toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Vortex matter in the presence of magnetic pinning centra Type A1 Journal article
  Year 2003 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys  
  Volume 130 Issue 3/4 Pages 311-320  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000180742900013 Publication Date 2003-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.3 Times cited (up) 3 Open Access  
  Notes Approved Most recent IF: 1.3; 2003 IF: 1.171  
  Call Number UA @ lucian @ c:irua:44988 Serial 3875  
Permanent link to this record
 

 
Author Xu, W.; Peeters, F.M.; Devreese, J.T. openurl 
  Title Warm-electron transport in a two-dimensional semiconductor Type A1 Journal article
  Year 1992 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech  
  Volume 7 Issue Pages 1251-1256  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1992JT73000006 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.19 Times cited (up) 3 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:2915 Serial 3903  
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Bogaerts, A.; Neyts, E.C. url  doi
openurl 
  Title Selective Plasma Oxidation of Ultrasmall Si Nanowires Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages 472-477  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Device performance of Si|SiOx core-shell based nanowires critically depends on the exact control over the oxide thickness. Low-temperature plasma oxidation is a highly promising alternative to thermal oxidation allowing for improved control over the oxidation process, in particular for ultrasmall Si nanowires. We here elucidate the room temperature plasma oxidation mechanisms of ultrasmall Si nanowires using hybrid molecular dynamics / force-bias Monte Carlo simulations. We demonstrate how the oxidation and concurrent water formation mechanisms are a function of the oxidizing plasma species and we demonstrate how the resulting core-shell oxide thickness can be controlled through these species. A new mechanism of water formation is discussed in detail. The results provide a detailed atomic level explanation of the oxidation process of highly curved Si surfaces. These results point out a route toward plasma-based formation of ultrathin core-shell Si|SiOx nanowires at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368562200057 Publication Date 2015-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (up) 3 Open Access  
  Notes U.K. and M.Y. gratefully acknowledge financial support from the Research Foundation – Flanders (FWO), Grants 12M1315N and 1200216N. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 4.536  
  Call Number c:irua:130677 Serial 4002  
Permanent link to this record
 

 
Author Milovanovic, S.P.; Peeters, F.M. pdf  url
doi  openurl
  Title Characterization of the size and position of electron-hole puddles at a graphene p-n junction Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 27 Issue 27 Pages 105203  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The effect of an electron-hole puddle on the electrical transport when governed by snake states in a bipolar graphene structure is investigated. Using numerical simulations we show that information on the size and position of the electron-hole puddle can be obtained using the dependence of the conductance on magnetic field and electron density of the gated region. The presence of the scatterer disrupts snake state transport which alters the conduction pattern. We obtain a simple analytical formula that connects the position of the electron-hole puddle with features observed in the conductance. The size of the electron-hole puddle is estimated from the magnetic field and gate potential that maximizes the effect of the puddle on the electrical transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000369849200003 Publication Date 2016-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited (up) 3 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. We acknowledge interesting correspondence with Thiti Taychatanapat. Approved Most recent IF: 3.44  
  Call Number c:irua:131907 Serial 4025  
Permanent link to this record
 

 
Author Schoeters, B.; Leenaerts, O.; Pourtois, G.; Partoens, B. pdf  url
doi  openurl
  Title Ab-initio study of the segregation and electronic properties of neutral and charged B and P dopants in Si and Si/SiO2 nanowires Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages 104306  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We perform first-principles calculations to investigate the preferred positions of B and P dopants, both neutral and in their preferred charge state, in Si and Si/SiO2 core-shell nanowires (NWs). In order to understand the observed trends in the formation energy, we isolate the different effects that determine these formation energies. By making the distinction between the unrelaxed and the relaxed formation energy, we separate the impact of the relaxation from that of the chemical environment. The unrelaxed formation energies are determined by three effects: (i) the effect of strain caused by size mismatch between the dopant and the host atoms, (ii) the local position of the band edges, and (iii) a screening effect. In the case of the SiNW (Si/SiO2 NW), these effects result in an increase of the formation energy away from the center (interface). The effect of relaxation depends on the relative size mismatch between the dopant and host atoms. A large size mismatch causes substantial relaxation that reduces the formation energy considerably, with the relaxation being more pronounced towards the edge of the wires. These effects explain the surface segregation of the B dopants in a SiNW, since the atomic relaxation induces a continuous drop of the formation energy towards the edge. However, for the P dopants, the formation energy starts to rise when moving from the center but drops to a minimum just next to the surface, indicating a different type of behavior. It also explains that the preferential location for B dopants in Si/SiO2 core-shell NWs is inside the oxide shell just next to the interface, whereas the P dopants prefer the positions next to the interface inside the Si core, which is in agreement with recent experiments. These preferred locations have an important impact on the electronic properties of these core-shell NWs. Our simulations indicate the possibility of hole gas formation when B segregates into the oxide shell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000361636900031 Publication Date 2015-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited (up) 3 Open Access  
  Notes This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish government and the Universiteit Antwerpen. Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:128729 Serial 4056  
Permanent link to this record
 

