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Reentrant dynamics of driven pancake vortices in layered superconductors
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The dynamics of driven pancake vortices in layered superconductors is studied using molecular-dynamics
simulations. We found that, with increasing driving force, for strong interlayer coupling, the preexisted vortex
lines either directly depin or first transform to two-dimensional (2D) pinned states before they are depinned,
depending on the pinning strength. In a narrow region of pinning strengths, we found an interesting repinning
process, which results in a negative differential resistance. For weak interlayer coupling, individually pinned
pancake vortices first form disordered 2D flow and then transform to ordered three-dimensional (3D) flow
with increasing driving force. However, for extremely strong pinning, the random pinning-induced thermal-like
Langevin forces melt 3D vortex lines, which results in a persistent 2D flow in the fast-sliding regime. In the
intermediate regime, the peak effect is found: With increasing driving force, the moving pancake vortices first
crystallize to moving 3D vortex lines, and then these 3D vortex lines are melted, leading to the appearance of a
reentrant 2D flow state. Our results are summarized in a dynamical phase diagram.
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I. INTRODUCTION

The dynamics of a system of particles in the presence
of pinning have attracted considerable attention over the
past decades. Such systems include: Wigner crystals [1–3],
interacting colloids, charged-density waves [4], skyrmions,
crystal defects, etc. One of the most studied systems within this
class is vortices in type-II superconductors. Various dynamical
phases including pinned states, elastic flow, plastic flow, and
fast-sliding flow were revealed in experiments [5–9] and in
theory [10–15]. In general, these rich phases are determined
by the interplay among the driving, pinning, thermal forces,
and the elastic force due to the vortex-vortex interaction.
In systems with regular pinning arrays, N -shaped [16–19]
and S-shaped [18,19] negative differential resistance (NDR)
has been revealed. In low-κ or multiband superconductors,
such as MgB2, the intervortex interaction is determined by
competing attractive and repulsive forces instead of a pure
repulsive force as is usual in type-II superconductors [20–25].
Driving of such media with competing interaction reveals
a rich variety of dynamical regimes including disordered
motion, moving clusters, and moving ordered stripes [26].
The formation of stripes is strongly related to the strength
of the pinning: Longitudinal (i.e., formed in the direction of
the driving force) or transverse (i.e., formed in the direction
normal to the driving) stripes can be formed in the weak or
strong pinning regime, respectively [26].

In multilayered superconductors [27] and layered
anisotropic superconductors, including superconducting
cuprates and recently discovered high-Tc iron-based super-
conductors, vortex lines are weakly coupled in the direction
perpendicular to the superconducting layers. As a result, ran-
dom pinning or thermal fluctuation may be able to plastically
deform the straight vortex lines or even tear these vortex lines

*haijunzhao@seu.edu.cn
†zxshi@seu.edu.cn

and lead to the formation of pancake vortices as a result of
the decoupling transition of vortex lines [28–31]. A similar
transition may also occur in type-II superconductors when
the applied magnetic field is close to the upper critical field
Hc2 where vortex lines become soft and can be easily bent
[32,33]. These bent vortex lines, or pancake vortices, can much
better adjust themselves to the random pinning positions, thus
leading to a large increase in the critical current [30] or to
the appearance of reentrant pinning phases [32,33]. A similar
behavior can also be observed in multiband superconductors
where a single vortex is composed of contributions from each
superconducting condensate [22,34]. By applying an external
driving force, the different components can be separated as a
result of the dissociation transition, similar to the decoupling
transition in layered superconductors [35].

However, to study the above-mentioned decoupling tran-
sition or the dissociation transition numerically, one has to
employ a three-dimensional (3D) model or multicomponent
two-dimensional (2D) models, which makes the problem much
more complicated as compared to the 2D case. Moreover, the
underlined physics is different for 2D and 3D cases. For the 2D
case, it is determined by two factors: the intervortex interaction
which forces the vortices to form a triangular lattice (or clusters
and stripes in low-κ or multiband superconductors) and the
vortex-pinning force which locally deforms the triangular lat-
tice adjusting it to the pinning sites that results in energetically
favorable vortex structures. However, for the 3D case, the
intervortex interaction includes repulsion between vortices
within the same layer and an attraction between vortices within
different layers. The former favors the arrangement of vortices
in a triangular lattice, whereas the latter tends to line up the
vortices. In the 3D case, the vortex-pinning force not only
disorders in-layer orderings, i.e., triangular lattices, but also
interlayer ordering, i.e., vortex lines. Olson and co-workers
numerically studied vortex dynamics phases of vortices in
layered superconductors with strong uncorrelated pinnings
[30,36]. A number of dynamical regimes including 2D(3D)
pinning, 2D(3D) plastic flow, 3D smectic, and 3D reordered
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flow were revealed by varying the interlayer coupling strength
and external driving force. However the pinning force strength
was constant in their studies. It is worth noting that the coexis-
tence of both the repulsive and the attractive interactions makes
this system similar to a 2D system of driven particles with
repulsive-attractive competing interactions where the static
and dynamical properties strongly depend on the interparticle
interaction parameters as well as the pinning strength [24,26].
Therefore, a system of vortices in layered superconductors
(or another similar system of interacting particles) is expected
to display new phenomena for weak or intermediate pinning
regimes, which needs further investigation.

In this paper, we employ a 3D molecular-dynamics (MD)
simulation to study the vortex dynamics in a layered supercon-
ductor. We reveal various dynamical regimes which strongly
depend on the interlayer coupling strength sm, pinning strength
fp, and the applied driving force fd . Our results show several
interesting phenomena including a NDR caused by a repinning
process and a reentrant disordered 2D flow phase for strong
fp and small sm. Based on our results, a dynamical phase
diagram is constructed on the plane “sm versus fp.” The paper
is organized as follows. In Sec. II, we describe the model.
Various dynamical regimes are studied in Sec. III. In Sec. IV,
we present the phase diagram showing the revealed dynamical
phases. The conclusions are presented in Sec. V.

II. MODEL

We study the dynamics of pancake vortices in layered
superconductors when an external magnetic field is applied
perpendicular to the superconducting plane by numerically
integrating the Langevin equation of motion using molecular-
dynamics simulations. We employ periodic boundary condi-
tions in the x and y directions and open boundary conditions
in the z direction. The motion of pancake vortices is described
by the following overdamped equation:

ηvi = −
Nv∑
j=1

∇U (ρi,j ,zi,j ) + Fp

i + FT
i + Fd . (1)

Here η is the viscosity coefficient, vi is the velocity of the
pancake vortex labeled i, Nv is the total number of pancake
vortices, and ρi,j ,zi,j is the distance between vortex i and
vortex j in cylindrical coordinates. The intervortex interaction
energy within the same layer is [30,36–38]

U (ρi,j ,0) = 2 dε0

[(
1 − d

2λ

)
ln

R

ρi,j

+ d

2λ
E1

]
, (2)

and between layers,

U (ρi,j ,z) = −sm

d2ε0

λ

[
exp

(
− z

λ

)
ln

R

ρi,j

+ E2

]
, (3)

where ε0 = �2
0/(4πλ)2, �0 = hc/2e is the elementary flux

quantum, d is the interlayer spacing, which equals to thickness
of pancake vortices, λ is the London penetration depth, R is
the maximum radial distance, E1 = ∫ ∞

ρ
dρ ′ exp(−ρ ′/λ)/ρ ′,

and E2 = ∫ ∞
ρ

dρ ′ exp(−
√

z2 + ρ ′2/λ)/ρ ′. Here, sm is the
interlayer coupling strength, and we have neglected vortex
interactions due to Josephson coupling, which is valid for

highly anisotropic superconductors, such as bismuth strontium
calcium copper oxide [37]. The long-range logarithm interac-
tion is treated using methods of Ref. [39]. Fp

i is the interaction
of the ith vortex with the pinning sites [30,36],

Fp

i = −2 dε0

λ
fp

Np∑
j=1

(
ri − r(p)

k

rp

)
	

(
rp − ∣∣ri − r(p)

k

∣∣
λ

)
. (4)

Here, Np is the number of pinning sites in the layer where
vortex i is located, r(p)

k is the location of the kth pinning site in
this layer, and 	 is the Heaviside step function. fp and rp are
the pinning strength and pinning radius, respectively. In our
simulations, we set pinning sites to be located at uncorrelated
random positions, and their densities in different layers are
the same.

