Figs. 1(a) and 1(b), the curved=1 is located
nearE<0.8 meV and the broadening due to magnetic modu-
lation is generally larger than that due to the electric one.
Decreasing the perioda, thed=1 curve is shifted to a higher
energy, higher than 3 meV fora=80 nm. This is the reason
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why the magnetic band broadening is narrower than the elec-
tric one for energies lower than 3 meV as shown in Figs. 1(c)
and 1(d).

Figure 2 illustrates the envelope function as in Fig. 1 with
both modulations having the same strengthV="v0
=0.1 meV and being in phase. In such a case, the modulation
of longer period results in a broader bandwidth. This is op-
posite to that obtained from the band broadening in a com-
mon superlattice and results from the presence of the strong
perpendicular magnetic field. In a common superlattice the
miniband appears as a result of electron tunneling between
adjacent quantum wells. The miniband width decreases when
the superlattice period increases since the tunnel coupling
weakens if the other parameters remain the same. However,
here the level broadening stems mainly from the perturbative
correction to the Landau energy of each state by the modu-
lation. In Fig. 3 we show the resulting bandwidth of the tenth
Landau level as a function of the modulation period for fixed
magnetic fieldB=0.5 T and the strength parameters shown
in the caption. We see that on the average the width increases
when the period increases, say by a factor ofs provideds is
such thatsa is not close to the point where the bandwidth
vanishes. On the right panels of Fig. 3 we show the constant
(j- or h-indepedent) term of the square of the velocity, given
by Eqs.(17) and(18), versus the modulation perioda for the
same magnetic field. If we neglect the very small terms~em,

this term is equal tofs,2Ky/"dVyFnsuyd+"vyKyGnsuydg2/2.
This term gives by far the dominant contribution to the dif-
fusive conductivity, given by the standard expression
smn

difs0d=sbe2/Vdozfzs1− fzdtsEzdvm
z vn

z, wheref is the Fermi-
Dirac function,vm

z the velocity, andt the relaxation time8

pertinent to a statez;hkx,ky,nj. With the integrals overkx

andky giving, for this term, just a constant prefactor near the
Fermi level, we see that this contribution is mainly deter-
mined by the bandwidth. By contrasting the left and right
panels one can see that this on-the-average increase of the
bandwidth with the period is mainly due to the behavior of
the contribution of the magnetic modulation to it. This be-
havior of the bandwidth and the antiphase between panels(a)
and (b) on the left, and panels(d) and (c) on the right, are
directly related to those of the Laguerre polynomials and
their derivatives that appear in the factorsFn andGn.

If both modulations are present, their relative contribution
to the energy broadening is determined by the value ofd.
The magnetotransport behavior of a 2DEG is directly related
to the level broadening at the Fermi energy. Because the
electric modulation dominates the low-energy broadeningand
the magnetic modulation dominates the high-energy one, the
transition from one energy range to another can be observed
if we shift the Fermi energy through these ranges by chang-
ing the electron density. In Fig. 4 we plot the bandwidth at
the Fermi energy for a perioda=80 nm as a function of the
perpendicular magnetic fieldB. The bandwidth oscillations,
resulting when only the electric modulation is present, are in
antiphase with those resulting when only the magnetic one is
present. This should show up in the commensurability oscil-
lations of the magnetoresistance as it does for 1D
modulations.13 If both modulations have the same strength,
the bandwidth oscillations(solid curves) are similar to those
due to the electric one at the lower electron density[Fig.
4(a)] and similar to those due to the magnetic one at the
higher electron density[Fig. 4(d)]. The nonsmooth behavior
of the bandwidth, when the fieldB is varied, reflects that of

FIG. 1. Approximate band structure, forn=0, . . . ,10, as a func-
tion of "vc for square electric[(a) and(c)] or magnetic[(b) and(d)]
modulations of long periodsa=200 nmd, in (a) and (b), and short
periodsa=80 nmd in (c) and(d). The crossings of the dotted curves
with the Landau levels give the asymptotic flat-band positions and
the dashed line, in panels(a) and (b), is thed=1 curve.

FIG. 2. The same as in Fig. 1 for both electric and magnetic
in-phase modulations of long(a) and short(b) period. The thin solid
curves show the Fermi energy for temperatureT=1 K and electron
densityne=1011 cm−2.