 
Author Lu, J.B.; Schryvers, D. pdf  url
doi  openurl
  Title Microstructure and phase composition characterization in a Co38Ni33Al29 ferromagnetic shape memory alloy Type A1 Journal article
  Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact  
  Volume 118 Issue 118 Pages 9-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy was performed to investigate the microstructures of a secondary phase and its surrounding matrix in a Co38Ni33Al29 ferromagnetic shape memory alloy. The secondary phase shows a γ′ L12 structure exhibiting a dendritic morphology with enclosed B2 austenite regions while the matrix shows the L10 martensitic structure. A secondary phase-austenite-martensite sandwich structure with residual austenite ranging from several hundred nanometers to several micrometers wide is observed at the secondary phase-martensite interface due to the depletion of Co and enrichment of Al in the chemical gradient zone and the effect of the strong martensitic start temperature dependency of the element concentrations. The crystallographic orientation relationship of the secondary phase and the B2 austenite fits the Kurdjumov-Sachs relationship.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383292000002 Publication Date 2016-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited (up) 3 Open Access  
  Notes J.B. Lu thanks the Belgian Science Ministry (Belspo) for support of his post-doctoral research stay at EMAT. We thank S. Sedlakova-Ignacova from the Institute of Physics in Prague, Czech Republic, for providing samples. Approved Most recent IF: 2.714  
  Call Number c:irua:133100 Serial 4071  
Permanent link to this record
 

 
Author Batuk, D.; Tsirlin, A.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Bi(3n+1)Ti7Fe(3n-3)O(9n+11) Homologous Series: Slicing Perovskite Structure with Planar Interfaces Containing Anatase-like Chains Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue 55 Pages 1245-1257  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The n = 3-6 members of a new perovskite-based homologous series Bi(3n+1)Ti7Fe(3n-3)O(9n+11) are reported. The crystal structure of the n = 3 Bi10Ti7Fe6O38 member is refined using a combination of X-ray and neutron powder diffraction data (a = 11.8511(2) A, b = 3.85076(4) A, c = 33.0722(6) A, S.G. Immm), unveiling the partially ordered distribution of Ti(4+) and Fe(3+) cations and indicating the presence of static random displacements of the Bi and O atoms. All Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures are composed of perovskite blocks separated by translational interfaces parallel to the (001)p perovskite planes. The thickness of the perovskite blocks increases with n, while the atomic arrangement at the interfaces remains the same. The interfaces comprise chains of double edge-sharing (Fe,Ti)O6 octahedra connected to the octahedra of the perovskite blocks by sharing edges and corners. This configuration shifts the adjacent perovskite blocks relative to each other over a vector (1/2)[110]p and creates S-shaped tunnels along the [010] direction. The tunnels accommodate double columns of the Bi(3+) cations, which stabilize the interfaces owing to the stereochemical activity of their lone electron pairs. The Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures can be formally considered either as intergrowths of perovskite modules and polysynthetically twinned modules of the Bi2Ti4O11 structure or as intergrowths of the 2D perovskite and 1D anatase fragments. Transmission electron microscopy (TEM) on Bi10Ti7Fe6O38 reveals that static atomic displacements of Bi and O inside the perovskite blocks are not completely random; they are cooperative, yet only short-range ordered. According to TEM, the interfaces can be laterally shifted with respect to each other over +/-1/3a, introducing an additional degree of disorder. Bi10Ti7Fe6O38 is paramagnetic in the 1.5-1000 K temperature range due to dilution of the magnetic Fe(3+) cations with nonmagnetic Ti(4+). The n = 3, 4 compounds demonstrate a high dielectric constant of 70-165 at room temperature.  
  Address Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology , Nobelya str. 3, 143026 Moscow, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000369356800031 Publication Date 2016-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited (up) 3 Open Access  
  Notes We are grateful to the Laboratory for Neutron Scattering and Imaging of Paul Scherrer Institut (LNS PSI, Villigen, Switzerland) for granting beam time at the HRPT diffrac- tometer and to Dr. Denis Sheptyakov for the technical support during the experiment. We are also grateful to Valery Verchenko for his help with magnetization measurements. The work has been supported by the Russian Science Foundation (grant 14-13-00680). A.A.T. was partly supported by the Federal Ministry for Education and Science through a Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 4.857  
  Call Number c:irua:132247 Serial 4073  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Tsirlin, A.A.; Hadermann, J.; Abakumov, A.M. pdf  url
doi  openurl
  Title Trapping of Oxygen Vacancies at Crystallographic Shear Planes in Acceptor-Doped Pb-Based Ferroelectrics Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue 54 Pages 14787-14790  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The defect chemistry of the ferroelectric material PbTiO3 after doping with Fe(III) acceptor ions is reported. Using advanced transmission electron microscopy and powder X-ray and neutron diffraction, we demonstrate that even at concentrations as low as circa 1.7% (material composition approximately ABO2.95), the oxygen vacancies are trapped into extended planar defects, specifically crystallographic shear planes. We investigate the evolution of these defects upon doping and unravel their detailed atomic structure using the formalism of superspace crystallography, thus unveiling their role in nonstoichiometry in the Pb-based perovskites.  
  Address Chemistry Department, Moscow State University, 119991, Moscow (Russia). artem.abakumov@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000367723400031 Publication Date 2015-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited (up) 3 Open Access  
  Notes A.M.A. is grateful to the Russian Science Foundation (grant 14-13-00680). AT was funded by the Mobilitas grant MTT77 of the ESF and by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number c:irua:131104 Serial 4080  
Permanent link to this record
 

 
Author Kirilenko, D.A.; Brunkov, P.N. pdf  doi
openurl 
  Title Measuring the height-to-height correlation function of corrugation in suspended graphene Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 165 Issue 165 Pages 1-7  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract Nanocorrugation of 2D crystals is an important phenomenon since it affects their electronic and mechanical properties. The corrugation may have various sources; one of them is flexural phonons that, in particular, are responsible for the thermal conductivity of graphene. A study of corrugation of just the suspended graphene can reveal much of valuable information on the physics of this complicated phenomenon. At the same time, the suspended crystal nanorelief can hardly be measured directly because of high flexibility of the 2D crystal. Moreover, the relief portion related to rapid out-of-plane oscillations (flexural phonons) is also inaccessible by such measurements. Here we present a technique for measuring the Fourier components of the height-height correlation function H(q) of suspended graphene which includes the effect of flexural phonons. The technique is based on the analysis of electron diffraction patterns. The H(q) is measured in the range of wavevectors q approximately 0.4-4.5nm(-1). At the upper limit of this range H(q) does follow the T/kappaq(4) law. So, we measured the value of suspended graphene bending rigidity kappa=1.2+/-0.4eV at ambient temperature T approximately 300K. At intermediate wave vectors, H(q) follows a slightly weaker exponent than theoretically predicted q(-3.15) but is closer to the results of the molecular dynamics simulation. At low wave vectors, the dependence becomes even weaker, which may be a sign of influence of charge carriers on the dynamics of undulations longer than 10nm. The technique presented can be used for studying physics of flexural phonons in other 2D materials.  
  Address Ioffe Institute, Politekhnicheskaya ul. 26, 194021 St-Petersburg, Russia; ITMO University, Kronverksky pr. 49, 197101 St. Petersburg, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000375946200001 Publication Date 2016-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links  
  Impact Factor 2.843 Times cited (up) 3 Open Access  
  Notes D.K. thanks the RFBR (Grant no. 16-32-60165) for the partial support of this research. The work was carried out in part at the Joint Research Center “Material Science and Characterization in Advanced Technologies” (St-Petersburg, Russia) under the financial support from the Ministry of Education and Science of the Russian Federation (Agreement 14.621.21.0007, 04.12.2014, id RFMEFI62114X0007, the use of the Jeol JEM-2100F microscope) and at EMAT, Universiteit Antwerpen (Antwerpen, Belgium), (the use of the FEI Tecnai G2 microscope). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ Serial 4124  
Permanent link to this record
 

 
Author Wang, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Effective ionisation coefficients and critical breakdown electric field of CO2at elevated temperature: effect of excited states and ion kinetics Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 055025  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Electrical breakdown by the application of an electric field occurs more easily in hot gases than in cold gases because of the extra electron-species interactions that occur as a result of dissociation, ionization and excitation at higher temperature. This paper discusses some overlooked physics and clarifies inaccuracies in the evaluation of the effective ionization coefficients and the critical reduced breakdown electric field of CO2 at elevated temperature, considering the influence of excited states and ion kinetics. The critical reduced breakdown electric field is obtained by balancing electron generation and loss mechanisms using the electron energy distribution function (EEDF) derived from the Boltzmann transport equation under the two-term approximation. The equilibrium compositions of the hot gas mixtures are determined based on Gibbs free energy minimization considering the ground states as well as vibrationally and electronically excited states as independent species, which follow a Boltzmann distribution with a fixed excitation temperature. The interaction cross sections between electrons and the excited species, not reported previously, are properly taken into account. Furthermore, the ion kinetics, including electron–ion recombination, associative electron detachment, charge transfer and ion conversion into stable negative ion clusters, are also considered. Our results indicate that the excited species lead to a greater population of high-energy electrons at higher gas temperature and this affects the Townsend rate coefficients (i.e. of electron impact ionization and attachment), but the critical reduced breakdown electric field strength of CO2 is only affected when also properly accounting for the ion kinetics. Indeed, the latter greatly influences the effective ionization coefficients and hence the critical reduced breakdown electric field at temperatures above 1500 K. The rapid increase of the dissociative electron attachment cross-section of molecular oxygen with rising vibrational quantum number leads to a larger electron loss rate and this enhances the critical reduced breakdown electric field strength in the temperature range where the concentration of molecular oxygen is relatively high. The results obtained in this work show reasonable agreement with experimental results from literature, and are important for the evaluation of the dielectric strength of CO2 in a highly reactive environment at elevated temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385494000006 Publication Date 2016-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited (up) 3 Open Access  
  Notes Skłodowska-Curie Individual Fellowship ‘GlidArc’ within Horizon2020 (Grant No.657304) and the FWO project (grant G.0383.16N). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:135515 Serial 4281  
Permanent link to this record
 

 
Author Galvan-Moya; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title Chainlike transitions in Wigner crystals : sequential versus nonsequential Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 064112  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structural transitions of the ground state of a system of repulsively interacting particles confined in a quasi-one-dimensional channel, and the effect of the interparticle interaction as well as the functional form of the confinement potential on those transitions are investigated. Although the nonsequential ordering of transitions (non-SOT), i.e., the 1 – 2 – 4 – 3 – 4 – 5 – 6 – ... sequence of chain configurations with increasing density, is widely robust as predicted in a number of theoretical studies, the sequential ordering of transitions (SOT), i.e., the 1 – 2 – 3 – 4 – 5 – 6 – ... chain, is found as the ground state for long-ranged interparticle interaction and hard-wall-like confinement potentials. We found an energy barrier between every two different phases around its transition point, which plays an important role in the preference of the system to follow either a SOT or a non-SOT. However, that preferential transition requires also the stability of the phases during the transition. Additionally, we analyze the effect of a small structural disorder on the transition between the two phases around its transition point. Our results show that a small deformation of the triangular structure changes dramatically the picture of the transition between two phases, removing in a considerable region the non-SOT in the system. This feature could explain the fact that the non-SOT is, up to now, not observed in experimental systems, and suggests a more advanced experimental setup to detect the non-SOT.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000359859400003 Publication Date 2015-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 3 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Odysseus and Methusalem programmes of the Flemish government. Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:127753 Serial 4148  
Permanent link to this record
 

