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Band structure of a two-dimensional electron gas in the presence of two-dimensional electric
and magnetic modulations and a perpendicular magnetic field
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Two-dimensional2D) periodic electric modulations of a 2D electron gas split each Landau level into the
well-known butterfly-type spectrum described by a Harper-type equation multiplied by an envelope function.
This equation is slightly modified for 2D magnetic modulations but the spectrum remains qualitatively the
same. The same holds if both types of modulations are present. The modulation strengths do not affect the
structure of the butterfly-type spectrum, they only change its scale or its envelope. The latter is described by the
ratio « of the flux quantunh/e to the flux per unit cell. Exact numerical and approximate analytical results are
presented for the energy spectrum as a function of the magnetic field. For inteder internal structure
collapses into a band for all cases. The bandwidth at the Fermi energy depends on the modulation strength, the
electron density, and, when both modulations are present, on the phase difference between them. In the latter
case if the modulations havera 2 phase difference, the bandwidth at the Fermi energy is nearly independent
of the magnetic field and the commensurability oscillations of the diffusive contribution to the resistivity
disappear.
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[. INTRODUCTION explained by earlier semiclassical theod€Bhe high resis-
tivity peaks observed foer integer were due to collisional

In the last 15 years the magnetotransport of the twocontributions and show up only for short-period modula-
dimensional electron ga@DEG), subjected to periodic po- tions.

tential modulations, has attracted considerable experimental |n view of recent work on 1D magnetic modulatiotfs
and theoretical attention. For one-dimensiofid)) modula- it is of interest to present a tight-binding treatment of 2D
tions oscillations of the magnetoresistivity tenggy, have  magnetic modulations in order to see the similarity and the
been observetiat low magnetic field®, distinctly different  differences between the former and the latter as well as be-
in period and temperature dependence from the usualveen 2D electric and magnetic modulations. So far we are
Shubnikov-de Haas ones observed at higheThese oscil-  aware only of the work of Ref. 12 which considered only a
lations reflect the commensurability between two length2p magnetic modulation and did not show any spectra as a
scales? the cyclotron diameter at the Fermi leveR2 function of a=q/p. In addition, we would like to present
=2\2mngt?, wheren, is the electron density, the magnetic  such a treatment when both types of modulations are present.
length, anda the period of the potential modulation. The reason for considering the latter case is that from experi-
The situation is similar but less clearcut for 2D electric mentally known methods of producingraagneticmodula-
modulations from both a theoretiédland an experiment’aI tion one expects that the magné?ic[)r superconducting
point of view. In general, for 2D modulations a tight-binding stripes!! periodically placed on top of a 2DEG, also act like
treatment shows that each Landau level exhibits the wellelectrical gates and induce aslectric modulation of the
known butterfly-type spectrum described by a Harper-typ@DEG. As shown in our previous work on transpgdend the
equation. For sinusoidal modulations the energy spectrunmelated band structuré, the phase difference between the
resulting from the numerical solution of this equation showstwo 1D modulations can have important consequences and
when the energ§ is measured in units of ,F,(u,), u=X,y,  even suppress th&eissoscillations; this prediction was later
with V,, the modulation potential ang(u,) the Laguerre confirmed experimentalBf We show here that similar ef-
polynomial, a nontrivial structure as a function@f®/®d,,  fects must occur for 2D modulations with7a/2 phase dif-
where®,=h/e is the flux quantum an@ the flux per unit ference since the bandwidth at the Fermi energy is nearly
cell: For a=p/q rational, with g, p integers and relative independent of the magnetic field and the commensurability
prime, each Landau level is split info subband$.To our  oscillations of the diffusive contribution to the resistivity dis-
knowledge, despite various effoftthere is no conclusive appear. Further, as for 1D modulatiofighe bandwidth at
experimental evidence for this structure yet presumably bethe Fermi energy for a purely electric modulation oscillates,
cause the small gaps between these subbands are closed @dse function of the magnetic field, amtiphasewith that for
to disorder in samples of not exceptionally high mobilities.a purely magnetic one. In addition, we show how a small
By neglecting those small gaps we recently accodhted  broadening can close the very small gaps in the density of
the observetloscillations in the amplitude of the commen- states forae=q/p rational.
surability oscillations, as a function of the flux through the In the next section we derive the relevant Harper-type
unit cell of the 2D modulation lattice, that could not be fully equations and solve them exactly, foerational, and analyti-
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cally, for « integer, to obtain the one-electron eigenfunctionsgible, the Landau levels are broadened into bands and their
and eigenvalues. We also present the density of states and thandwidth oscillates with the uniform fielB. The eigen-
bandwidth at the Fermi energy. Various numerical results arstates of the system and its energy spectrum can be calcu-
presented in Sec. lll and concluding remarks in Sec. IV. lated using perturbation thedfor following a tight-binding
treatment®
Il. FORMALISM For 2D modulations, the situation is much more compli-