The thermal stochastic term FT
i obeys the following

conditions: 〈
FT

i (t) = 0
〉
, (5)

and 〈
FT

i (t)FT
i (t ′)

〉 = 2ηkBT δi,j δ(t − t ′). (6)

Here, Fd = (2 dε0/λ)fd êx is the external driving force gener-
ated by the applied supercurrent, and êx is a unit vector in the
x direction. In order to characterize the interlayer coupling of
pancake vortices, we calculate the correlation function in the
z direction, which is defined as [30]

cz = 1 − 〈[|ri,L − ri,L+1|/(a0/2)]

×	[(a0/2 − |ri,L − ri,L+1|)/λ]〉. (7)

Here a0 is the in-plane vortex lattice constant, |ri,L − ri,L+1| is
the distance between two vortices in two neighboring layers.
For the in-layer ordering, we calculate the radial distribution
function (RDF),

g(r) = 1

N

N∑
i=1

�N/�r

2πr
. (8)

Here, the lower index indicates that the RDF centers at the
position of the ith particle, �N is the number of particles
whose distance to the ith particles is between r and r + �r ,
and N is the total number of vortices in the system. The RDF
describes the variation of the particle density as a function of
the distance. Below we present our results for various pinning
forces fp and interlayer coupling strengths sm. For every new
run of simulations, we generate new locations of random
pinning centers. We fixed the following interaction parameters:
the size of simulation box lx = ly = 16, pancake vortex density
nv , the interlayer distance d = 0.005, radius of pinning sites
rp = 0.2, density of pinning np = 2.08, and number of layers
Nlayer = 8 (we also used other parameters and found that either
the system is insensitive to their change, or similar effects can
be achieved by changing the above parameters).

III. VORTEX DYNAMICS

To study the vortex dynamics, we start from a stable
configuration and then turn on the driving force fd . We set
the temperature to zero (the effect of finite temperatures will
be analyzed elsewhere). The driving force fd is gradually
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increased from zero with steps of δfd = 0.001. For each value
of the driving force, we wait typically 5 × 105 simulation
steps to make sure the system is relaxed to the steady
state. The dynamics of the system is determined by four
main factors: the in-layer repulsive and interlayer attractive
vortex-vortex interactions, vortex-pinning interactions, and the
applied driving. Here, we fix the pancake vortex density nv =
0.313, i.e., the in-layer repulsive vortex-vortex interaction is
almost unchanged. To characterize the dynamical regimes, we
calculate the average velocity 〈v〉 and correlation functions
cz as a function of fd for varying sm and fp. In general,
vortices are all pinned when fd is small and 〈v〉 = 0. In the
opposite case, they are all depinned when fd is large (>fp)
and 〈v〉 ∝ fd . For very small fd , the pinned state can either
be composed of coupled vortex lines (3D) or be composed of
decoupled pancake vortices (2D), depending on the strength
of interlayer coupling strength sm. In the opposite case of
very large fd , pancake vortices are normally reordered in
3D vortex lines. The driving force may either tear preexisted
coupled vortex lines (decoupling transition), which leads to
a decrease in cz or help depinned pancake vortices couple to
each other and form vortex lines (coupling transition), which
leads to an increase in cz. The depinning (repinning) transitions
and decoupling (coupling) transitions correspond to dramatic
changes in the curves of 〈v〉 and cz, respectively. These
transitions indicate different dynamical regimes. Below, we
present our results in two subsections. In the first subsection,
the interlayer coupling strength sm is strong, i.e., sufficient to
support 3D vortex lines at zero driving. The opposite case of a
weak sm when 2D initial states are formed is discussed in the
second subsection. In each subsection, we consider different
pinning regimes.

A. Strong interlayer coupling: depinning
of preexisted vortex lines

In Fig. 1(a), we show typical curves of 〈v〉(fd ) and cz(fd )
for weak pinning (fp ≤ 0.4 for sm = 32) when its force is

comparable to the elastic force due to in-layer repulsive vortex-
vortex interactions. With increasing fd, cz first increases and
then becomes saturated at the depinning point. Therefore, there
are only two dynamical regimes: 3D pinned and 3D flow.
The increase in cz before the depinning indicates the healing
process, i.e., the driving force first heals pinning-induced
elastically deformed vortex lines. Note that, similar healing
processes were also found in systems with both regular and
random pinning centers [40]. With decreasing fd , no obvious
hysteretic effect is observed for 〈v〉. cz = 1 for all driving,
i.e., these highly ordered vortex lines still exist after the
depinning-pinning transition.