 
Author Ercolani, G.; Gorle, C.; Garcia Sánchez, C.; Corbari, C.; Mancini, M. pdf  doi
openurl 
  Title RAMS and WRF sensitivity to grid spacing in large-eddy simulations of the dry convective boundary layer Type A1 Journal article
  Year 2015 Publication Computers and fluids Abbreviated Journal Comput Fluids  
  Volume 123 Issue 123 Pages 54-71  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Large-eddy simulations (LESS) are frequently used to model the planetary boundary layer, and the choice of the grid cell size, numerical schemes and sub grid model can significantly influence the simulation results. In the present paper the impact of grid spacing on LES of an idealized atmospheric convective boundary layer (CBL), for which the statistics and flow structures are well understood, is assessed for two mesoscale models: the Regional Atmospheric Modeling System (RAMS) and the Weather Research and Forecasting model (WRF). Nine simulations are performed on a fixed computational domain (6 x 6 x 2 km), combining three different horizontal (120, 60, 30 m) and vertical (20, 10, 5 m) spacings. The impact of the cell size on the CBL is investigated by comparing turbulence statistics and velocity spectra. The results demonstrate that both WRF and RAMS can perform LES of the CBL under consideration without requiring extremely high computational loads, but they also indicate the importance of adopting a computational grid that is adequate for the numerical schemes and subgrid models used. In both RAMS and WRF a horizontal cell size of 30 m is required to obtain a suitable turbulence reproduction throughout the CBL height. Considering the vertical grid spacing, WRF produced similar results for all the three tested values, while in RAMS it should be ensured that the aspect ratio of the cells does not exceed a value of 3. The two models were found to behave differently in function of the grid resolution, and they have different shortcomings in their prediction of CBL turbulence. WRF exhibits enhanced damping at the smallest scales, while RAMS is prone to the appearance of spurious fluctuations in the flow when the grid aspect ratio is too high. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000365367500006 Publication Date 2015-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-7930 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.313 Times cited (up) 3 Open Access  
  Notes Approved Most recent IF: 2.313; 2015 IF: 1.619  
  Call Number UA @ lucian @ c:irua:130200 Serial 4236  
Permanent link to this record
 

 
Author Zhao, H.J.; Wu, W.; Zhou, W.; Shi, Z.X.; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title Reentrant dynamics of driven pancake vortices in layered superconductors Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 024514  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The dynamics of driven pancake vortices in layered superconductors is studied using molecular-dynamics simulations. We found that, with increasing driving force, for strong interlayer coupling, the preexisted vortex lines either directly depin or first transform to two-dimensional (2D) pinned states before they are depinned, depending on the pinning strength. In a narrow region of pinning strengths, we found an interesting repinning process, which results in a negative differential resistance. For weak interlayer coupling, individually pinned pancake vortices first form disordered 2D flow and then transform to ordered three-dimensional (3D) flow with increasing driving force. However, for extremely strong pinning, the random pinning-induced thermal-like Langevin forces melt 3D vortex lines, which results in a persistent 2D flow in the fast-sliding regime. In the intermediate regime, the peak effect is found: With increasing driving force, the moving pancake vortices first crystallize to moving 3D vortex lines, and then these 3D vortex lines are melted, leading to the appearance of a reentrant 2D flow state. Our results are summarized in a dynamical phase diagram.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380097800006 Publication Date 2016-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 3 Open Access  
  Notes ; We acknowledge useful discussions with C. Olson Reichhardt. This work was supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20150595), National Natural Science Foundation of China (Grants No. NSFC-U1432135 and No. 11611140101). V.R.M. acknowledges support from the “Odysseus” program of the Flemish Government and Flemish Science Foundation (FWO-Vl), the FWO-Vl, and the Research Fund of the University of Antwerp. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:134943 Serial 4238  
Permanent link to this record
 

 
Author Wang, W.; Berthelot, A.; Kolev, S.; Tu, X.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 065012  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract CO 2 conversion by a gliding arc plasma is gaining increasing interest, but the underlying mechanisms for an energy-efficient process are still far from understood. Indeed, the chemical complexity of the non-equilibrium plasma poses a challenge for plasma modeling due to the huge computational load. In this paper, a one-dimensional (1D) gliding arc model is developed in a cylindrical frame, with a detailed non-equilibrium CO 2 plasma chemistry set, including the CO 2 vibrational kinetics up to the dissociation limit. The model solves a set of time- dependent continuity equations based on the chemical reactions, as well as the electron energy balance equation, and it assumes quasi-neutrality in the plasma. The loss of plasma species and heat due to convection by the transverse gas flow is accounted for by using a characteristic frequency of convective cooling, which depends on the gliding arc radius, the relative velocity of the gas flow with respect to the arc and on the arc elongation rate. The calculated values for plasma density and plasma temperature within this work are comparable with experimental data on gliding arc plasma reactors in the literature. Our calculation results indicate that excitation to the vibrational levels promotes efficient dissociation in the gliding arc, and this is consistent with experimental investigations of the gliding arc based CO 2 conversion in the literature. Additionally, the dissociation of CO 2 through collisions with O atoms has the largest contribution to CO 2 splitting under the conditions studied. In addition to the above results, we also demonstrate that lumping the CO 2 vibrational states can bring a significant reduction of the computational load. The latter opens up the way for 2D or 3D models with an accurate description of the CO 2 vibrational kinetics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000386605100002 Publication Date 2016-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited (up) 3 Open Access  
  Notes This research was supported by the European Marie Skłodowska-Curie Individual Fellowship ‘GlidArc’ within Horizon2020 (Grant No. 657304) and by the FWO project (grant G.0383.16N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:135990 Serial 4286  
Permanent link to this record
 

 
Author Sieger, M.; Pahlke, P.; Ottolinger, R.; Stafford, B.H.; Lao, M.; Meledin, A.; Bauer, M.; Eisterer, M.; Van Tendeloo, G.; Schultz, L.; Nielsch, K.; Hühne, R. url  doi
openurl 
  Title Influence of substrate tilt angle on the incorporation of BaHfO3 in thick YBa2Cu3O7-δ films Type A1 Journal article
  Year 2016 Publication IEEE transactions on applied superconductivity Abbreviated Journal  
  Volume 27 Issue 27 Pages 1-4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High critical current densities can be realized in high-temperature superconductors such as YBa2Cu3O7-δ (YBCO) by controlling density, shape, size and direction of a secondary phase. Whereas the dependence on the growth rate and deposition temperature has been widely studied as key parameters for nano-engineering the pinning landscape, the vicinal tilt of the substrate surface might have an additional influence. Therefore, we deposited 6 mol% BaHfO3 (BHO) doped YBCO on SrTiO3 (STO) substrates with vicinal angles α between 0° and 40° to identify the influence of the tilt on the growth mode of BHO. An undisturbed epitaxial growth of the superconductor as well as an epitaxial integration of the BHO phase in the YBCO matrix is observed for all vicinal angles investigated. The critical temperature is constant up to α = 20°, whereas the self-field critical current density at 77 K starts to decrease above 10°. A detailed structural analysis of the film cross sections showed that the growth mode of BHO changes already for a vicinal tilt of 2° from a pure c-axis oriented growth to a layered structure with BHO aligned parallel to the YBCO ab-plane. We identified a strong influence of such a microstructure on the current flow in BHO doped YBCO films on STO substrates as well as on MgO based coated conductors prepared by inclined substrate deposition  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Electrical and Electronics Engineers (IEEE) Place of Publication Editor  
  Language Wos 000418469400001 Publication Date 2016-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) 3 Open Access  
  Notes This work was supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7 / 2007 – 2013) under Grant Agreement n.280432.The authors would like to thank R. Nast, M. Reitner, M. Kühnel, U. Fiedler and J. Scheiter for technical assistance. Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Sieger_2016a c:irua:138603 Serial 4317  
Permanent link to this record
 

 
Author De Beule, C.; Ziani, N.T.; Zarenia, M.; Partoens, B.; Trauzettel, B. url  doi
openurl 
  Title Correlation and current anomalies in helical quantum dots Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 155111  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the ground-state properties of a quantum dot defined on the surface of a strong three-dimensional time-reversal invariant topological insulator. Confinement is realized by ferromagnetic barriers and Coulomb interaction is treated numerically for up to seven electrons in the dot. Experimentally relevant intermediate interaction strengths are considered. The topological origin of the dot has several consequences: (i) spin polarization increases and the ground state exhibits quantum phase transitions at specific angular momenta as a function of interaction strength, (ii) the onset of Wigner correlations takes place mainly in one spin channel, and (iii) the ground state is characterized by a robust persistent current that changes sign as a function of the distance from the center of the dot.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385242200001 Publication Date 2016-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 3 Open Access  
  Notes ; We thank F. Cavaliere, F. Crepin, C. Felser, and B. Yan for interesting discussions, and S. Curreli for performing the finite-element calculation of the magnetic field in COMSOL. C.D.B. and M.Z. are supported by the Flemish Research Foundation (FWO). N.T.Z. and B.T. acknowledge financial support by the DFG (SPP1666 and SFB1170 “ToCoTronics”), the Helmholtz Foundation (VITI), and the ENB Graduate School on “Topological Insulators.” ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:137234 Serial 4351  
Permanent link to this record
 

 
Author Kim, W.; Covaci, L.; Dogan, F.; Marsiglio, F. doi  openurl
  Title Quantum mechanics of spin transfer in coupled electron-spin chains Type A1 Journal article
  Year 2007 Publication Epl Abbreviated Journal Epl-Europhys Lett  
  Volume 79 Issue 6 Pages 67004  
  Keywords A1 Journal article  
  Abstract The manner in which spin-polarized electrons interact with a magnetized thin film is currently described by a semi-classical approach. This in turn provides our present understanding of the spin transfer, or spin torque phenomenon. However, spin is an intrinsically quantum-mechanical quantity. Here, we make the first strides towards a fully quantum-mechanical description of spin transfer through spin currents interacting with a Heisenberg-coupled spin chain. Because of quantum entanglement, this requires a formalism based on the density matrix approach. Our description illustrates how individual spins in the chain time-evolve as a result of spin transfer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000250409500023 Publication Date 2007-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075 ISBN Additional Links  
  Impact Factor 1.957 Times cited (up) 3 Open Access  
  Notes Approved Most recent IF: 1.957; 2007 IF: 2.206  
  Call Number UA @ lucian @ Serial 4430  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Tyablikov, O.A.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Crystal Structure, Defects, Magnetic and Dielectric Properties of the Layered Bi3n+1Ti7Fe3n-3,O9n+11 Perovskite-Anatase lntergrowths Type A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 56 Issue 56 Pages 931-942  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Bi3n+1Ti7Fe3n-3,O9n+11 materials are built of (001)(p) plane parallel perovskite blocks with a thickness of n (Ti,Fe)O-6 octahedra, separated by periodic translational interfaces. The interfaces are based on anatase-like chains of edge -sharing (Ti,Fe)O-6 octahedra. Together with the octahedra of the perovskite blocks, they create S-shaped tunnels stabilized by lone pair Bi3+ cations. In this work, the structure of the n = 4-6 Bi3n+1Ti7Fe3n-3,O9n+11 homologues is analyzed in detail using advanced transmission electron microscopy, powder X-ray diffraction, and Mossbauer spectroscopy. The connectivity of the anatase-like chains to the perovskite blocks results in,a 3ap periodicity along the interfaces, so that they can be located either on top of each other or with shifts of +/- a(p) along [100](p). The ordered arrangement of the interfaces gives rise to orthorhombic Immm and monoclinic A2/m polymorphs with the unit cell parameters a = 3a(p), b = b(p), c = 2(n + 1)c(p) and a = 3a(p), b = b(p), c = 2(n + 1)c(p) – a(p), respectively. While the n = 3 compound is orthorhombic, the monoclinic modification is more favorable in higher homologues. The Bi3n+1Ti7Fe3n-3,O9n+11 structures demonstrate intricate patterns of atomic displacements in the perovskite blocks, which are supported by the stereochemical activity of the Bi3+ cations. These patterns are coupled to the cationic coordination of the oxygen atoms in the (Ti,Fe)O-2 layers at the border of the perovskite blocks. The coupling is strong in the 1/ = 3, 4 homologues, but gradually reduces with the increasing thickness of the perovskite blocks, so that, in the n = 6 compound, the dominant mode of atomic displacements is aligned along the interface planes. The displacements in the adjacent perovskite blocks tend to order antiparallel, resulting in an overall antipolar structure. The Bi3n+1Ti7Fe3n-3,O9n+11 materials demonstrate an unusual diversity of structure defects. The n = 4-6 homologues are robust antiferromagnets below T-N = 135, 220, and 295 K, respectively. They show a high dielectric constant that weakly increases with temperature and is relatively insensitive to the Ti/Fe ratio.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000392262400029 Publication Date 2016-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited (up) 3 Open Access Not_Open_Access  
  Notes ; The work was supported by the Russian Science Foundation (grant 14-13-00680). ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:141471 Serial 4495  
Permanent link to this record
 

 
Author Jalabert, D.; Pelloux-Gervais, D.; Béché, A.; Hartmann, J.M.; Gergaud, P.; Rouvière, J.L.; Canut, B. doi  openurl
  Title Depth strain profile with sub-nm resolution in a thin silicon film using medium energy ion scattering Type A1 Journal article
  Year 2012 Publication Physica Status Solidi A-Applications And Materials Science Abbreviated Journal Phys Status Solidi A  
  Volume 209 Issue 2 Pages 265-267  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The depth strain profile in silicon from the Si (001) substrate to the surface of a 2 nm thick Si/12 nm thick SiGe/bulk Si heterostructure has been determined by medium energy ion scattering (MEIS). It shows with sub-nanometer resolution and high strain sensitivity that the thin Si cap presents residual compressive strain caused by Ge diffusion coming from the fully strained SiGe layer underneath. The strain state of the SiGe buffer have been checked by X-ray diffraction (XRD) and nano-beam electron diffraction (NBED) measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303382700005 Publication Date 2011-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited (up) 3 Open Access  
  Notes Approved Most recent IF: 1.775; 2012 IF: 1.469  
  Call Number UA @ lucian @ c:irua:136430 Serial 4497  
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C. url  doi
openurl 
  Title Comment on “Generalized exclusion processes : transport coefficients” Type A1 Journal article
  Year 2016 Publication Physical review E Abbreviated Journal Phys Rev E  
  Volume 93 Issue 93 Pages 046101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In a recent paper, Arita et al. [Phys. Rev. E 90, 052108 (2014)] consider the transport properties of a class of generalized exclusion processes. Analytical expressions for the transport-diffusion coefficient are derived by ignoring correlations. It is claimed that these expressions become exact in the hydrodynamic limit. In this Comment,we point out that (i) the influence of correlations upon the diffusion does not vanish in the hydrodynamic limit, and (ii) the expressions for the self- and transport diffusion derived by Arita et al. are special cases of results derived in Becker et al. [Phys. Rev. Lett. 111, 110601 (2013)].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000374962100019 Publication Date 2016-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited (up) 3 Open Access  
  Notes Approved Most recent IF: 2.366  
  Call Number UA @ lucian @ c:irua:141060 Serial 4591  
Permanent link to this record
 

 
Author Fernández Becerra, V.; Milošević, M.V. pdf  doi
openurl 
  Title Dynamics of skyrmions and edge states in the resistive regime of mesoscopic p-wave superconductors Type A1 Journal article
  Year 2017 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 533 Issue 533 Pages 91-95  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In a mesoscopic sample of a chiral p-wave superconductor, novel states comprising skyrmions and edge states have been stabilized in out-of-plane applied magnetic field. Using the time-dependent Ginzburg-Landau equations we shed light on the dynamic response of such states to an external applied current. Three different regimes are obtained, namely, the superconducting (stationary), resistive (non-stationary) and normal regime, similarly to conventional s-wave superconductors. However, in the resistive regime and depending on the external current, we found that moving skyrmions and the edge state behave distinctly different from the conventional kinematic vortex, thereby providing new fingerprints for identification of p-wave superconductivity. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000395954100014 Publication Date 2016-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited (up) 3 Open Access  
  Notes Approved Most recent IF: 1.404  
  Call Number UA @ lucian @ c:irua:142534 Serial 4592  
Permanent link to this record
 

 
Author Alania, M.; De Backer, A.; Lobato, I.; Krause, F.F.; Van Dyck, D.; Rosenauer, A.; Van Aert, S. pdf  url
doi  openurl
  Title How precise can atoms of a nanocluster be located in 3D using a tilt series of scanning transmission electron microscopy images? Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 181 Issue 181 Pages 134-143  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In this paper, we investigate how precise atoms of a small nanocluster can ultimately be located in three dimensions (3D) from a tilt series of images acquired using annular dark field (ADF) scanning transmission electron microscopy (STEM). Therefore, we derive an expression for the statistical precision with which the 3D atomic position coordinates can be estimated in a quantitative analysis. Evaluating this statistical precision as a function of the microscope settings also allows us to derive the optimal experimental design. In this manner, the optimal angular tilt range, required electron dose, optimal detector angles, and number of projection images can be determined.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411170800016 Publication Date 2016-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 3 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483-ESTEEM2. The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N, G.0368.15N, and WO.010.16N) and a post-doctoral grant to A. De Backer, and from the DFG under contract No. RO-2057/4-2. Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ c:irua:144432 Serial 4618  
Permanent link to this record
 

 
Author Zhang, F.; Chevalier, J.; Olagnon, C.; Batuk, M.; Hadermann, J.; Van Meerbeek, B.; Vleugels, J. pdf  doi
openurl 
  Title Grain-boundary engineering for aging and slow-crack-growth resistant zirconia Type A1 Journal article
  Year 2017 Publication Journal of dental research Abbreviated Journal J Dent Res  
  Volume 96 Issue 7 Pages 774-779  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ceramic materials are prone to slow crack growth, resulting in strength degradation over time. Although yttria-stabilized zirconia (Y-TZP) ceramics have higher crack resistance than other dental ceramics, their aging susceptibility threatens their long-term performance in aqueous environments such as the oral cavity. Unfortunately, increasing the aging resistance of Y-TZP ceramics normally reduces their crack resistance. Our recently conducted systematic study of doping 3Y-TZP with various trivalent cations revealed that lanthanum oxide (La2O3) and aluminum oxide (Al2O3) have the most potent effect to retard the aging kinetics of 3Y-TZP. In this study, the crack-propagation behavior of La2O3 and Al2O3 co-doped 3Y-TZP ceramics was investigated by double-torsion methods. The grain boundaries were examined using scanning transmission electron microscopy and energy-dispersive spectroscopy (STEM-EDS). Correlating these analytic data with hydrothermal aging studies using different doping systems, a strategy to strongly bind the segregated dopant cations with the oxygen vacancies at the zirconia-grain boundary was found to improve effectively the aging resistance of Y-TZP ceramics without affecting the resistance to crack propagation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication St. Louis, Mo. Editor  
  Language Wos 000403934500010 Publication Date 2017-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0345 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.755 Times cited (up) 3 Open Access Not_Open_Access  
  Notes ; This research was supported by the Research Fund of KU Leuven under project 0T/ 10/052 and the Research Foundation-Flanders (FWO-Vlaanderen) under grant G.0431.10N. We thank J.W. Seo for TEM and sample preparations. F. Zhang thanks the Research Fund of KU Leuven for her postdoctoral fellowship (PDM/15/153) and the JECS-Trust for the travel grant (No. 201599) to perform double-torsion testing in the MATEIS lab of INSA, Lyon, France. Jerome Chevalier would like to dedicate this paper to Maria Cattani Lorente, who recently passed away under tragic conditions. She was deeply involved in the study of dental zirconia and we will miss her. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article. ; Approved Most recent IF: 4.755  
  Call Number UA @ lucian @ c:irua:144161 Serial 4660  
Permanent link to this record
 

 
Author Aussems, D.U.B.; Bal, K. M.; Morgan, T.W.; van de Sanden, M.C.M.; Neyts, E.C. url  doi
openurl 
  Title Atomistic simulations of graphite etching at realistic time scales Type A1 Journal article
  Year 2017 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 8 Issue 10 Pages 7160-7168  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Hydrogen–graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe timescale

limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of 1020 m2 s1. The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C–C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching – chemical erosion – is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411730500055 Publication Date 2017-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited (up) 3 Open Access OpenAccess  
  Notes DIFFER is part of the Netherlands Organisation for Scientic Research (NWO). K. M. B. is funded as a PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientic Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI. Approved Most recent IF: 8.668  
  Call Number PLASMANT @ plasmant @c:irua:145519 Serial 4707  
Permanent link to this record
 

 
Author Ghorbanfekr-Kalashami, H.; Peeters, F.M.; Novoselov, K.S.; Neek-Amal, M. pdf  url
doi  openurl
  Title Spatial design and control of graphene flake motion Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 6 Pages 060101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000406860300001 Publication Date 2017-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 3 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. M.N.-A. was supported by Iran National Science Foundation (INSF). K.S.N. was supported by the EU Graphene Flagship Program, European Research Council Synergy Grant Hetero2D, the Royal Society, Engineering and Physical Research Council (UK), US Army Research Office. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145166 Serial 4724  
Permanent link to this record
 

 
Author Weber, D.; Huber, M.; Gorelik, T.E.; Abakumov, A.M.; Becker, N.; Niehaus, O.; Schwickert, C.; Culver, S.P.; Boysen, H.; Senyshyn, A.; Poettgen, R.; Dronskowski, R.; Ressler, T.; Kolb, U.; Lerch, M. pdf  doi
openurl 
  Title Molybdenum oxide nitrides of the Mo2(O,N,\square)5 type : on the way to Mo2O5 Type A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 56 Issue 15 Pages 8782-8792  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Blue-colored molybdenum oxide nitrides of the Mo-2(O,N,square)(5) type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting (MoO6)-O-v units. The new materials are stable up to similar to 773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb9O24.9-type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo2O5. On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo2O5, backed by electronic-structure and phonon calculations from first principles, is given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000407405500026 Publication Date 2017-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited (up) 3 Open Access Not_Open_Access  
  Notes ; Financial support from the Deutsche Forschungsgemeinschaft (SPP 1415, LE 781/ 11-1, DR 342/22-2) is gratefully acknowledged. The authors are grateful to J. Barthel, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons Julich, Germany, for STEM image simulations. This work was further supported by Diamond Light Source (beamtime awards EE13560) within beamtime proposal SP13560. The Hamburg Synchrotron Radiation Laboratory, HASYLAB, and the FRM II, Garching, are acknowledged for providing beamtime. ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:145727 Serial 4744  
Permanent link to this record
 

 
Author Wang, H.; Wang, W.; Yan, J.D.; Qi, H.; Geng, J.; Wu, Y. pdf  doi
openurl 
  Title Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications Type A1 Journal article
  Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 50 Issue 39 Pages 395204  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al's derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto's electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000410390100001 Publication Date 2017-07-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited (up) 3 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.588  
  Call Number UA @ lucian @ c:irua:145603 Serial 4754  
Permanent link to this record
 

 
Author Vatanparast, M.; Egoavil, R.; Reenaas, T.W.; Verbeeck, J.; Holmestad, R.; Vullum, P.E. pdf  doi
openurl 
  Title Bandgap measurement of high refractive index materials by off-axis EELS Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 182 Issue Pages 92-98  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the present work Cs aberration corrected and monochromated scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) has been used to explore experimental setups that allow bandgaps of high refractive index materials to be determined. Semi-convergence and collection angles in the mu rad range were combined with off-axis or dark field EELS to avoid relativistic losses and guided light modes in the low loss range to contribute to the acquired EEL spectra. Off-axis EELS further supressed the zero loss peak and the tail of the zero loss peak. The bandgap of several GaAs-based materials were successfully determined by simple regression analyses of the background subtracted EEL spectra. The presented set-up does not require that the acceleration voltage is set to below the. Cerenkov limit and can be applied over the entire acceleration voltage range of modern TEMs and for a wide range of specimen thicknesses. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000413436500013 Publication Date 2017-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 3 Open Access Not_Open_Access  
  Notes ; The authors would like to thank Professor Shu Min Wang and Mahdad Sadeghi at the Nanofabrication Laboratory at Chalmers University, Sweden for providing the samples. The Norwegian Research Council is acknowledged for funding the HighQ-IB project under contract no. 10415201. M.V. and T.W.R. acknowledge funding from the EEA Financial Mechanism 2009-2014 under the project contract no 23SEE/30.06.2014. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2(Integrated Infrastructure Initiative-I3) through the system of transnational access. R.E. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:146639UA @ admin @ c:irua:146639 Serial 4778  
Permanent link to this record
 

 
Author Carmesin, C.; Schowalter, M.; Lorke, M.; Mourad, D.; Grieb, T.; Müller-Caspary, K.; Yacob, M.; Reithmaier, J.P.; Benyoucef, M.; Rosenauer, A.; Jahnke, F. url  doi
openurl 
  Title Interplay of morphology, composition, and optical properties of InP-based quantum dots emitting at the 1.55 \mum telecom wavelength Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 23 Pages 235309  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Results for the development and detailed analysis of self-organized InAs/InAlGaAs/InP quantum dots suitable for single-photon emission at the 1.55 mu m telecom wavelength are reported. The structural and compositional properties of the system are obtained from high-resolution scanning transmission electron microscopy of individual quantum dots. The system is composed of almost pure InAs quantum dots embedded in quaternary InAlGaAs barrier material, which is lattice matched to the InP substrate. When using the measured results for a representative quantum-dot geometry as well as experimentally reconstructed alloy concentrations, a combination of strain-field and electronic-state calculations is able to reproduce the quantum-dot emission wavelength in agreement with the experimentally determined photoluminescence spectrum. The inhomogeneous broadening of the latter can be related to calculated variations of the emission wavelength for the experimentally deduced In-concentration fluctuations and size variations.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000418654200009 Publication Date 2017-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 3 Open Access OpenAccess  
  Notes ; The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft Project No. JA 14-1, the BMBF Projects Q.com-H No. 16KIS0111 and No. 16KIS0112, as well as computational resources from HLRN (Hannover, Berlin). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:148505 Serial 4882  
Permanent link to this record
 

 
Author Andrikopoulos, D.; Sorée, B. url  doi
openurl 
  Title Skyrmion electrical detection with the use of three-dimensional Topological Insulators/Ferromagnetic bilayers Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue Pages 17871  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The effect of the magnetic skyrmion texture on the electronic transport properties of the Tl surface state coupled to a thin-film FM is numerically investigated. It is shown that both Bloch (vortex) and Neel (hedgehog) skyrmion textures induce additional scattering on top of a homogeneous background FM texture which can modify the conductance of the system. The change in conductance depends on several factors including the skyrmion size, the dimensions of the FM and the exchange interaction strength. For the Neel skyrmion, the result of the interaction strongly depends on the skyrmion number N-sk and the skyrmion helicity h. For both skyrmion types, significant change of the resistance can be achieved, which is in the order of k Omega.'));  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000418359600121 Publication Date 2017-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited (up) 3 Open Access  
  Notes ; ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:148513 Serial 4896  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: