toggle visibility
Search within Results:
Display Options:
Number of records found: 2254

Select All    Deselect All
 | 
Citations
 | 
   print
Thermal activated rotation of graphene flake on graphene”. Peymanirad F, Singh SK, Ghorbanfekr-Kalashami H, Novoselov KS, Peeters FM, Neek-Amal M, 2D materials 4, 025015 (2017). http://doi.org/10.1088/2053-1583/AA58A4
toggle visibility
Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures”. Kandemir A, Ozden A, Cagin T, Sevik C, Science and technology of advanced materials 18, 187 (2017). http://doi.org/10.1080/14686996.2017.1288065
toggle visibility
Thermal mirror buckling in freestanding graphene locally controlled by scanning tunnelling microscopy”. Neek-Amal M, Xu P, Schoelz JK, Ackerman ML, Barber SD, Thibado PM, Sadeghi A, Peeters FM, Nature communications 5, 4962 (2014). http://doi.org/10.1038/ncomms5962
toggle visibility
Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach”. Aierken Y, Çakır D, Sevik C, Peeters FM, Physical review : B : condensed matter and materials physics 92, 081408 (2015). http://doi.org/10.1103/PhysRevB.92.081408
toggle visibility
Thermal properties of fluorinated graphene”. Singh SK, Srinivasan SG, Neek-Amal M, Costamagna S, van Duin ACT, Peeters FM, Physical review : B : condensed matter and materials physics 87, 104114 (2013). http://doi.org/10.1103/PhysRevB.87.104114
toggle visibility
Thermal properties of the mixed spin-1 and spin-3/2 Ising ferrimagnetic system with two different random single-ion anisotropies”. Pereira JRV, Tunes TM, De Arruda AS, Godoy M, Physica: A : theoretical and statistical physics 500, 265 (2018). http://doi.org/10.1016/J.PHYSA.2018.02.085
toggle visibility
Thermal rippling behavior of graphane”. Costamagna S, Neek-Amal M, Los JH, Peeters FM, Physical review : B : condensed matter and materials physics 86, 041408 (2012). http://doi.org/10.1103/PhysRevB.86.041408
toggle visibility
Thermodynamic equilibrium theory revealing increased hysteresis in ferroelectric field-effect transistors with free charge accumulation”. Bizindavyi J, Verhulst AS, Sorée B, Vandenberghe WG, Communications Physics 4, 86 (2021). http://doi.org/10.1038/S42005-021-00583-7
toggle visibility
Thermodynamic properties of the electron gas in multilayer graphene in the presence of a perpendicular magnetic field”. Van Duppen B, Peeters FM, Physical review : B : condensed matter and materials physics 88, 245429 (2013). http://doi.org/10.1103/PhysRevB.88.245429
toggle visibility
Thermoelectric properties and scattering mechanisms in natural PbS”. Zuniga-Puelles E, Levytskyi V, Özden A, Guerel T, Bulut N, Himcinschi C, Sevik C, Kortus J, Gumeniuk R, Physical review B 107, 195203 (2023). http://doi.org/10.1103/PHYSREVB.107.195203
toggle visibility
Thermoelectrics of interacting nanosystems-exploiting superselection instead of time-reversal symmetry”. Schulenborg J, Di Marco A, Vanherck J, Wegewijs MR, Splettstoesser J, Entropy: an international and interdisciplinary journal of entropy and information studies 19, 668 (2017). http://doi.org/10.3390/E19120668
toggle visibility
Thermomechanical properties of a single hexagonal boron nitride sheet”. Singh SK, Neek-Amal M, Costamagna S, Peeters FM, Physical review : B : condensed matter and materials physics 87, 184106 (2013). http://doi.org/10.1103/PhysRevB.87.184106
toggle visibility
Thermomechanical properties of graphene : valence force field model approach”. Lajevardipour A, Neek-Amal M, Peeters FM, Journal of physics : condensed matter 24, 175303 (2012). http://doi.org/10.1088/0953-8984/24/17/175303
toggle visibility
Three electrons in laterally coupled quantum dots: tunnel vs electrostatic coupling, ground-state symmetry, and interdot correlations”. Szafran B, Peeters FM, Physical review : B : condensed matter and materials physics 71, 245314 (2005). http://doi.org/10.1103/PhysRevB.71.245314