For intermediate pinning (0.4 ≤ fp ≤ 1 for sm = 32), the
pinning forces are much larger than typical elastic forces due to
in-layer repulsive interaction, i.e., they are sufficient to largely
deform the triangular lattices. As shown in Fig. 1(b), there are
two transition points on cz but only one depinning point on
〈v〉. The transition points on cz include a 3D to 2D decoupling
transition point that appears in the pinned regime and a 2D
to 3D coupling transition point that appears in the depinned
regime (note that both transitions are very sharp). As a result,
four vortex dynamical regimes including 3D pinned, 2D
pinned, 2D flow, and 3D flow are involved. These dynamical
regimes agree with the ones reported in Ref. [30]. With
decreasing fd , similar to the weak pinning case, no hysteretic
effect appears in 〈v〉. However, a strong hysteretic effect is
seen in cz: Decreasing fd results in a supercooled 2D pinned
state when fd is close to zero instead of 3D pinned states.

Besides the above two cases, there is also a crossover region
with quite different dynamics when fp and sm are limited
within a very narrow area. In Figs. 2(a)–2(c), we plot the
average velocity 〈v〉, the fraction of depinned vortices γ , and
the correlation function cz as a function of fd for fp = 0.38
and sm = 18. As one can see, there are two depinning points
and only one repinning point on 〈v〉. One of the depinning
points is located in the 3D regime. Another one is located
at the 2D to 3D transition point, i.e., at the same position
of the 2D to 3D coupling transition. Similarly, the repinning
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FIG. 1. The average velocity 〈v〉 (upper panels) and correlation function cz (lower panels) versus driving force fd for coupling strength
sm = 32, and pinning strength (a) fp = 0.2 and (b) fp = 0.8. Black (red) lines correspond to increasing (decreasing) fd .
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FIG. 2. The average velocity (a) 〈v〉, the fraction of depinned
vortices, (b) γ , and the correlation function (c) cz versus driving
force fd for fp = 0.38 and sm = 18. Black (red) lines correspond to
increasing (decreasing) fd .

point appears at the same position of 3D to 2D decoupling
transition. Such a repinning process reveals an interesting NDR
effect, which was also found in vortex systems with regular
pinnings [16–19] and a reentrant pinning behavior, which
was experimentally observed [32,33]. Such a phenomenon
was also reported in layered superconductors when vortex
lines decouple to pancake vortices [36]. However, the vortex
line states found in Ref. [36] were artificially overcooled or
overheated states instead of the real dynamical steady states
in our case. These transition points separate four dynamical
regimes: 3D pinned, 3D flow, 2D pinned, and 3D flow again.
Note that here the 2D flow regime is very narrow or nearly
missing. One can assume that the first appearing 3D flow may
be caused by the occasional motion of a few individual vortex
lines. As shown in Fig. 2(b), the fraction of depinned vortices
γ reaches a maximum value (>0.5) in this regime, i.e., more
than half of the vortices are depinned, indicating collective
motion of most vortices. With decreasing fd , a large cz with a
little decrease at small fd indicates that vortex lines are always
formed and 〈v〉 almost linearly decreases with fd , which results
in a strong hysteretic effect on both 〈v〉 and cz.

The physics behind this unusual NDR phenomenon or reen-
trant pinning behavior is the following: When fd is increased
from zero, first, the preexisting vortex lines are depinned.
Further increasing fd induces the decoupling transition. After

the tearing of the vortex lines, pancake vortices can adjust
to random pinnings much better, which greatly enhances
pinning, i.e., causes the repinning behavior. The repinning
and decoupling transitions appear simultaneously since they
are caused by the same physics. With further increasing fd , the
driving force becomes sufficient to depin 2D pinned vortices.
Once this depinning process occurs, the depinned pancake
vortices immediately couple to each other and form vortex
lines, i.e., the 2D pinned state is directly transformed to the
3D flow state. The missing 2D flow regime indicates that the
2D pinned state is a dynamically induced supercooled state
(which can also be proven by the strong hysteretic effect), and
the most stable state at the coupling transition point is the 3D
flow. The supercooled 2D pinned state suddenly relaxes to the
3D flow state when the transition is turned on by depinning
of a single pancake vortex. The fast relaxation process results
in a jump over the intermediate states, i.e., 2D flow state,
which is therefore missing. When slightly decreasing sm (or
increasing fp), the coupling force becomes insufficient to
support a 3D flow before it transforms to 2D pinned states.
In the opposite case, slightly increasing sm (or decreasing fp),
cz can hardly decrease to 0.4, which are typical values for
completely decoupled 2D states. Thus, in this situation both
individual pancake vortices and vortex line segments exist.
These segments are much easier to be depinned than pancake
vortices. As a result, the supercooled 2D pinned state becomes
unstable, which also can lead to the disappearance of NDR.
For the above reasons, NDR is only found in a very narrow
region of sm.

For very strong pinning, i.e., when the pinning forces are
much larger than the in-layer vortex-vortex interaction force,
the formation of 3D states requires a very large sm, which
will make the interlayer vortex-vortex attractive interaction
stronger than the in-layer repulsive interaction. Therefore, the
net force between two neighboring vortex lines becomes an
attractive-repulsive competing force instead of pure repulsive
forces. This competing force leads to the formation of clusters
or stripes instead of triangular lattices in the absence of
pinning [24,25]. Such conditions may exist in other physical
systems but not vortices. Therefore, we do not consider this
situation here.

B. Weak interlayer coupling: depinning
of individual pancake vortices

In Fig. 3(a), we show the functions 〈v〉(fd ) and cz(fd ) for the
weak pinning case (fp ≤ 0.8 for sm = 2). As one can see, each
of these two curves has one transition point: a depinning point
on curve 〈v〉 and a decoupling point on cz. These two transition
points are located on these curves at different fd ’s, i.e., the
transitions are uncorrelated. As a result, three different regions
appear in fd which define three dynamical regimes including:
2D pinned, 2D flow, and 3D flow. For increasing values of
fp, i.e., in the intermediate pinning regime (0.8 < fp ≤ 2.2),
similar dynamical regimes are found. However, in this case
there are three main differences: First, the coupling transition
point appears for fd > fp, i.e., in the fast-sliding regime where
all the vortices are depinned; second, here cz increases much
more slowly as compared to the weak pinning case, which
results in very broad crossover regimes where both 2D and
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FIG. 3. The average velocity 〈v〉 (upper panels) and correlation function cz (lower panels) versus driving force fd for coupling strength
sm = 2 and pinning strength (a) fp = 0.2 and (b) fp = 0.8. Black (red) lines corresponding to increasing (decreasing) fd .

3D flows are involved; third, the saturated value of cz at large
fd , i.e., deep in the fast-sliding regime, is less than 1 (≈0.8),
indicating that vortex lines are still partially deformed.

For very strong pinning (fp > 2.2 for sm = 4) as shown in
Fig. 4(a) with increasing fd , a well-pronounced peak appears
on the curve of cz. Namely, with increasing fd , first, the
system shows a jump from the 2D-flow dynamical regime to
the ordered 3D flow and then turns by gradually disordering
back to the 2D flow. The position of this peak is located
at fd = 5.8 > 2fp, i.e., deep in the fast-sliding regime. In
Figs. 4(b)–4(e), we show 2D projections of all the pancake
vortices within different layers. It is clear that for fd ≈ fp,
i.e., just after depinning, both the projections [see Fig. 4(b)],
and the small cz values indicate that individual pancake

vortices instead of vortex lines (i.e., 2D states) are formed. For
fd ≈ 5.8, i.e., close to the peak, the overlapped dots in Fig. 4(c)
show projections of coupled vortex lines, i.e., formation of a
3D state, which also agrees with the large peak value of cz.
Moreover, these dots are arranged into triangles, i.e., triangular
lattices are formed. Note that one of the triangular lattices’
orientation is in the longitudinal direction. For fd ≈ 9.0, i.e.,
in a region just after the peak, these overlapped dots turn to
longitudinal stripes [see Fig. 4(d)], which means vortex lines
are partially melted or stretched in the longitudinal direction.
Finally, for very large fd , the projections [see Fig. 4(e)] and
cz are similar to these for fd ≈ fp [see Fig. 4(b)], i.e., a
reentrant 2D flow state is revealed. Note that, unlike the case
for intermediate pinning (where the appearance of NDR is
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FIG. 4. The average velocity 〈v〉 (black line) and correlation function cz (blue/gray line) versus driving force fd for coupling strength
sm = 4 and pinning strength (a) fp = 2.7, (f) fp = 3.0, and (g) fp = 3.5. Projections of the positions of pancake vortices for (b) fd = 1.84,
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pinning strength fp = 2.7.