We consider a 2DEG in théx,y) plane under a perpen- cated apd in general .the eig_ensta?es. cannot be the same as
dicular magnetic field, modulated weakly and periodically those without modulation. A tight-binding methiGdised by
along thex andy directions, and accompanied by a 2D elec-Hofstadte? to treat a 2DEG with strong electric modulation
tric modulation of the same period. In Fourier space the totaPUt Wweak perpendicular magnetic field results in a

electric and magnetic fields can be expressed, respectivelyputterfly’-type energy spectrum. Neglecting coupling be-

by a vector potential ween different Landau levels, we can express the eigenstates
as linear combinations of the states without modulation for
A(r) =%, A!’feig"+§/<Bx+2Ageig") (1)  each Landau levéf In the following, we will show that
g g using the same method, the electron states in the presence of

both electric and magnetic modulations can also be obtained.
Notice, however, that in this method the parameids re-
H(r)=>, %eig-r_ 2) placed by its inversé i.e., in what follows we will havex
g =0,/ P=q/p.

For weakmodulations, i.e., foBj<B and V,<#%w., we
neglect the coupling between Landau levels. Then from Eq.
(4) we obtain, for thenth Landau level, the matrix elements

and by a scalar potential

Herea,=2n/K, anda,=2m/K, are the lattice periods of the
imposed modulations ang=XnK,+ynK, is the corre-
sponding reciprocal lattice vector with, n, integers. For
V-A=0, which can be satisfied in most practical situations, (n,k§|H|n,ky> = En%kﬂ_z Uge—ilzgx(Zky+gy)/2% ay
we haveAg,+Ajg,=0 and the magnetic field reads ' g Y

B=V X A:2<B+2 Béeig'f), 3 (6)
9 whereUy is the effective potential
with Bg=ig,Ay—igyAy the Fourier component of the mag- Ug = VgFa(Q) + (€h/m* )BZG(Q) + (€/2m* )DgFr(Q),
netic modulation.
Neglecting the spin of the electron and the Zeeman term, ()

the one-electron Hamiltonian of the 2DEG reads with Fp(x)=exp(-x/2)L,(X), Gn(X)=—(/ IX)Fn(X), Q:|2(g)2(

H=[p+eA(r)]&/2m* + V(r) = p)2(/2m* + (py+ eBx2/2m* +g§)/2, andL,(x) the Lague_rre polynomial of qrder.
o 2 dI_:rortr_1 Eq.(6) we stee_ tha; if or(l)lyttr:we modull?nonlalor:g thle
€ N gr ax y e igr x direction is present, i.e., fa,=0, there results only a leve
" m* zg: Y (Aghy+ Agby + eBXAé) ¥ 2m*§g: Dge broadening for each state bL)J/t no coupling between different
. states. As noticed earliet® the modulation along thg di-
+ Vg€, (4) rection, however, introduces a coupling between the states
g (n,k,| and(n,k,+K,|. This leads to the folding of the energy
where p is the momentum operatongzﬁg,(A;_g, ;, band an_(ld_hthe formation of a Brillouin z]?ne glongftj;n}eii-f .
+AY_AY)) is the square term of the vector potential, andrectlo_n. en e caf essume a wave unction of the form:
g-9'"g"’ . - ) In,0)==\c\(n,)In,k,+NK,) with A\=1,2, ... M for integer
Vy=—€gy is the Fourier transform of_ the e_Iectrlc potential. =Nay/L,. The secular equatiorn,)=¢, Jin, ¢ then be-
In the absence of both modulations, i.e., Bﬁzo and  omes '
$4=0, the system has an energy spectrum of Landau levels
E,=fw(n+1/2). In the Landau gauge, the corresponding E{Hm—(sng—En)ém}ck(n,g):o, (8)
wave functions are A

(rln,ky) = Uk, = L;1/2 explikyy) (X + Xo) (5)  With - =Zg0y gk g ex;{—ilzgx(Zky+()\’ +MK,)/2].
For sinusoidal modulations and rational valuesaoE(g. (8)
with xo=1%k,, 12=7i/eB, and ¢,(x) the normalized harmonic becomes an extension of Harper's equation, see below.
oscillator function. Constraining the center of the cyclotron For a rational value of
orbit —x, to be within the sample and using periodic bound- _ a2 _
ary condition alongy, gives the degeneracy of the Landau a=Oof® =2ml%aa,=a/p ©)
levels aSLXLy/27T|2:N, with L, andL, the sample dimen- with q andp integers and relative prime, thd-dimensional
sions. We choos@l to be an integer. matrix H, ) satisfies the periodic conditidf, ., +p=H) \'-
Due to the peculiar character of the harmonic function cen-
tered at><O:I2ky, this corresponds to an effective spatial pe-
In the presence ofveak 1D modulation, when coupling riodicity of the Hamilitonian with periodplzKy=qaX and
between different Landau levels due to modulation is negliBloch-type extensive states along thdirection emerge as a

A. Tight-binding treatment

155312-2



BAND STRUCTURE OF A TWO-DIMENSIONAL..

general property of the superlattice. It is convenfiétd in-
troduce a Bloch-type basifin,s,k, k) with a quantum
numberk,, the momentum of electrons along tkeirection,

In,s,k ky> - )1/22 =il 2k Lk +(Bp+s)Ky]|n,ky +(Bp+ s)Ky>,

(10)

whereN,=L,/qa, is assumed an integer by choosing
In this basis the eigenstate of the Hamiltonian reads

P

In,j. ke k) = 2 ugn,j ke kllIn s kekyy . (12)
=1

Since ug...) obeys the relation ug(n,j,k Ky

=uq(n,j,ky,ky), it is a periodic function ofs and the M

X M Hamiltonian matrix is reduced into pXp one with

elements

[hgp)(k)]s’,s = %Bégi/}(y],sl-sun,g eXF{_ il 2(gxky - gykx + Sg<Ky

+0:9,/2)], (12)
and
~0) {1 if [g/K,]=8"-sors' —-s+p
9/KJs'=s | 0 otherwise,
(13
[gy/Ky] is g/K, modulo p, k.e[0,2n/qa], k

€[0,2m/a/], ands=1,2,... p. Each Landau level is split
into p minibands with energy denoted sz)zm(kx,ky)

PHYSICAL REVIEW B 70, 155312(2004)

+ [ﬁwy n(uy)+VF l-»Iy y]C)\ 1t [hwy n(uy)

+ VyFn(uy)e"‘Py]CHl =0 (15

For a=2I2K,K,=q/p rational, withp, g integers and rela-
tive prime, the exact solution of this difference equation is
obtained numerically by rewriting it in the form of a
matrix &1 of dimensionp, and solving the resulting eigen-
value problem with the details given above. It will be shown
below.

For a pure electric modulation E@l5) holds with the
termsxe, and=w, set equal to zero while for a pure mag-
netic modulation the termsV,, vanish; in either case we set
¢,=0. Comparing these two cases, we see that (&)
should lead to the same overall spectrum#ib,Gp(u,)
=V,Fq(u,) provided we neglect the very small quadratic
termsexe,. Examples of these spectra will be shown in Sec.
Il

B. Results for e integer

For a:2I2KXKy integer the dependence of the quantity
{...} in Eq. (15) on \ drops out since\ is an integer. Then
Eg. (15 admits the exponential solutior®, =CyexpiéN);
the resulting energy eigenvalue is

ED(koky) = Ep + 61 —Fy(4u,)cos 2]
+¢[1 —F,(4uy)cos %] + w,G,(uy)cosn
+hw,Gp(uy)cosé + V,Fy(u)cod 7 — ¢y)
+VyFq(uy)codé+ ¢y), (16)
where £=k %K, and =k €?K,. This is a simple sinusoidal

In this paper we will discuss in detail the energy spectrumband as When only one modulation is presefihe corre-

and the density of statg®OS) of a 2DEG in a constant
magnetic field B with a weak magnetic modulatio3
=[em* w, cogK,x) +em* w, codK,y)]z and a weak electric
modulation of the potentiaV/=V, codK,x+¢,) +V, cogK,y

sponding eigenvectors are labeled with the additional quan-
tum  number &0=<é<2m): |¢m&§> CoZp explién)|n, k,
+\Ky). The orthonormality condition giveg= k€2K and
Co= €(K /L)Y? by normalization.

+¢,) with ¢,, ¢, the phase differences between the respec- If we setV,=V,=0 in Eq. (16), we see that the only
tive components of the potential. The corresponding effecdifference from the case of a pure electric 2D modulat|0n is

tive potential is found to be

Un= 2 Up g€ = V,Fo(uy)
g

X oKX+ @) + VyFn(uy) COS(Kyy + <Py)

+ hw,Gp(Uy) COLK,X) + frow, Gy (Uy) cOL K X)

+ €1 - F,(4u)cod2Kx)] + 1 - F,(4u,)cog 2K, y)],
(14

with u,=1?%K%/2 and e,=m* w’/4K%, p=x, y. With
S(p (K ky) 5n,§ the correspondmg secular equation E8).
becomes

€,
- _ZYFn(4Uy)[C)\—2 +Chipl +{e+ €y~ ean(4Ux)C0i2|2Kx(ky

+NKy)] + A, Gn(U) o 12K (ky + NKy)]
+ ViFn(U) cod12Ky(ky + NKy) = ¢, ] = (En .~ En)IC,

the presence of the termeg, which are proportional tooﬂ

on the first line of Eq(16); however, these terms are very
weak compared to those on the second and third ding
Further, it is instructive to contrast the spectrum, given by
Eqg. (16), for a pure electric 2D modulatioffiw,=0) with

that for a pure magnetic 2D modulati¢w,=0) as done for

Eqg. (15). We then see explicitly that the two spectra are the
same providediw,G,(u,)=V,Fy(u,). This means that the
results of a pure electric modulation can be mimicked by
those of a pure magnetic one and vice versa. Notice, how-
ever, that this equivalence does not hold for those values of
u, for which the factorsG(u,) or F,(u,) vanish since they
are not the same in both cases. The same conclusion was
reached in Ref. 12 with the corresponding spectrum evalu-
ated by first-order perturbation theory.

In the absence of modulations we have the discrete Lan-
dau levelsk,. In their presence Eq.16) shows that these
levels are broadened into the barﬁi@(kx,ky) with explicit
sinusoidal dependence déq andk,. If we neglect the very
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small termsxe,, on the first line and take,=¢,=0 for sim-  ¢,=¢y=¢, V,=V,=V, o,=wy=w, the secular Eq8), with-
plicity, their bandwidth is given byAE(uy, uy)=2[V,F(uy) out the square termse, due to the magnetic modulation, is
+V,Fp(u) +20,Gp(uy) +hwyGy(uy)] and it oscillates with the  Harper’s equation withp=0 if the modulations are in phase
field B. The related velocity componentfv,=(1/ ande=m ifthey are in antiphase; in these cases @ takes

ﬁ)(aggl)(k kd!1dk,), u=x,y) resulting from Eq(16) are the form
22 _ —
0= = (PK BV Fo(U,)SINE+ @) + i, GrlUy)Sin & Cr-1/2+ Cri/2+ C, COSMKT+ Kxg) = Crén = 0,
- 26/ (du,)sin 2¢], (17) @D
wheree, .= (&, .~ Ep)/[VF,(U) £hwG,(u)]. The resulting en-
vy = = (12K B[V F o(U)Sin(7 = @) + i, Gp(uy)sin ergy spectrum is the “butterfly” spectrurrtﬁfg(kx,ky)
— 26 F(4u,)sin 27)]. (18) e [-2,2] modulated by an envelope function determined by

the modulations
The broadening of the Landau levels into bands that gives ®) _ ®
rise to these velocity components has important conse- Enskoky) =En+ [VFy(U) £ h0Gh(u)]ens(koky),  (22)

guences for transpdrtaspeciglly when the fine structure of where the upperlower) sign is for in-phase(antiphasg
the exact energy spectrum is not resolved due to dis8rdermodulations.

The main consequence is a nonvanishiiffusive contribu- The spectrum fow integer and the corresponding wave
tion to the conductivity which is absent when the modula-fynction were used previouhyas an approximation, for all
tions are not present. values of the magnetic field, and successfully described mag-

_ In the following we will show that we can use the expres-netotransport of a 2DEG in the presence of a 2D electric
sion of the energy spectrum EG.6) and the velocity opera- modulation in the case that the fine structure of the exact
tors Eqgs.(17) and (18) for « integer to approximately esti- spectrum is not resolved. This approximation implies the re-
mate the physical properties of the 2DEG system for any,jacement ofegp;(kx,ky) by (1)(kx,ky):COS§+COS77 in EqQ.

, €1
value ofa. (22), which becomes

EP) Ky ky) = Eq + [VF(U) + 0G(W)](cosé + cos 7).

The energy spectrum given tﬁ%f’;(kx,ky) is qualitatively (23
different from the unmodulated spectrum, givenBy and  In the following the resulting spectrum will be referred to as
from the corresponding 1D modulation spectrum given byapproximate band structure or approximate spectrum.
E,+F,(u)cosK,x,. These differences are also reflected in  The edge of the approximate band is the envelope of the

C. Density of states

the density of state€DOS) defined by exact energy spectrum. Employing the asymptotic expres-
sions of the Laguerre polynomials foe>1, the correspond-
DE)=2 > JE-ERKK)]. (190 ing bandwidth is estimated as
NS, Ky.ky

_ -1/ “R\L2 i 911y —
For a Lorenzian broadening of widih the 6 function in the AE(u) = 4(m*nu) 4\7(1 + 5 sin2Vnu= /4 + )],
above equation should be replaced bY/=)I'/T?+[E (24)
_cp 2 ~ -~ ~
g”vs(kx'ky)] . . . . . with S5=(fwl/V)\n/u, V=Vz+hw/4u and B
The result for « integer is obtained by replacing ~ — -
Eﬂ(kx,ky) by 8511)(kx,k) in Eq. (19). For a 2D modulation =arctafx(V/fhw)yu/n], so that the flat band condition 8

S

with rectangular symmetry, corresponding to Ef6), the zrr21772-+7-r/4—2\s‘nu where n is the Landau index andi
DOS becomes =K44/2. For 1/41<n/u or a>16n, which is valid for

typical parameters discussed in this paper, we can further

approximateV with V and 8 with 8=(%w/V)\n/u. Because

B= for a pure electric modulation an@=0 for a pure

magnetic modulation, the two modulations are phase shifted

—{V,Fn(uy) - fiw,Gp(u,)}cos£ 12, (200 and their interplay will influence the results of transport ex-
- 2 ; i . periments.

){/iv\?ee.reDo LyLd w2 The radicant in Eq(20) must be posi In Fig. 1 we plot the envelope function of the energy
spectrum for Landau levels=0 ton=10 as a function of the
cyclotron energyiw.. For the same modulation strength

. RESULTS AND DISCUSSION =hwy=0.1 meV the ratio between the band broadenings is
determined by the value of, cf. Eq. (24). For a perioda
=200 nm, cf. Figs. @®@ and Xb), the curves=1 is located

The results presented so far are valid for rectangulanearE~0.8 meV and the broadening due to magnetic modu-
modulations. However, as the various expressions and resulistion is generally larger than that due to the electric one.
become simpler for square modulations, we will consideDecreasing the periog, the 5=1 curve is shifted to a higher
only the latter. For a square modulation whétg=K,=K,  energy, higher than 3 meV f@=80 nm. This is the reason

*® 2

D(E)=Do>, | d&[ViFn(ly) +hwGy(u) >~ [E-E,
n=0J0

A. In-phase, antiphase modulations
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FIG. 3. Left panels: The approximate bandwidthof the 10th
Landau level as a function of the modulation per@adt magnetic
field B=0.5 T for modulation strength&) V=0.1 meV andhiw
=0, (b) V=0 andiw=0.1 meV, and(c) V=fw=0.1 meV. Right
panels: The constant term of the square of the velocity in arbitrary
C§1nits, given by Eqgs(17) or (18), versus the modulation periadat
magnetic fieldB=0.5. Panelgd), (e), and(g) correspond to panels
(a), (b), and(c), respectively. The two periods used in Figs. 1 and 2
are 80 nm, indicated by the triangle, and 200 nm.
why the magnetic band broadening is narrower than the elec-
tric one for energies lower than 3 meV as shown in Figs) 1 this term is equal tc[((fzKy/h)VyFn(uy)+hwyKyGn(uy)]2/2.

and 1d). . . / Yoy .
Figure 2 illustrates the envelope function as in Fig. 1 withTh'.S term g|ves_py far Fhe dominant contribution to the d.'f'
fusive conductivity, given by the standard expression

both modulations having the same strengif=7wg - . .
=0.1 meV and being in phase. In such a case, the modulatio?iili(o):(ﬁe,zlngéfi(l_fi)T('_Eé)Uivr{* wheref is the Fermi-
of longer period results in a broader bandwidth. This is op-D'ra_C function, v, the velocity, an_dr the _relaxatlon tim
posite to that obtained from the band broadening in a comPertinent to a statg={k,,k,,n}. With the integrals ovek,

mon superlattice and results from the presence of the strorff?d%y 9iving, for this term, just a constant prefactor near the
perpendicular magnetic field. In a common superlattice th&€mi level, we see that this contribution is mainly deter-
miniband appears as a result of electron tunneling betweefined by the bandwidth. By contrasting the left and right
adjacent quantum wells. The miniband width decreases whef@n€lS one can see that this on-the-average increase of the
the superlattice period increases since the tunnel coupling@ndwidth with the period is mainly due to the behavior of

weakens if the other parameters remain the same. Howevdf€ contribution of the magnetic modulation to it. This be-
here the level broadening stems mainly from the perturbativ@@vior of the bandwidth and the antiphase between paagls
correction to the Landau energy of each state by the modi@nd (b) on the left, and paneled) and(c) on the right, are
lation. In Fig. 3 we show the resulting bandwidth of the tenthdirectly related to those of the Laguerre polynomials and
Landau level as a function of the modulation period for fixedteir derivatives that appear in the factéfsandG,.
magnetic fieldB=0.5 T and the strength parameters shown If both modulations are present, th.e|r relative contribution
in the caption. We see that on the average the width increas&@ the energy broadening is determined by the valu.of
when the period increases, say by a factos pfovideds is The magnetotransport behavior of a ZDEG is directly related
such thatsa is not close to the point where the bandwidth O the level broadening at the Fermi energy. Because the
vanishes. On the right panels of Fig. 3 we show the constarflectric modulatlon do_mmates_the Iow-ene_rgy broadeningand
(¢ or -indepedentterm of the square of the velocity, given the mggnetlc modulation dominates the high-energy one, the
by Eqs.(17) and(18), versus the modulation periadfor the transition from one energy range to another can be observed

same magnetic field. If we neglect the very small terras, if we shift the Fermi energy through these ranges by chang-
ing the electron density. In Fig. 4 we plot the bandwidth at

the Fermi energy for a periog=80 nm as a function of the
perpendicular magnetic field. The bandwidth oscillations,
resulting when only the electric modulation is present, are in
antiphase with those resulting when only the magnetic one is
present. This should show up in the commensurability oscil-
lations of the magnetoresistance as it does for 1D

FIG. 1. Approximate band structure, for0, ...,10, as a func-
tion of w, for square electri¢(a) and(c)] or magnetid(b) and(d)]
modulations of long perioda=200 nm, in (a) and (b), and short
period(a=80 nm) in (c) and(d). The crossings of the dotted curves
with the Landau levels give the asymptotic flat-band positions an
the dashed line, in panels) and(b), is the =1 curve.

E (meV)

0
8
6
4
2
0
0.

o5 10 1s 08 05 10 1 _ \
@) fio_(meV) (o) fiw_(meV) modulations® If both modulations have the same strength,

the bandwidth oscillationésolid curve$ are similar to those
FIG. 2. The same as in Fig. 1 for both electric and magneticdue to the electric one at the lower electron dengiig.
in-phase modulations of lon@) and shor{b) period. The thin solid  4(&)] and similar to those due to the magnetic one at the
curves show the Fermi energy for temperatlirel K and electron  higher electron densitjFig. 4d)]. The nonsmooth behavior
densityng,=10" cm2, of the bandwidth, when the fiel is varied, reflects that of
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E o.10f =0.01 K, thick curvesI'=0.5 K) and the« integer spectrum ap-
< 10.10 proximation (dotted curvesi'=0.01 K, dashed curved!=0.5 K).
0.05 ~0.05 The magnetic field is such that=2 in. (a), @=7/3 in. (b), anda
! s =5/2in.(c). V=hwy=0.1 meV.
0.00 : .

04 05 06 07 08 09 1.0

(d) B(T) a=q/p=2,3,4,5 are marked by the dashed vertical lines. The
exact spectrum is the same as Hofstadter’'s spectrum modu-
fated by the envelope functiaidotted curves in Fig. 5 For

(©

FIG. 4. The approximate bandwidth of the Landau level closes

to the Fermi level as a function of the magnetic field for dlﬁerenta rational value ofa=q/p the spectrum is composed pf

electron densities,=0.5 (a), 1.0 (b), 2.0 (c), and 5.0< 10** cm? L ' ;
(d). The solid curves denote broadening with both modulationsmlmb&mds which touch each other far half integer orp

present and of the same strength. The dottizshed curves show =2. For a integer the spectrum is the sinusoidal band given

- : P by Eq. (23). The envelope function, given by the dotted
the broad h ly the elect t dulat
prisern(? ening when only the electrimagnetis modulation is curves, is the band edge of thenteger spectruniEq. (23)]

used here for all values @f. A negligible shift and the modi-

the Fermi level, as shown, for instance, in Fig. 2. Upon{hc?;'g?iga:gg spectrum, due to the terms,, are not shown

changing the electrpn density the Fermi level crosses differ- In Fig. 6 we show the exact and approximate DOS for
ent Landau levels in a nonsmooth manner, cf. Fig. 2. For

) " ; In-phase modulations and various valuesyofThe other pa-
higher densities and/or longer periods more Landau levels e . e

. i rameters are specified in the caption. The results coincide, as
are occupied and the oscillations are much smoother.

In Eio. 5 we plot the exact eneray spectrum of the secon hey should, fore=2. Notice the horizontal scale and how a
9. piott gy Spe mall level broadenindy closes the gaps of the exact DOS in
Landau level, in units ofiw,, as a function ofiw. for (a)

only an electric modulatior{p) only a magnetic modulation, panels(b)~(d).
and(c) both electric and magnetic modulations all of period

a=80 nm and strengtV=#w=0.1 meV. The positions of B. Out-of-phase modulations

For arbitrary phase difference between the two modula-
tions, the secular equation cannot be written simply as Harp-
er's equation but as a more general one, cf. @§). How-
ever, the energy spectrum ferinteger is still the envelope
of the exact spectrum and the asymptotic bandwidth is

AE,(u) = 4V(72nu) M1 + (6% - 1)sirf(2\nu— m/4)
— 5cos¢ codAnu) M2, (25)

where §=(fw/V)(n/u)¥2 At the Fermi energy we have
8Eq)=akchw/(27V). If §=1 andep=m/2, we get a nearly
N constant bandwidth A 72nu)~/4.
Y 016' — '018‘ 1o In Fig. 7 we plot the energy of 'thBI:O, ...,10 Landau
fiw (meV) levels as a functlon of the magnetic field for equal-strength
¢ (0.1 meV) modulations, of period 80 nm, that are out of

FIG. 5. Exact and approximater integej spectrum, in units of Phase bymr/2. The dotted curve, i.eq=1, shows a constant
fiwe, versus the cyclotron enerdyw, for then=2 Landau level and  bandwidth that, as explained above, leads to a washout of the
a periodazgo nm. The upper pane| is for an electric modulation, Commensurability oscillations. The thin solid curve shows

the middle one for a magnetic one, and the bottom one for bottthe Fermi level alf=5 K.

modulations present. Notice the continuous bandsiarteger: In The amplitude of the bandwidth oscillations varies with
this case the exact, numerically obtained bandwidth coincides witthe phase difference between the two modulations and/or
the one obtained analytically. with their relative strength. In Fig. 8 we plot the bandwidth
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10 03 03
| V=0.lmeV
8 hw,=0.1meV
R o 02 \l/ 02
S 6 2 /
2 | b - \
m 4 &1 /7 . <01 W g JYIL 0.1
) ' = ik /
2 0 V=0.05meV V=0.1mcV V=0.2meV 0.0
A 00 05 10 00 05 1.0 00 05 L0
0 y : (@ B(T) (o) B(T) () B(T
0.0 0.5 1.0 1.5 o _ _ _
o (meV) FIG. 9. The same as in Fig. 7 for different electric modulation

strengthsV, as indicated, and fixed magnetic oh@y=0.1 meV at

FIG. 7. Band structure with both modulations present and phasBhase shift ofm/2.

shifted by ¢=m/2. The Fermi level at temperatuiie=5 K is also ) . o )
indicated by the thin solid curve. The~ 1 curve shows a constant Of the modulations. This envelope coincides with the spec-

bandwidth leading to a washout of the commensurability oscilla{rum obtained from the Harper-type equation ter ®o/ O
tions of the diffusive contributions to the resistivity. integer, whered is the flux per unit cell. For integer the

analytical spectrum Eq16) coincides with the one obtained
from the numerical solution of Eq15). As an approxima-
tion, one can use the spectrum fointeger for all magnetic
fields if the small gaps of the exact spectrum are closed due
to disordef The flat-band condition and the bandwidth are

for equal modulation strength¥=%w=0.1 meV, and differ-
ent phases. As Fig.(B) shows, the amplitude can be greatly
decreased whe=/2 and this implies a washout of the
commensurability oscillations. Different from the in-phase or ) :
antiphase caseFig. 4), we notice that the bandwidth in- then found from the approximate bandwidth for large

creases more rapidly with magnetic field and that it does notth For a:Iq/_p rat[znclall,zéhe ggpls t'!" the exact spl)lectrgm, forl
reach zero at specific values Bf In Fig. 9 we show again € usual sinusoida moduiations, are smail and nearly

: : ; ; lose when a small level broadening is included in the cal-
th dth for modulat hase shiftedi2 but with ~ 0S¢ .
dif?ebrzzg \rl\(lallativg rs{?;n;tr?s"z)a?;\rpt f?jﬁq Toa{(lg)ld in wE?chV\{clhe culation of the DOS whether both modulations are present or

two strengths are equal, and the amplitude of the oscillationgn!Y the electric oné.The valu_e ofl' needed o close the _
minimal. gaps depends on the modulation strength. For instance, with

Finally, in Fig. 10 we plot the exact and approximate Vx= Vy=0- ”.‘teV- a lelnc'iat\hlE%j._l }T Vﬁs nece.ssta?ylnt_bot?.
spectra of the=2 Landau level, as a function of the mag- 2SSk is quite small. Accordingly, the very interesting fine

netic field, for various phase differences between the wetructure of the spectrum may be very difficult to observe.

modulations as indicated. The approximate result,ddn- Asfdlscqstsed n thg text and ;Ilutst_ratedéanlg. 32 the spec-
teger, is shown by dotted curves and is again the envelopU™m for a integer and a pure electric modulation is in gen-

function of the exact spectrum as for in-phase modulations€'! €quivalent to that of a pure magnetic modulation if we

neglect the very small termse,,. The same conclusion was

reached in Ref. 12 for a perurbative evaluation of the spec-
IV. CONCLUSIONS b7 543 o 2 )
We studied in detail the band structure of a 2DEG in the
. X . 268 iy 126
presence of weak 2D electric and magnetic modulations as y ?\"5*‘@ -
function of an applied perpendicular magnetic fi@dThe § 2.5 %Ei}:ﬁ» 25
tight-binding description shows a Hofstadter-type spectrum™ p ?'}\‘V’/ 5
. . ; . 24} A AL 2.4
with an envelope function that is determined by the strengths S 4
23t . (!)=TD/ e . q?=“/2 83
- pu @ 02 04 06 08 10 ;)02 04 06 08 I
o _
0.2 o= A 02 2.7 o=2 0=2 2.7
_ 26 -
o g’ AN
Eol ﬂ/f 0.1 s 25 %
< ‘W B,
/M 2.4}
- . ¢o=3n/4 d=n
0.0 ‘ . 3l : : - - ' - - .
00 04 08 T2 00 04 08 12 00 04 08 12 02 04 06 08 10 02 04 06 08 10
(a) B(T) (b) B(T) (©) B(T) (© fiey (meV) (d) fiw_(meV)

FIG. 8. Bandwidth at the Fermi energy as a function of B for ~ FIG. 10. Exact and approximaieotted curvep spectrum for
different phasegp=7/4 (a), ¢=7/2 (b), and¢p=1 (c) between the various phase differences between the two modulatipns/ 4 (a),
two modulations. ¢=m12 (b), p=37/4 (c), and p= (d).
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trum. The same analogy, though less explicitly, applies to thehifted from thes<1 regime to the>1 one. Alternatively,
exact spectrum obtained from E@.5) and shown in Fig. 5. one can change the relative strengths between the electric
In line with our previous stud§for other kinds of surface and magnetic modulations to tune the valuesafhich sub-
superlattices, e.g., hexagonal or trigonal, the results are simsequently will influence the magnetoresistance. Similar to
lar to those presented here even when we include cross termige case of 1D modulatiod8,a transition between the two
xV,Vy cogK,x)cogKyy) in the modulation potential. regimes occurs fod=1 and the commensurability oscilla-
The oscillations of the bandwidth with the magnetic field tjons of the diffusive contributions to the resistivity disappear

B, due to only an electric modulation, are in antiphase Withif the two modulations are phase shifted by2.
those due to only a magnetic modulation. If both modula-

tions are present, an additional parameter is the phase be-

tween them and the situation is more complex. The relative ACKNOWLEDGMENTS

importance of the two modulations can be estimated by the

parameter §, which is determined by the modulation  This work was supported by the Canadian NSERC Grant
strengths and the electron density. The electric modulatioNo. OGP0121756, the Belgian Interuniversity Attraction
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