toggle visibility
Three-dimensional electron-hole superfluidity in a superlattice close to room temperature”. Van der Donck M, Conti S, Perali A, Hamilton AR, Partoens B, Peeters FM, Neilson D, Physical Review B 102, 060503 (2020). http://doi.org/10.1103/PHYSREVB.102.060503
toggle visibility
Three-dimensional ferromagnetic architectures with multiple metastable states”. Nasirpouri F, Engbarth MA, Bending SJ, Peter LM, Knittel A, Fangohr H, Milošević, MV, Applied physics letters 98, 222506 (2011). http://doi.org/10.1063/1.3595339
toggle visibility
Threefold onset of vortex loops in superconductors with a magnetic core”. Doria MM, Romaguera AR de C, Milošević, MV, Peeters FM, Europhysics letters 79, 47006 (2007). http://doi.org/10.1209/0295-5075/79/47006
toggle visibility
Tight-binding description of intrinsic superconducting correlations in multilayer graphene”. Muñoz WA, Covaci L, Peeters FM, Physical review : B : condensed matter and materials physics 87, 134509 (2013). http://doi.org/10.1103/PhysRevB.87.134509
toggle visibility
Taghizadeh Sisakht E (2019) Tight-binding investigation of the electronic properties of phosphorene and phosphorene nanoribbons. 150 p
toggle visibility
Tight-binding model for borophene and borophane”. Nakhaee M, Ketabi SA, Peeters FM, Physical review B 97, 125424 (2018). http://doi.org/10.1103/PHYSREVB.97.125424
toggle visibility
Nakhaee M (2020) Tight-binding model for two-dimensional materials. 139 p
toggle visibility
Tight-binding model investigation of the biaxial strain induced topological phase transition in GeCH3”. Rezaei M, Sisakht ET, Fazileh F, Aslani Z, Peeters FM, Physical review B 96, 085441 (2017). http://doi.org/10.1103/PHYSREVB.96.085441
toggle visibility
Tight-binding studio : a technical software package to find the parameters of tight-binding Hamiltonian”. Nakhaee M, Ketabi SA, Peeters FM, Computer Physics Communications 254, 107379 (2020). http://doi.org/10.1016/J.CPC.2020.107379
toggle visibility
Tight-binding study of bilayer graphene Josephson junctions”. Muñoz WA, Covaci L, Peeters FM, Physical review : B : condensed matter and materials physics 86, 184505 (2012). http://doi.org/10.1103/PhysRevB.86.184505
toggle visibility
Tilted vortices in a superconducting mesoscopic cylinder”. Romaguera AR de C, Doria MM, Peeters FM, Physical review : B : condensed matter and materials physics 75, 184525 (2007). http://doi.org/10.1103/PhysRevB.75.184525
toggle visibility
Time dependent properties of classical artificial atoms”. Schweigert VA, Peeters FM, Journal of physics : condensed matter 10, 2417 (1998). http://doi.org/10.1088/0953-8984/10/11/006
toggle visibility
Time dependent transport in 1D micro- and nanostructures: solving the Boltzmann and Wigner-Boltzmann equations”. Magnus W, Brosens F, Sorée B, Journal of physics : conference series 193, 012004 (2009). http://doi.org/10.1088/1742-6596/193/1/012004
toggle visibility
Time-dependent investigation of charge injection in a quantum dot containing one electron”. de Sousa JS, Covaci L, Peeters FM, Farias GA, Journal of applied physics 112, 093705 (2012). http://doi.org/10.1063/1.4759292
toggle visibility
Time-dependent simulations of electron transport through a quantum ring: effect of the Lorentz force”. Szafran B, Peeters FM, Physical review : B : condensed matter and materials physics 72, 165301 (2005). http://doi.org/10.1103/PhysRevB.72.165301
toggle visibility
TiS3 nanoribbons : width-independent band gap and strain-tunable electronic properties”. Kang J, Sahin H, Ozaydin HD, Senger RT, Peeters FM, Physical review : B : condensed matter and materials physics 92, 075413 (2015). http://doi.org/10.1103/PhysRevB.92.075413
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print

Save Citations:
Export Records: