|   | 
Details
   web
Records
Author Jafarzadeh, A.; Bal, K.M.; Bogaerts, A.; Neyts, E.C.
Title CO2 activation on TiO2-supported Cu5 and Ni5 nanoclusters : effect of plasma-induced surface charging Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 11 Pages 6516-6525
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Surface charging is an often overlooked factor in many plasma-surface interactions and in particular in plasma catalysis. In this study, we investigate the effect of excess electrons induced by a plasma on the adsorption properties of CO2 on titania-supported Cu-5 and Ni-5 clusters using spin-polarized and dispersion-corrected density functional theory calculations. The effect of excess electrons on the adsorption of Ni and Cu pentamers as well as on CO2 adsorption on a pristine anatase TiO2(101) slab is studied. Our results indicate that adding plasma-induced excess electrons to the system leads to further stabilization of the bent CO2 structure. Also, dissociation of CO2 on charged clusters is energetically more favorable than on neutral clusters. We hypothesize that surface charge is a plausible cause for the synergistic effects sometimes observed in plasma catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000462260700024 Publication Date 2019-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited (up) 4 Open Access OpenAccess
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:159422 Serial 5281
Permanent link to this record
 

 
Author Bekeschus, S.; Freund, E.; Spadola, C.; Privat-Maldonado, A.; Hackbarth, C.; Bogaerts, A.; Schmidt, A.; Wende, K.; Weltmann, K.-D.; von Woedtke, T.; Heidecke, C.-D.; Partecke, L.-I.; Käding, A.
Title Risk Assessment of kINPen Plasma Treatment of Four Human Pancreatic Cancer Cell Lines with Respect to Metastasis Type A1 Journal article
Year 2019 Publication Cancers Abbreviated Journal Cancers
Volume 11 Issue 9 Pages 1237
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold physical plasma has limited tumor growth in many preclinical models and is, therefore, suggested as a putative therapeutic option against cancer. Yet, studies investigating the cells’ metastatic behavior following plasma treatment are scarce, although being of prime importance to evaluate the safety of this technology. Therefore, we investigated four human pancreatic cancer cell lines for their metastatic behavior in vitro and in chicken embryos (in ovo). Pancreatic cancer was chosen as it is particularly metastatic to the peritoneum and systemically, which is most predictive for outcome. In vitro, treatment with the kINPen plasma jet reduced pancreatic cancer cell activity and viability, along with unchanged or decreased motility. Additionally, the expression of adhesion markers relevant for metastasis was down-regulated, except for increased CD49d. Analysis of 3D tumor spheroid outgrowth showed a lack of plasma-spurred metastatic behavior. Finally, analysis of tumor tissue grown on chicken embryos validated the absence of an increase of metabolically active cells physically or chemically detached with plasma treatment. We conclude that plasma treatment is a safe and promising therapeutic option and that it does not promote metastatic behavior in pancreatic cancer cells in vitro and in ovo.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000489719000022 Publication Date 2019-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (up) 4 Open Access
Notes The authors acknowledge that this work was supported by grants funded by the German Federal Ministry of Education and Research (BMBF), grant number 03Z22DN11. We want to thank the Research Foundation – Flanders (FWO) for providing funding to APM under the “long stay abroad” scheme (grant code V415618N). APM and AB acknowledge financial support from the Methusalem project. Technical support by Felix Niessner and Antje Janetzko is gratefully acknowledged. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:162106 Serial 5357
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Engelmann, Y.; van ‘t Veer, K.; Postma, R.S.; Bogaerts, A.; Lefferts, L.
Title Plasma-driven catalysis: green ammonia synthesis with intermittent electricity Type A1 Journal article
Year 2020 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 22 Issue 19 Pages 6258-6287
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract Ammonia is one of the most produced chemicals, mainly synthesized from fossil fuels for fertilizer applications. Furthermore, ammonia may be one of the energy carriers of the future, when it is produced from renewable electricity. This has spurred research on alternative technologies for green ammonia production. Research on plasma-driven ammonia synthesis has recently gained traction in academic literature. In the current review, we summarize the literature on plasma-driven ammonia synthesis. We distinguish between mechanisms for ammonia synthesis in the presence of a plasma, with and without a catalyst, for different plasma conditions. Strategies for catalyst design are discussed, as well as the current understanding regarding the potential plasma-catalyst synergies as function of the plasma conditions and their implications on energy efficiency. Finally, we discuss the limitations in currently reported models and experiments, as an outlook for research opportunities for further unravelling the complexities of plasma-catalytic ammonia synthesis, in order to bridge the gap between the currently reported models and experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000575015700002 Publication Date 2020-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited (up) 4 Open Access
Notes ; ; Approved Most recent IF: 9.8; 2020 IF: 9.125
Call Number PLASMANT @ plasmant @c:irua:172671 Serial 6430
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; de Meyer, M.; van Gils, S.
Title Macroscale computer simulations to investigate the chemical vapor deposition of thin metal-oxide films Type A1 Journal article
Year 2007 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech
Volume 201 Issue 22/23 Pages 8838-8841
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000249340400008 Publication Date 2007-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0257-8972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.589 Times cited (up) 5 Open Access
Notes Approved Most recent IF: 2.589; 2007 IF: 1.678
Call Number UA @ lucian @ c:irua:64790 Serial 1859
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A.
Title Modeling SiH4/O2/Ar inductively coupled plasmas used for filling of microtrenches in shallow trench isolation (STI) Type A1 Journal article
Year 2012 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 9 Issue 5 Pages 522-539
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Modeling results are presented to gain a better insight in the properties of a SiH4/O2/Ar inductively coupled plasma (ICP) and how it interacts with a silicon substrate (wafer), as applied in the microelectronics industry for the fabrication of electronic devices. The SiH4/O2/Ar ICP is used for the filling of microtrenches with isolating material (SiO2), as applied in shallow trench isolation (STI). In this article, a detailed reaction set that describes the plasma chemistry of SiH4/O2/Ar discharges as well as surface processes, such as sputtering, oxidation, and deposition, is presented. Results are presented on the plasma properties during the plasma enhanced chemical vapor deposition process (PECVD) for different gas ratios, as well as on the shape of the filled trenches and the surface compositions of the deposited layers. For the operating conditions under study it is found that the most important species accounting for deposition are SiH2, SiH3O, SiH3 and SiH2O, while SiH+2, SiH+3, O+2 and Ar+ are the dominant species for sputtering of the surface. By diluting the precursor gas (SiH4) in the mixture, the deposition rate versus sputtering rate can be controlled for a desired trench filling process. From the calculation results it is clear that a high deposition rate will result in undesired void formation during the trench filling, while a small deposition rate will result in undesired trench bottom and mask damage by sputtering. By varying the SiH4/O2 ratio, the chemical composition of the deposited layer will be influenced. However, even at the highest SiH4/O2 ratio investigated (i.e., 3.2:1; low oxygen content), the bulk deposited layer consists mainly of SiO2, suggesting that low-volatile silane species deposit first and subsequently become oxidized instead of being oxidized first in the plasma before deposition. Finally, it was found that the top surface of the deposited layer contained less oxygen due to preferential sputtering of O atoms, making the top layer more Si-rich. However, this effect is negligible at a SiH4/O2 ratio of 2:1 or lower.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000303858100010 Publication Date 2012-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited (up) 5 Open Access
Notes Approved Most recent IF: 2.846; 2012 IF: 3.730
Call Number UA @ lucian @ c:irua:99127 Serial 2142
Permanent link to this record
 

 
Author Liu, Y.H.; Neyts, E.; Bogaerts, A.
Title Monte Carlo method for simulations of adsorbed atom diffusion on a surface Type A1 Journal article
Year 2006 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
Volume 15 Issue 10 Pages 1629-1635
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000241224000021 Publication Date 2006-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited (up) 5 Open Access
Notes Approved Most recent IF: 2.561; 2006 IF: 1.935
Call Number UA @ lucian @ c:irua:59633 Serial 2196
Permanent link to this record
 

 
Author Gijbels, R.; Bogaerts, A.
Title Recent trends in solids mass spectrometry: GDMS and other methods Type A1 Journal article
Year 1997 Publication Fresenius' journal of analytical chemistry Abbreviated Journal Fresen J Anal Chem
Volume 359 Issue Pages 326-330
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos A1997YC02800004 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0937-0633;1432-1130; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (up) 5 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:19607 Serial 2841
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A.; Shamiryan, D.
Title Simultaneous etching and deposition processes during the etching of silicon with a Cl2/O2/Ar inductively coupled plasma Type A1 Journal article
Year 2011 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 8 Issue 6 Pages 490-499
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this article, surface processes occurring during the etching of Si with a Cl2/O2/Ar plasma are investigated by means of experiments and modeling. Cl2-based plasmas are commonly used to etch silicon, while a small fraction of O2 is added to protect the sidewalls from lateral etching during the shallow trench isolation process. When the oxygen fraction exceeds a critical value, the wafer surface process changes from an etching regime to a deposition regime, drastically reducing the etch rate. This effect is commonly referred to as the etch stop phenomenon. To gain better understanding of this mechanism, the oxygen fraction is varied in the gas mixture and special attention is paid to the effects of oxygen and of the redeposition of non-volatile etched species on the overall etch/deposition process. It is found that, when the O2 flow is increased, the etch process changes from successful etching to the formation of a rough surface, and eventually to the actual growth of an oxide layer which completely blocks the etching of the underlying Si. The size of this etch stop island was found to increase as a function of oxygen flow, while its thickness was dependent on the amount of Si etched. This suggests that the growth of the oxide layer mainly depends on the redeposition of non-volatile etch products. The abrupt change in the etch rate as a function of oxygen fraction was not found back in the oxygen content of the plasma, suggesting the competitive nature between oxidation and chlorination at the wafer. Finally, the wafer and reactor wall compositions were investigated by modeling and it was found that the surface rapidly consisted mainly of SiO2 when the O2 flow was increased above about 15 sccm.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000292116800003 Publication Date 2011-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited (up) 5 Open Access
Notes Approved Most recent IF: 2.846; 2011 IF: 2.468
Call Number UA @ lucian @ c:irua:90926 Serial 3014
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A.
Title Computational study of the CF4 /CHF3 / H2 /Cl2 /O2 /HBr gas phase plasma chemistry Type A1 Journal article
Year 2016 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 49 Issue 49 Pages 195203
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A modelling study is performed of high-density low-pressure inductively coupled CF4/CHF3/H2/Cl2/O2/HBr plasmas under different gas mixing ratios. A reaction set describing the complete plasma chemistry is presented and discussed. The gas fraction of each component in this mixture is varied to investigate the sensitivity of the plasma properties, like electron density, plasma potential and species densities, towards the gas mixing ratios. This research is of great interest for microelectronics applications because these gases are often combined in two (or more)-component mixtures, and mixing gases or changing the fraction of a gas can sometimes yield unwanted reaction products or unexpected changes in the overall plasma properties due to the increased chemical complexity of the system. Increasing the CF4 fraction produces more F atoms for chemical etching as expected, but also more prominently lowers the density of Cl atoms, resulting in an actual drop in the etch rate under certain conditions. Furthermore, CF4 decreases the free electron density when mixed with Cl2. However, depending on the other gas components, CF4 gas can also sometimes enhance free electron density. This is the case when HBr is added to the mixture. The addition of H2 to the gas mixture will lower the sputtering process, not only due to the lower overall positive ion density at higher H2 fractions, but also because more H+, H2 + and H3 + are present and they have very low sputter yields. In contrast, a larger Cl2 fraction results in more chemical etching but also in less physical sputtering due to a smaller abundance of positive ions. Increasing the O2 fraction in the plasma will always lower the etch rate due to more oxidation of the wafer surface and due to a lower plasma density. However, it is also observed that the density of F atoms can actually increase with rising O2 gas fraction. This is relevant to note because the exact balance between fluorination and oxidation is important for fine-tuning the overall etch rate and for control of the sidewall profile. Finally, HBr is often used as a chemical etcher, but when mixed with F- or Cl-containing gases, HBr creates the same diluting effects as Ar or He, because a

higher fraction results in less chemical etching but more (physical) sputtering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375255500017 Publication Date 2016-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited (up) 5 Open Access
Notes We acknowledge the Fund for Scientific Research Flanders (FWO) for financial support of this work. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 2.588
Call Number c:irua:132890 Serial 4062
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Van Boxem, W.; Dewaele, D.; Lemière, F.; Sobott, F.; Benedikt, J.; Neyts, E.C.; Bogaerts, A.
Title Mechanisms of Peptide Oxidation by Hydroxyl Radicals: Insight at the Molecular Scale Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 121 Pages 5787-5799
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics (MD) simulations were performed to provide atomic scale insight in the initial interaction between hydroxyl radicals (OH) and peptide systems in solution. These OH radicals are representative reactive oxygen species produced by cold atmospheric plasmas. The use of plasma for biomedical applications is gaining increasing interest, but the fundamental mechanisms behind the plasma modifications still remain largely elusive. This study helps to gain more insight in the underlying mechanisms of plasma medicine but is also more generally applicable to peptide oxidation, of interest for other applications. Combining both reactive and nonreactive MD simulations, we are able to elucidate the reactivity of the amino acids inside the peptide systems and their effect on their structure up to 1 μs. Additionally, experiments were performed, treating the simulated peptides with a plasma jet. The computational results presented here correlate well with the obtained experimental data and highlight the importance of the chemical environment for the reactivity of the individual amino acids, so that specific amino acids are attacked in higher numbers than expected. Furthermore, the long time scale simulations suggest that a single oxidation has an effect on the 3D conformation due to an increase in hydrophilicity and intra- and intermolecular interactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000396969900037 Publication Date 2017-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited (up) 5 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G012413N ; Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @ c:irua:142202 Serial 4537
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Neyts, E.C.
Title Toward the Understanding of Selective Si Nano-Oxidation by Atomic Scale Simulations Type A1 Journal article
Year 2017 Publication Accounts of chemical research Abbreviated Journal Accounts Chem Res
Volume 50 Issue 50 Pages 796-804
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The continuous miniaturization of nanodevices, such as transistors, solar cells, and optical fibers, requires the controlled synthesis of (ultra)thin gate oxides (<10 nm), including Si gate-oxide (SiO2) with high quality at the atomic scale. Traditional thermal growth of SiO2 on planar Si surfaces, however, does not allow one to obtain such ultrathin oxide due to either the high oxygen diffusivity at high temperature or the very low sticking ability of incident oxygen at low temperature. Two recent techniques, both operative at low (room) temperature, have been put forward to overcome these obstacles: (i) hyperthermal oxidation of planar Si surfaces and (ii) thermal or plasma-assisted oxidation of nonplanar Si surfaces, including Si nanowires (SiNWs). These nanooxidation processes are, however, often difficult to study experimentally, due to the key intermediate processes taking place on the nanosecond time scale.

In this Account, these Si nano-oxidation techniques are discussed from a computational point of view and compared to both hyperthermal and thermal oxidation experiments, as well as to well-known models of thermal oxidation, including the Deal−Grove, Cabrera−Mott, and Kao models and several alternative mechanisms. In our studies, we use reactive molecular dynamics (MD) and hybrid MD/Monte Carlo simulation techniques, applying the Reax force field. The incident energy of oxygen species is chosen in the range of 1−5 eV in hyperthermal oxidation of planar Si surfaces in order to prevent energy-induced damage. It turns out that hyperthermal growth allows for two growth modes, where the ultrathin oxide thickness depends on either (1) only the kinetic energy of the incident oxygen species at a growth temperature below Ttrans = 600 K, or (2) both the incident energy and the growth temperature at a growth temperature above Ttrans. These modes are specific to such ultrathin oxides, and are not observed in traditional thermal oxidation, nor theoretically considered by already existing models. In the case of thermal or plasma-assisted oxidation of small Si nanowires, on the other hand, the thickness of the ultrathin oxide is a function of the growth temperature and the nanowire diameter. Below Ttrans, which varies with the nanowire diameter, partially oxidized SiNW are formed, whereas complete oxidation to a SiO2 nanowire occurs only above Ttrans. In both nano-oxidation processes at lower temperature (T < Ttrans), final sandwich c-Si|SiOx|a-SiO2 structures are obtained due to a competition between overcoming the energy barrier to penetrate into Si subsurface layers and the compressive stress (∼2−3 GPa) at the Si crystal/oxide interface. The overall atomic-simulation results strongly indicate that the thickness of the intermediate SiOx (x < 2) region is very limited (∼0.5 nm) and constant irrespective of oxidation parameters. Thus, control over the ultrathin SiO2 thickness with good quality is indeed possible by accurately tuning the oxidant energy, oxidation temperature and surface curvature.

In general, we discuss and put in perspective these two oxidation mechanisms for obtaining controllable ultrathin gate-oxide films, offering a new route toward the fabrication of nanodevices via selective nano-oxidation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399859800016 Publication Date 2017-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 20.268 Times cited (up) 5 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 12M1315N ; Approved Most recent IF: 20.268
Call Number PLASMANT @ plasmant @ c:irua:142638 Serial 4561
Permanent link to this record
 

 
Author Torfs, E.; Vajs, J.; Bidart de Macedo, M.; Cools, F.; Vanhoutte, B.; Gorbanev, Y.; Bogaerts, A.; Verschaeve, L.; Caljon, G.; Maes, L.; Delputte, P.; Cos, P.; Komrlj, J.; Cappoen, D.
Title Synthesis and in vitro investigation of halogenated 1,3-bis(4-nitrophenyl)triazenide salts as antitubercular compounds Type A1 Journal article
Year 2017 Publication Chemical biology and drug design Abbreviated Journal Chem Biol Drug Des
Volume Issue Pages 1-10
Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The diverse pharmacological properties of the diaryltriazenes have sparked the interest to investigate their potential to be repurposed as antitubercular drug candidates. In an attempt to improve the antitubercular activity of a previously constructed diaryltriazene library, eight new halogenated nitroaromatic triazenides were synthesized and underwent biological evaluation. The potency of the series was confirmed against the Mycobacterium tuberculosis lab strain H37Ra, and for the most potent derivative, we observed a minimal inhibitory concentration of 0.85 μm. The potency of the triazenide derivatives against M. tuberculosis H37Ra was found to be highly dependent on the nature of the halogenated phenyl substituent and less dependent on cationic species used for the preparation of the salts. Although the inhibitory concentration against J774A.1 macrophages was observed at 3.08 μm, the cellular toxicity was not mediated by the generation of nitroxide intermediate as confirmed by electron paramagnetic resonance spectroscopy, whereas no in vitro mutagenicity could be observed for the new halogenated nitroaromatic triazenides when a trifluoromethyl substituent was present on both the aryl moieties.
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos 000422952300027 Publication Date 2017-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1747-0277; 1747-0285; 1397-002x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.396 Times cited (up) 5 Open Access OpenAccess
Notes Approved Most recent IF: 2.396
Call Number UA @ lucian @ c:irua:147182 Serial 4794
Permanent link to this record
 

 
Author Vermeiren, V.; Bogaerts, A.
Title Supersonic Microwave Plasma: Potential and Limitations for Energy-Efficient CO2Conversion Type A1 Journal Article
Year 2018 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 122 Issue 45 Pages 25869-25881
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Supersonic flows provide a high thermodynamic

nonequilibrium, which is crucial for energy-efficient conversion of

CO 2 in microwave plasmas and are therefore of great interest.

However, the effect of the flow on the chemical reactions is poorly

understood. In this work, we present a combined flow and plasma

chemical kinetics model of a microwave CO 2 plasma in a Laval

nozzle setup. The effects of the flow field on the different dissociation

and recombination mechanisms, the vibrational distribution, and the

vibrational transfer mechanism are discussed. In addition, the effect

of experimental parameters, like position of power deposition, outlet

pressure, and specific energy input, on the CO 2 conversion and

energy efficiency is examined. The short residence time of the gas in

the plasma region, the shockwave, and the maximum critical heat,

and thus power, that can be added to the flow to avoid thermal

choking are the main obstacles to reaching high energy efficiencies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451101400016 Publication Date 2018-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited (up) 5 Open Access Not_Open_Access
Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:155412 Serial 5070
Permanent link to this record
 

 
Author Fuchs, J.; Aghaei, M.; Schachel, T.D.; Sperling, M.; Bogaerts, A.; Karst, U.
Title Impact of the Particle Diameter on Ion Cloud Formation from Gold Nanoparticles in ICPMS Type A1 Journal article
Year 2018 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 90 Issue 17 Pages 10271-10278
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The unique capabilities of microsecond dwell time (DT) single-particle inductively coupled plasma mass spectrometry (spICPMS) were utilized to characterize the cloud of ions generated from the introduction of suspensions of gold nanoparticles (AuNPs) into the plasma. A set of narrowly distributed particles with diameters ranging from 15.4 to 100.1 nm was synthesized and characterized according to established protocols. Statistically significant numbers of the short transient spICPMS events were evaluated by using 50 μs DT for their summed intensity, maximum intensity, and duration, of which all three were found to depend on the particle diameter. The summed intensity increases from 10 to 1661 counts and the maximum intensity from 6 to 309 counts for AuNPs with diameters from 15.4 to 83.2 nm. The event duration rises from 322 to 1007 μs upon increasing AuNP diameter. These numbers represent a comprehensive set of key data points of the ion clouds generated in ICPMS from AuNPs. The extension of event duration is of high interest to appoint the maximum possible particle number concentration at which separation of consecutive events in spICPMS can still be achieved. Moreover, the combined evaluation of all above-mentioned ion cloud characteristics can explain the regularly observed prolonged single-particle events. The transport and ionization behavior of AuNPs in the ICP was also computationally modeled to gain insight into the size-dependent signal generation. The simulated data reveals that the plasma temperature, and therefore the point of ionization of the particles, is the same for all diameters. However, the maximum number density of Au+, as well as the extent of the ion cloud, depends on the particle diameter, in agreement with the experimental data, and it provides an adequate explanation for the observed ion cloud characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000444060600028 Publication Date 2018-09-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited (up) 5 Open Access OpenAccess
Notes We thank Dr. Harald Rösner from the Institute of Materials Physics of the University of Münster for the TEM imaging. Approved Most recent IF: 6.32
Call Number PLASMANT @ plasmant @c:irua:153651 Serial 5057
Permanent link to this record
 

 
Author Bogaerts, A.; Yusupov, M.; Razzokov, J.; Van der Paal, J.
Title Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling Type A1 Journal article
Year 2019 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma is gaining increasing interest for cancer

treatment, but the underlying mechanisms are not yet fully

understood. Using computer simulations at the molecular

level, we try to gain better insight in how plasma-generated

reactive oxygen and nitrogen species (RONS) can

penetrate through the cell membrane. Specifically, we

compare the permeability of various (hydrophilic and

hydrophobic) RONS across both oxidized and nonoxidized cell membranes. We also study pore formation,

and how it is hampered by higher concentrations of

cholesterol in the cell membrane, and we illustrate the

much higher permeability of H2O2 through aquaporin

channels. Both mechanisms may explain the selective

cytotoxic effect of plasma towards cancer cells. Finally, we

also discuss the synergistic effect of plasma-induced

oxidation and electric fields towards pore formation.

Keywords plasma medicine, cancer treatment, computer

modelling, cell membrane, reactive oxygen and nitrogen

species
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000468848400004 Publication Date 2019-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.712 Times cited (up) 5 Open Access Not_Open_Access: Available from 23.05.2020
Notes We acknowledge financial support from the Research Foundation–Flanders (FWO; Grant Nos. 1200216N and 11U5416N). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We are also very thankful to R. Cordeiro for the very interesting discussions. Approved Most recent IF: 1.712
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159977 Serial 5172
Permanent link to this record
 

 
Author Yusupov, M.; Razzokov, J.; Cordeiro, R.M.; Bogaerts, A.
Title Transport of Reactive Oxygen and Nitrogen Species across Aquaporin: A Molecular Level Picture Type A1 Journal article
Year 2019 Publication Oxidative medicine and cellular longevity Abbreviated Journal Oxid Med Cell Longev
Volume 2019 Issue Pages 1-11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Aquaporins (AQPs) are transmembrane proteins that conduct not only water molecules across the cell membrane but also other solutes, such as reactive oxygen and nitrogen species (RONS), produced (among others) by cold atmospheric plasma (CAP). These RONS may induce oxidative stress in the cell interior, which plays a role in cancer treatment. The underlying mechanisms of the transport of RONS across AQPs, however, still remain obscure. We apply molecular dynamics simulations to investigate the permeation of both hydrophilic (H<sub>2</sub>O<sub>2</sub>and OH) and hydrophobic (NO<sub>2</sub>and NO) RONS through AQP1. Our simulations show that these RONS can all penetrate across the pores of AQP1. The permeation free energy barrier of OH and NO is lower than that of H<sub>2</sub>O<sub>2</sub>and NO<sub>2</sub>, indicating that these radicals may have easier access to the pore interior and interact with the amino acid residues of AQP1. We also study the effect of RONS-induced oxidation of both the phospholipids and AQP1 (i.e., sulfenylation of Cys<sub>191</sub>) on the transport of the above-mentioned RONS across AQP1. Both lipid and protein oxidation seem to slightly increase the free energy barrier for H<sub>2</sub>O<sub>2</sub>and NO<sub>2</sub>permeation, while for OH and NO, we do not observe a strong effect of oxidation. The simulation results help to gain insight in the underlying mechanisms of the noticeable rise of CAP-induced RONS in cancer cells, thereby improving our understanding on the role of AQPs in the selective anticancer capacity of CAP.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000492999000001 Publication Date 2019-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-0900 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.593 Times cited (up) 5 Open Access OpenAccess
Notes The authors acknowledge the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA, where all computational work was performed. M.Y. gratefully acknowledges Dr. U. Khalilov for the fruitful discussions. This work was financially supported by the Research Foundation Flanders (FWO) (grant number 1200219N). Approved Most recent IF: 4.593
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160118 Serial 5180
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Bogaerts, A.
Title Oxidation destabilizes toxic amyloid beta peptide aggregation Type A1 Journal article
Year 2019 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 9 Issue 1 Pages 5476
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The aggregation of insoluble amyloid beta (Aβ) peptides in the brain is known to trigger the onset of neurodegenerative diseases, such as Alzheimer’s disease. In spite of the massive number of investigations, the underlying mechanisms to destabilize the Aβ aggregates are still poorly understood. Some studies indicate the importance of oxidation to destabilize the Aβ aggregates. In particular, oxidation induced by cold atmospheric plasma (CAP) has demonstrated promising results in eliminating these toxic aggregates. In this paper, we investigate the effect of oxidation on the stability of an Aβ pentamer. By means of molecular dynamics simulations and umbrella sampling, we elucidate the conformational changes of Aβ pentamer in the presence of oxidized residues, and we estimate the dissociation free energy of the terminal peptide out of the pentamer form. The calculated dissociation free energy of the terminal peptide is also found to decrease with increasing oxidation. This indicates that Aβ pentamer aggregation becomes less favorable upon oxidation. Our study contributes to a better insight in one of the potential mechanisms for inhibition of toxic Aβ peptide aggregation, which is considered to be the main culprit to Alzheimer’s disease.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000462990000018 Publication Date 2019-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited (up) 5 Open Access OpenAccess
Notes M.Y. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), grant 1200216N and 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 4.259
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159367 Serial 5182
Permanent link to this record
 

 
Author Adams, F.; Adriaens, A.; Bogaerts, A.
Title Can plasma spectrochemistry assist in improving the accuracy of chemical analysis? Type A1 Journal article
Year 2002 Publication Analytica chimica acta Abbreviated Journal Anal Chim Acta
Volume 456 Issue Pages 63-75
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000174676000007 Publication Date 2002-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2670; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.95 Times cited (up) 6 Open Access
Notes Approved Most recent IF: 4.95; 2002 IF: 2.114
Call Number UA @ lucian @ c:irua:38375 Serial 272
Permanent link to this record
 

 
Author Bogaerts, A.; Grozeva, M.
Title Effect of helium/argon gas ratio in a He-Ar-Cu+ IR hollow-cathode discharge laser : modeling study and comparison with experiments Type A1 Journal article
Year 2003 Publication Applied physics B : lasers and optics Abbreviated Journal Appl Phys B-Lasers O
Volume 76 Issue 3 Pages 299-306
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The He-Ar-Cu+ IR laser operates in a hollow-cathode discharge, typically in a mixture of helium with a few-% Ar. The population inversion of the Cu+ ion levels, responsible for laser action, is attributed to asymmetric charge transfer between He+ ions and sputtered Cu atoms. The Ar gas is added to promote sputtering of the Cu cathode. In this paper, a hybrid modeling network consisting of several different models for the various plasma species present in a He-Ar-Cu hollow-cathode discharge is applied to investigate the effect of Ar concentration in the gas mixture on the discharge behavior, and to find the optimum He/Ar gas ratio for laser operation. It is found that the densities of electrons, Ar+ ions, Ar-m* metastable atoms, sputtered Cu atoms and Cu+ ions increase upon the addition of more Ar gas, whereas the densities of He+ ions, He-2(+) ions and He-m* metastable atoms drop considerably. The product of the calculated Cu atom and He+ ion densities, which determines the production rate of the upper laser levels, and hence probably also the laser output power, is found to reach a maximum around 1-5% Ar addition. This calculation result is compared to experimental measurements, and reasonable agreement has been reached.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000182758000017 Publication Date 2004-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0946-2171;1432-0649; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.696 Times cited (up) 6 Open Access
Notes Approved Most recent IF: 1.696; 2003 IF: 2.012
Call Number UA @ lucian @ c:irua:104125 Serial 812
Permanent link to this record
 

 
Author Petrović, D.; Martens, T.; van Dijk, J.; Brok, W.J.M.; Bogaerts, A.
Title Modeling of a dielectric barrier discharge used as a flowing chemical reactor Type A1 Journal article
Year 2008 Publication Journal of physics : conference series Abbreviated Journal
Volume 133 Issue Pages 012023,1-012023,8
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Our aim is to develop and optimize a model for a dielectric barrier discharge used as a chemical reactor for gas treatment. In order to determine the optimum operating conditions, we have studied the influence of the gas flow rate, reactor geometry and applied voltage parameters on the discharge characteristics. For this purpose, a two-dimensional time-dependent fluid model has been applied to an atmospheric pressure DBD in helium with nitrogen impurities, in a cylindrical geometry. The numerical model is based on the continuity and flux equations for each type of particles treated, the electron energy equation and the Poisson equation. The gas flow is incorporated in the flux equations as a source term. The set of coupled partial differential equations is solved by the so-called modified strongly implicit method. The background gas flow is numerically treated separately, assuming in the model that there is no influence of the plasma on the flow. Indeed, the gas convection velocity is calculated using the commercial code Fluent and it is used as input into the 2D fluid model. The plasma characteristics have been studied in terms of gas flow rate, applied voltage amplitude and frequency, and geometrical effects. The electric currents as a function of time for a given applied potential have been obtained, as well as the number densities and fluxes of plasma species.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000265684100023 Publication Date 2008-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (up) 6 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:71282 Serial 2115
Permanent link to this record
 

 
Author Simon, P.; Bogaerts, A.
Title Vibrational level population of nitrogen impurities in low-pressure argon glow discharges Type A1 Journal article
Year 2011 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 26 Issue 4 Pages 804-810
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The vibrational level populations of the electronic ground state of the nitrogen molecule have been calculated for typical glow discharge conditions in argonnitrogen mixtures with nitrogen concentrations between 0.1 and 1%. Stationary solutions of the master equations of the vibrational levels have been obtained using numerical methods. The main mechanisms responsible for the population and depopulation of the vibrational levels, and for the overall shape of the vibrational distribution function are pointed out. It has been found that vibrationvibration collisions play only a minor role and therefore the population of the vibrational levels is basically determined by the electron temperature.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000288703300012 Publication Date 2010-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited (up) 6 Open Access
Notes Approved Most recent IF: 3.379; 2011 IF: 3.220
Call Number UA @ lucian @ c:irua:87530 Serial 3842
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Xu, B.; Kato, T.; Kaneko, T.; Neyts, E.C.
Title How the alignment of adsorbed ortho H pairs determines the onset of selective carbon nanotube etching Type A1 Journal article
Year 2017 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 9 Issue 9 Pages 1653-1661
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Unlocking the enormous technological potential of carbon nanotubes strongly depends on our ability to specifically produce metallic or semiconducting tubes. While selective etching of both has already been demonstrated, the underlying reasons, however, remain elusive as yet. We here present computational and experimental evidence on the operative mechanisms at the atomic scale. We demonstrate that during the adsorption of H atoms and their coalescence, the adsorbed ortho hydrogen pairs on single-walled carbon nanotubes induce higher shear stresses than axial stresses, leading to the elongation of HC–CH bonds as a function of their alignment with the tube chirality vector, which we denote as the γ-angle. As a result, the C–C cleavage occurs more rapidly in nanotubes containing ortho H-pairs with a small γ-angle. This phenomenon can explain the selective etching of small-diameter semiconductor nanotubes with a similar curvature. Both theoretical and experimental results strongly indicate the important role of the γ-angle in the selective etching mechanisms of carbon nanotubes, in addition to the nanotube curvature and metallicity effects and lead us to clearly understand the onset of selective synthesis/removal of CNT-based materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000395422800036 Publication Date 2016-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited (up) 6 Open Access OpenAccess
Notes U. K. gratefully acknowledges financial support from the Fund of Scientific Research Flanders (FWO), Belgium (Grant No. 12M1315N). This work was also supported in part by Grant-in- Aid for Young Scientists A (Grant No. 25706028), Grant-in-Aid for Scientific Research on Innovative Areas (Grant No. 26107502) from JSPS KAKENHI. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. The authors also thank Prof. A. C. T. van Duin for sharing the ReaxFF code and J. Razzokov for his assistance to perform the DFT calculations. Approved Most recent IF: 7.367
Call Number PLASMANT @ plasmant @ c:irua:140091 Serial 4417
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Hussain, S.; Kovacevic, E.; Brault, P.; Boulmer-Leborgne, C.; Neyts, E.C.
Title Nanoscale mechanisms of CNT growth and etching in plasma environment Type A1 Journal article
Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 50 Issue 50 Pages 184001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-enhanced chemical deposition (PECVD) of carbon nanotubes has already been shown to allow chirality control to some extent. In PECVD, however, etching may occur simultaneously with the growth, and the occurrence of intermediate processes further significantly complicates the growth process.

We here employ a computational approach with experimental support to study the plasma-based formation of Ni nanoclusters, Ni-catalyzed CNT growth and subsequent etching processes, in order to understand the underpinning nanoscale mechanisms. We find that hydrogen is the dominant factor in both the re-structuring of a Ni film and the subsequent appearance of Ni nanoclusters, as well as in the CNT nucleation and etching processes. The obtained results are compared with available theoretical and experimental studies and provide a deeper understanding of the occurring nanoscale mechanisms in plasma-assisted CNT nucleation and growth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398300900001 Publication Date 2017-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited (up) 6 Open Access OpenAccess
Notes UK gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), Belgium (Grant No. 12M1315N). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. The authors also thank Prof A C T van Duin for sharing the ReaxFF code. Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @ c:irua:141918 Serial 4533
Permanent link to this record
 

 
Author Heijkers, S.; Bogaerts, A.
Title CO2Conversion in a Gliding Arc Plasmatron: Elucidating the Chemistry through Kinetic Modeling Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 41 Pages 22644-22655
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract By means of chemical kinetics modeling, it is possible to elucidate the main dissociation mechanisms of CO2 in a gliding arc plasmatron (GAP). We obtain good agreement between the calculated and experimental conversions and energy efficiencies, indicating that the model can indeed be used to study the underlying mechanisms. The calculations predict that vibration-induced dissociation is the main dissociation mechanism of CO2, but it occurs mainly from the lowest vibrational levels because of fast thermalization of the vibrational distribution. Based on these findings, we propose ideas for improving the performance of the GAP, but testing of these ideas in the simulations reveals that they do not always lead to significant enhancement, because of other side effects, thus illustrating the complexity of the process. Nevertheless, the model allows more insight into the underlying mechanisms to be obtained and limitations to be identified.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413617900007 Publication Date 2017-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited (up) 6 Open Access OpenAccess
Notes Federaal Wetenschapsbeleid, IAP/7 ; Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:147436 Serial 4801
Permanent link to this record
 

 
Author Berthelot, A.; Bogaerts, A.
Title Pinpointing energy losses in CO 2 plasmas – Effect on CO 2 conversion Type A1 Journal article
Year 2018 Publication Journal of CO2 utilization Abbreviated Journal J Co2 Util
Volume 24 Issue Pages 479-499
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma technology is gaining increasing interest for CO2 conversion, but to maximize the energy efficiency, it is important to track the different energy transfers taking place in the plasma. In this paper, we study these mechanisms by a 0D chemical kinetics model, including the vibrational kinetics, for different conditions of reduced electric field, gas temperature and ionization degree, at a pressure of 100 mbar. Our model predicts a maximum conversion and energy efficiency of 32% and 47%, respectively, at conditions that are particularly beneficial for energy efficient CO2 conversion, i.e. a low reduced electric field (10 Td) and a low gas temperature (300 K). We study the effect of the efficiency by which the vibrational energy is used to dissociate CO2, as well as of the activation energy of the reaction CO2+O→CO+O2, to elucidate the theoretical limitations to the energy

efficiency. Our model reveals that these parameters are mainly responsible for the limitations in the energy efficiency. By varying these parameters, we can reach a maximum conversion and energy efficiency of 86%. Finally, we derive an empirical formula to estimate the maximum possible energy efficiency that can be reached under the assumptions of the model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000428234500054 Publication Date 2018-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.292 Times cited (up) 6 Open Access Not_Open_Access: Available from 16.03.2020
Notes We acknowledge financial support from the European Union's Seventh Framework Program for research, technological development and demonstration under grant agreement no. 606889. The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We would also like to thank Prof. Richard van de Sanden (DIFFER) for the interesting talks. Approved Most recent IF: 4.292
Call Number PLASMANT @ plasmant @c:irua:149645 Serial 4912
Permanent link to this record
 

 
Author Kumar, N.; Attri, P.; Dewilde, S.; Bogaerts, A.
Title Inactivation of human pancreatic ductal adenocarcinoma with atmospheric plasma treated media and water: a comparative study Type A1 Journal article
Year 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 51 Issue 25 Pages 255401
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In recent years, the interest in treating cancer cells with plasma treated media (PTM) and plasma treated water (PTW) has increased tremendously. However, the actions of PTM and PTW are still not entirely understood. For instance, it is not clear whether the action of PTM is due to a modification in proteins/amino acids after plasma treatment of the media, or due to reactive oxygen and nitrogen species (RONS) generated from the plasma, or a combination of both effects. To differentiate between the actions of RONS and modified proteins/amino acids on the treatment of cancer cells, we compared the effects of PTM and PTW on two different pancreatic ductal adenocarcinomas (MiaPaca-2, BxPc3) and pancreatic stellate cells

(PSCs) (hPSC128-SV). PSCs closely interact with cancer cells to create a tumor-promoting environment that stimulates local tumor progression and metastasis. We treated culture media and deionized water with a cold atmospheric plasma (CAP) jet, and subsequently applied this PTM/PTW at various ratios to the pancreatic cancer and PSC cell lines. We evaluated cell death, intracellular ROS concentrations and the mRNA expression profiles of four oxidative stress-related genes, i.e. Mitogen-activated protein kinase 7 (MAPK7), B-cell lymphoma 2 (BCL2), Checkpoint kinase 1 (CHEK1) and DNA damage-inducible transcript 3, also known as C/EBP homologous protein (CHOP). Our findings demonstrate that PTM and PTW have a similar efficacy to kill pancreatic cancer cells, while PTW is slightly more effective in killing PSCs, as compared to PTM. Furthermore, we observed an enhancement of the intracellular ROS concentrations in both pancreatic cancer cells and PSCs. Thus, it is likely that under our experimental conditions, the anti-cancer activity of PTM can be attributed more to the RONS present in the treated liquid, than to the modification of proteins/amino acids in the media. Furthermore, the fact that the chemo-resistant PSCs were killed by PTM/PTW may offer possibilities for new anti-cancer therapies for pancreatic cancer cells, including PSCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000434266900001 Publication Date 2018-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited (up) 6 Open Access OpenAccess
Notes We gratefully acknowledge financial support from the Research Foundation—Flanders (FWO) (grant number 12J5617N) and from the European Marie Skłodowska–Curie Individual Fellowship ‘Anticancer-PAM’ within Horizon2020 (grant number 743546). We also thank Atsushi Masamune (Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi Prefecture, Japan) for providing us with human PSCs (hPSC128-SV) for this study. Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @c:irua:151962 Serial 4997
Permanent link to this record
 

 
Author Attri, P.; Han, J.; Choi, S.; Choi, E.H.; Bogaerts, A.; Lee, W.
Title CAP modifies the structure of a model protein from thermophilic bacteria: mechanisms of CAP-mediated inactivation Type A1 Journal article
Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 8 Issue 1 Pages 10218
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma (CAP) has great potential for sterilization in the food industry, by deactivation of thermophilic bacteria, but the underlying mechanisms are largely unknown. Therefore, we investigate here whether CAP is able to denature/modify protein from thermophilic bacteria. We focus on MTH1880 (MTH) from Methanobacterium thermoautotrophicum as model protein, which we treated with dielectric barrier discharge (DBD) plasma operating in air for 10, 15 and 20 mins. We analysed the structural changes of MTH using circular dichroism, fluorescence and NMR spectroscopy, as well as the thermal and chemical denaturation, upon CAP treatment. Additionally, we performed molecular dynamics (MD) simulations to determine the stability, flexibility and solvent accessible surface area (SASA) of both the native and oxidised protein.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000437414500004 Publication Date 2018-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited (up) 6 Open Access OpenAccess
Notes We gratefully acknowledge the European Marie Skłodowska-Curie Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). This work was also supported by NRF-2017R1A2B2008483 to W.L. through the National Research Foundation of Korea (NRF) and BK+ program (J.H.). E.H.C. acknowledges the NRF (NRF-2016K1A4A3914113 and No. 20100027963). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 4.259
Call Number PLASMANT @ plasmant @c:irua:152817c:irua:152431 Serial 5002
Permanent link to this record
 

 
Author Van Loenhout, J.; Flieswasser, T.; Freire Boullosa, L.; De Waele, J.; Van Audenaerde, J.; Marcq, E.; Jacobs, J.; Lin, A.; Lion, E.; Dewitte, H.; Peeters, M.; Dewilde, S.; Lardon, F.; Bogaerts, A.; Deben, C.; Smits, E.
Title Cold Atmospheric Plasma-Treated PBS Eliminates Immunosuppressive Pancreatic Stellate Cells and Induces Immunogenic Cell Death of Pancreatic Cancer Cells Type A1 Journal article
Year 2019 Publication Cancers Abbreviated Journal Cancers
Volume 11 Issue 10 Pages 1597
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory for Experimental Hematology (LEH); Center for Oncological Research (CORE)
Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with a low response to treatment and a five-year survival rate below 5%. The ineffectiveness of treatment is partly because of an immunosuppressive tumor microenvironment, which comprises tumor-supportive pancreatic stellate cells (PSCs). Therefore, new therapeutic strategies are needed to tackle both the immunosuppressive PSC and pancreatic cancer cells (PCCs). Recently, physical cold atmospheric plasma consisting of reactive oxygen and nitrogen species has emerged as a novel treatment option for cancer. In this study, we investigated the cytotoxicity of plasma-treated phosphate-buffered saline (pPBS) using three PSC lines and four PCC lines and examined the immunogenicity of the induced cell death. We observed a decrease in the viability of PSC and PCC after pPBS treatment, with a higher efficacy in the latter. Two PCC lines expressed and released damage-associated molecular patterns characteristic of the induction of immunogenic cell death (ICD). In addition, pPBS-treated PCC were highly phagocytosed by dendritic cells (DCs), resulting in the maturation of DC. This indicates the high potential of pPBS to trigger ICD. In contrast, pPBS induced no ICD in PSC. In general, pPBS treatment of PCCs and PSCs created a more immunostimulatory secretion profile (higher TNF-α and IFN-γ, lower TGF-β) in coculture with DC. Altogether, these data show that plasma treatment via pPBS has the potential to induce ICD in PCCs and to reduce the immunosuppressive tumor microenvironment created by PSCs. Therefore, these data provide a strong experimental basis for further in vivo validation, which might potentially open the way for more successful combination strategies with immunotherapy for PDAC.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000498826000194 Publication Date 2019-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (up) 6 Open Access
Notes Universiteit Antwerpen, NA ; Fonds Wetenschappelijk Onderzoek, 11E7719N 1121016N 1S32316N 12S9218N 12E3916N ; Agentschap Innoveren en Ondernemen, 141433 ; Kom op tegen Kanker, NA ; Stichting Tegen Kanker, STK2014-155 ; The authors express their gratitude to Christophe Hermans, Céline Merlin, Hilde Lambrechts, and Hans de Reu for technical assistance; and to VITO for the use of the MSD reader (Mol, Belgium). Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:163328 Serial 5436
Permanent link to this record
 

 
Author Kelly, S.; Mercer, E.; De Meyer, R.; Ciocarlan, R.-G.; Bals, S.; Bogaerts, A.
Title Microwave plasma-based dry reforming of methane: Reaction performance and carbon formation Type A1 Journal article
Year 2023 Publication Journal of CO2 utilization Abbreviated Journal Journal of CO2 Utilization
Volume 75 Issue Pages 102564
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract e investigate atmospheric pressure microwave (MW) plasma (2.45 GHz) conversion in CO2 and CH4 mixtures (i.e., dry reforming of methane, DRM) focusing on reaction performance and carbon formation. Promising energy costs of ~2.8–3.0 eV/molecule or ~11.1–11.9 kJ/L are amongst the best performance to date considering the current state-of-the-art for plasma-based DRM for all types of plasma. The conversion is in the range of ~46–49% and ~55–67% for CO2 and CH4, respectively, producing primarily syngas (i.e., H2 and CO) with H2/CO ratios of ~0.6–1 at CH4 fractions ranging from 30% to 45%. Water is the largest byproduct with levels ranging ~7–14% in the exhaust. Carbon particles visibly impact the plasma at higher CH4 fractions (> 30%), where they become heated and incandescent. Particle luminosity increases with increasing CH4 fractions, with the plasma becoming unstable near a 1:1 mixture (i.e., > 45% CH4). Electron microscopy of the carbon material reveals an agglomerated morphology of pure carbon nanoparticles. The mean particle size is determined as ~20 nm, free of any metal contamination, consistent with the electrode-less MW design.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001065310000001 Publication Date 2023-08-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.7 Times cited (up) 6 Open Access OpenAccess
Notes We acknowledge financial support by a European Space Agency (ESA) Open Science Innovation Platform study (contract no. 4000137001/21/NL/GLC/ov), the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), the Excellence of Science FWOFNRS PLASyntH2 project (FWO grant no. G0I1822N and EOS no. 4000751) and the Methusalem project of the University of Antwerp Approved Most recent IF: 7.7; 2023 IF: 4.292
Call Number PLASMANT @ plasmant @c:irua:198155 Serial 8807
Permanent link to this record
 

 
Author Bultinck, E.; Bogaerts, A.
Title Characterization of an Ar/O2 magnetron plasma by a multi-species Monte Carlo model Type A1 Journal article
Year 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 20 Issue 4 Pages 045013-045013,12
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A combined Monte Carlo (MC)/analytical surface model is developed to study the plasma processes occurring during the reactive sputter deposition of TiOx thin films. This model describes the important plasma species with a MC approach (i.e. electrons, Ar+ ions, {\rm O}_2
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000295829800015 Publication Date 2011-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited (up) 7 Open Access
Notes Approved Most recent IF: 3.302; 2011 IF: 2.521
Call Number UA @ lucian @ c:irua:89732 Serial 316
Permanent link to this record