FIG. 3. Left panels: The approximate bandwidthD of the 10th
Landau level as a function of the modulation perioda at magnetic
field B=0.5 T for modulation strengths(a) V=0.1 meV and"v
=0, (b) V=0 and "v=0.1 meV, and(c) V="v=0.1 meV. Right
panels: The constant term of the square of the velocity in arbitrary
units, given by Eqs.(17) or (18), versus the modulation perioda at
magnetic fieldB=0.5. Panels(d), (e), and(g) correspond to panels
(a), (b), and(c), respectively. The two periods used in Figs. 1 and 2
are 80 nm, indicated by the triangle, and 200 nm.
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the Fermi level, as shown, for instance, in Fig. 2. Upon
changing the electron density the Fermi level crosses differ-
ent Landau levels in a nonsmooth manner, cf. Fig. 2. For
higher densities and/or longer periods more Landau levels
are occupied and the oscillations are much smoother.

In Fig. 5 we plot the exact energy spectrum of the second
Landau level, in units of"vc, as a function of"vc for (a)
only an electric modulation,(b) only a magnetic modulation,
and(c) both electric and magnetic modulations all of period
a=80 nm and strengthV="v=0.1 meV. The positions of

a=q/p=2,3,4,5 are marked by the dashed vertical lines. The
exact spectrum is the same as Hofstadter’s spectrum modu-
lated by the envelope function(dotted curves in Fig. 5). For
a rational value ofa=q/p the spectrum is composed ofp
minibands which touch each other fora half integer orp
=2. Fora integer the spectrum is the sinusoidal band given
by Eq. (23). The envelope function, given by the dotted
curves, is the band edge of thea integer spectrum[Eq. (23)]
used here for all values ofa. A negligible shift and the modi-
fication of the spectrum, due to the terms~em, are not shown
in the figures.

In Fig. 6 we show the exact and approximate DOS for
in-phase modulations and various values ofa. The other pa-
rameters are specified in the caption. The results coincide, as
they should, fora=2. Notice the horizontal scale and how a
small level broadeningG closes the gaps of the exact DOS in
panels(b)–(d).

B. Out-of-phase modulations

For arbitrary phase difference between the two modula-
tions, the secular equation cannot be written simply as Harp-
er’s equation but as a more general one, cf. Eq.(15). How-
ever, the energy spectrum fora integer is still the envelope
of the exact spectrum and the asymptotic bandwidth is

DEnsud = 4Vsp2nud−1/4f1 + sd2 − 1dsin2s2Înu− p/4d

− d cosf coss4Înudg1/2, s25d

where d=s"v /Vdsn/ud1/2. At the Fermi energy we have
dsEfd=akF"v / s2pVd. If d=1 andw=p /2, we get a nearly
constant bandwidth 4Vsp2nud−1/4.

In Fig. 7 we plot the energy of then=0, . . . ,10 Landau
levels as a function of the magnetic field for equal-strength
s0.1 meVd modulations, of period 80 nm, that are out of
phase byp /2. The dotted curve, i.e.,d=1, shows a constant
bandwidth that, as explained above, leads to a washout of the
commensurability oscillations. The thin solid curve shows
the Fermi level atT=5 K.

The amplitude of the bandwidth oscillations varies with
the phase difference between the two modulations and/or
with their relative strength. In Fig. 8 we plot the bandwidth

FIG. 4. The approximate bandwidth of the Landau level closest
to the Fermi level as a function of the magnetic field for different
electron densitiesne=0.5 (a), 1.0 (b), 2.0 (c), and 5.031011 cm−2

(d). The solid curves denote broadening with both modulations
present and of the same strength. The dotted(dashed) curves show
the broadening when only the electric(magnetic) modulation is
present.

FIG. 5. Exact and approximate(a integer) spectrum, in units of
"vc, versus the cyclotron energy"vc for then=2 Landau level and
a perioda=80 nm. The upper panel is for an electric modulation,
the middle one for a magnetic one, and the bottom one for both
modulations present. Notice the continuous bands fora integer: In
this case the exact, numerically obtained bandwidth coincides with
the one obtained analytically.

FIG. 6. Broadened DOS for the exact(thin solid curves:G
=0.01 K, thick curves:G=0.5 K) and thea integer spectrum ap-
proximation (dotted curves:G=0.01 K, dashed curves:G=0.5 K).
The magnetic field is such thata=2 in. (a), a=7/3 in. (b), anda
=5/2 in. (c). V="v0=0.1 meV.
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for equal modulation strengths,V="v=0.1 meV, and differ-
ent phases. As Fig. 8(b) shows, the amplitude can be greatly
decreased whenf=p /2 and this implies a washout of the
commensurability oscillations. Different from the in-phase or
antiphase case(Fig. 4), we notice that the bandwidth in-
creases more rapidly with magnetic field and that it does not
reach zero at specific values ofB. In Fig. 9 we show again
the bandwidth for modulations phase shifted byp /2 but with
different relative strengths apart from panel(c), in which the
two strengths are equal, and the amplitude of the oscillations
minimal.

Finally, in Fig. 10 we plot the exact and approximate
spectra of then=2 Landau level, as a function of the mag-
netic field, for various phase differences between the two
modulations as indicated. The approximate result, fora in-
teger, is shown by dotted curves and is again the envelope
function of the exact spectrum as for in-phase modulations.

IV. CONCLUSIONS

We studied in detail the band structure of a 2DEG in the
presence of weak 2D electric and magnetic modulations as
function of an applied perpendicular magnetic fieldB. The
tight-binding description shows a Hofstadter-type spectrum
with an envelope function that is determined by the strengths

of the modulations. This envelope coincides with the spec-
trum obtained from the Harper-type equation fora=F0/F
integer, whereF is the flux per unit cell. Fora integer the
analytical spectrum Eq.(16) coincides with the one obtained
from the numerical solution of Eq.(15). As an approxima-
tion, one can use the spectrum fora integer for all magnetic
fields if the small gaps of the exact spectrum are closed due
to disorder.8 The flat-band condition and the bandwidth are
then found from the approximate bandwidth for largen.

For a=q/p rational, the gaps in the exact spectrum, for
the usual sinusoidal 2D modulations, are small and nearly
close when a small level broadening is included in the cal-
culation of the DOS whether both modulations are present or
only the electric one.8 The value ofG needed to close the
gaps depends on the modulation strength. For instance, with
Vx=Vy=0.5 meV, a widthG=1.1 K was necessary.8 In both
cases,G is quite small. Accordingly, the very interesting fine
structure of the spectrum may be very difficult to observe.

As discussed in the text and illustrated in Fig. 3, the spec-
trum for a integer and a pure electric modulation is in gen-
eral equivalent to that of a pure magnetic modulation if we
neglect the very small terms~em. The same conclusion was
reached in Ref. 12 for a perurbative evaluation of the spec-

FIG. 7. Band structure with both modulations present and phase
shifted byf=p /2. The Fermi level at temperatureT=5 K is also
indicated by the thin solid curve. Thed,1 curve shows a constant
bandwidth leading to a washout of the commensurability oscilla-
tions of the diffusive contributions to the resistivity.

FIG. 8. Bandwidth at the Fermi energy as a function of B for
different phasesf=p /4 (a), f=p /2 (b), andf=p (c) between the
two modulations.

FIG. 9. The same as in Fig. 7 for different electric modulation
strengthsV, as indicated, and fixed magnetic one"v0=0.1 meV at
phase shift ofp /2.

FIG. 10. Exact and approximate(dotted curves) spectrum for
various phase differences between the two modulationsf=p /4 (a),
f=p /2 (b), f=3p /4 (c), andf=p (d).
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trum. The same analogy, though less explicitly, applies to the
exact spectrum obtained from Eq.(15) and shown in Fig. 5.

In line with our previous study,8 for other kinds of surface
superlattices, e.g., hexagonal or trigonal, the results are simi-
lar to those presented here even when we include cross terms
~VxVy cossKxxdcossKyyd in the modulation potential.

The oscillations of the bandwidth with the magnetic field
B, due to only an electric modulation, are in antiphase with
those due to only a magnetic modulation. If both modula-
tions are present, an additional parameter is the phase be-
tween them and the situation is more complex. The relative
importance of the two modulations can be estimated by the
parameter d, which is determined by the modulation
strengths and the electron density. The electric modulation
dominates ford,1 and the magnetic one ford.1. By
changing the electron density, the Fermi energy can be

shifted from thed,1 regime to thed.1 one. Alternatively,
one can change the relative strengths between the electric
and magnetic modulations to tune the value ofd which sub-
sequently will influence the magnetoresistance. Similar to
the case of 1D modulations,13 a transition between the two
regimes occurs ford=1 and the commensurability oscilla-
tions of the diffusive contributions to the resistivity disappear
if the two modulations are phase shifted byp /2.
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