detected) in which dramatic changes in 〈v〉 appear at the point
of the coupling or decoupling transition, here, 〈v〉 is always
proportional to fd , i.e, such transition cannot be observed
experimentally by measuring I -V curves. For larger fp, this
peak becomes smaller [see Fig. 4(f)]. For even large fp, it
disappears, resulting in a persistent 2D flow [see Fig. 4(f)].

To characterize ordering within the xy plane, we calculate
the RDF within each layer and then calculate an averaged RDF.
In Figs. 5(a)–5(d), we show the RDFs of the corresponding
configurations shown in Figs. 4(b)–4(e). The first RDF
[Fig. 5(a)] corresponding to Fig. 4(b) exhibits poor peaks,
indicating that pancake vortices are randomly distributed
within each layer. The second RDF [Fig. 5(b)] corresponding
to Fig. 4(c) exhibits well-pronounced peaks. These peaks
appear at long distances, which is indicative of pronounced
long-range ordering. Therefore, 3D moving crystals (or Bragg
glasses more precisely) are formed. Such long-range ordering
still survives for the third RDF [Fig. 5(c)] corresponding to
Fig. 4(d). Finally, for the fourth RDF [Fig. 5(d)] corresponding
to Fig. 4(e), peaks at long distances in the RDF disappear, but
the peaks at short distances survive (i.e., moving Bragg glasses
are transformed to moving vortex glasses). Therefore, short-
range ordering still exists in the second 2D flow state, which
makes it quite different from the first 2D flow state, although
their cz values and projections are similar. We perform a
detailed measurement of in-layer ordering by calculating an
xy-plane order parameter defined by

cxy =
∫

|1 − g(r)|dr. (9)

As shown in Fig. 5, cxy is small for small driving. With
increasing fd , it increases sharply and reaches a peak at the
same peak position in cz. Then, comparing cxy with cz, it
decreases slowly, indicating that the in-layer ordering survives,
which agrees with our previous finding from the analysis of
the RDF.

With decreasing driving force fd , one can still find a peak
in cz and cxy [see Fig. 6(a)]. Comparing with the previous
increasing fd case, the cz peak here is located at the same
fd value but becomes much smaller. As shown in Fig. 6(b)

at the peak, projections of pancake vortices form transverse
stripes. Therefore, the formed vortex lines are deformed in the
transverse direction.

To understand this unusual peak effect, we recall the pre-
vious studies about driving media in this so-called fast-sliding
regime when fd > fp. On one hand, the random pinnings
create thermal-like Langevin forces (TLFs) with an effective
temperature Tc ∝ 1/v2, which tends to melt the moving
patterns [10]. On the other hand, they rotate the lattice orien-
tation in the longitudinal direction [e.g., triangular lattices in
Fig. 4(c)]. After the rotation, vortices move in static channels,
i.e., an energy barrier locking transversal motion is created.

In Fig. 3(a), the saturated value of cz is smaller than 1
which results from the thermal-like fluctuations of vortex lines
shaken by the TLF. For very strong pinning, the increased TLF
is so strong that it is sufficient to tear the vortex lines, i.e.,
a dynamically induced melting of the vortex lines appears.
Since the effective Tc of the TLF decreases with increasing
velocity v ∝ fd, Tc takes the highest value when fd is just
above fp. In this case, 2D flow, instead of 3D flow appears.
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FIG. 6. (a) The correlation function 〈cz〉 (black line) and cxy

(red/gray line) versus driving force fd for coupling strength sm = 4
and pinning strength fp = 2.7. (b) Projections of pancake vortices’
positions for fd = 5.84.
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Increasing fd at some critical point, the TLF becomes so
weak that it leads to a 2D to 3D “crystallizing” transition.
Note that the coupling of pancake vortices during the 2D-3D
transition greatly reduces the effective pinning, which will also
reduce the generated effective temperature Tc. This reduction
is dominant as compared with that caused by an increase in
fd . Therefore, the 2D to 3D crystallizing transition is very
sharp [see the sharp increase in cz in Fig. 4(a)], indicating
that this transition is of first order. Further increasing fd ,
the driving force, together with a dragging force created by
random pinning, stretches the vortex lines in the longitudinal
direction, which results in a stripelike projection shown in
Fig. 4(d). Note that such a stretching effect also leads to the
formation of moving stripes in driven systems with competing
interaction [26]. The stretching of the vortex lines leads to
a decrease in cz. For even higher driving, these stretched
lines are also melted. One possible reason is that the tilted
stretched vortex lines have lower condensation energy than that
of the straight lines because of weaker attraction due to longer
intervortex distances after stretching. Therefore, the “melting
temperature” Tm resulting from their attractive interaction is
also lower. The competition of the decreasing Tc and reducing
Tm causes a 3D to 2D transition and leads to an interesting
reentrant 2D flow phase. Note that only a slight decrease in cz

is observed when the stretched vortex lines are melted, i.e., the
transition is probably second order. Moreover, for the in-layer
structure, it is determined by the competition of the TLF and
in-layer repulsion. For those selected parameters, the TLF is
much smaller than typical in-layer repulsive forces. Therefore,
glass states are commonly found in the fast-sliding state. A
peak in cxy appears at the same position as the peak in cz, i.e.,
a strong correlation between in-layer ordering and interlayer
ordering is revealed. The reason for this behavior is that, when
optimal 3D states are formed, the TLF takes a minimal value
because of the reduction of the effective pinning force. And
the minimal TLF results in an optimal in-layer ordering, i.e., a
peak in cxy . For larger fp, the TLF is so strong that the vortex
lines are always melted. Therefore, only 2D flow can be found.

With decreasing fd , the formation of transverse stripes is
similar to that in Ref. [26]: comparing with the increasing fd

case, the pancake vortices’ transverse motion is locked since
static channels are formed at higher driving. As a result, the
required transverse motion of pancake vortices is obstructed,
whereas the longitudinal motion is free. Thus, pancake vortices
become closer to each other in the longitudinal direction but
still remain apart in the transverse direction, which results in
transversal stripelike projections as well as a smaller cz peak
in Fig. 6.

IV. PHASE DIAGRAM

The dynamical phase diagram on the plane of “interlayer
coupling strength sm versus pinning strength fp” is shown
in Fig. 7. For large sm and small fp, the initial stable states
are 3D pinned vortex lines. For very small fp with increasing
fd , these pinned vortex lines directly depin and form a 3D
flow state (labeled 3DP-3DF). For stronger pinning, two
additional intermediate dynamical regimes, 2D pinned and
2D flow, appear (labeled 3DP-2DP-2DF-3DF). The region
where NDR appears is very small, and it is located inside
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FIG. 7. The dynamical phase diagram in the plan of interlayer
coupling strength sm versus pinning strength fp for increasing driving
force fd . 3DP, 2DP, 3DF, and 2DF are abbreviations for 3D pinned,
2D pinned, 3D flow, and 2D flow, respectively. The blue area marked
by NDR is where we found NDR in which dynamical regimes are
including 3D pinned, 3D flow, 2D pinned, and reentrant 3D flow.

the 3DP-2DP-2DF-3DF region. In this NDR region, a number
of dynamical regimes are observed including: 3D pinned, 3D
flow, 2D pinned, and another 3D flow (labeled 3DP-3DF-
2DP-3DF or simply NDR). For small sm, the initial stable
states are 2D pinned states. The corresponding dynamical
regimes including: 2D pinned, 2D flow, and 3D flow (labeled
2DP-2DF-3DF) are commonly found for both weak and strong
pinnings as well as for very strong pinning with large interlayer
coupling strength. For very strong pinning and weak interlayer
coupling strength, vortex lines in 3D flow are melted, i.e.,
only two dynamical regimes are found: 2D pinned and 2D
flow (labeled 2DP-2DF). Finally, for very strong pinning and
intermediate interlayer coupling strength, a peak effect in
curve cz is revealed, indicating four dynamical regimes: 2D
pinned, 2D flow, 3D flow, and reentrant 2D flow (labeled
2DP-2DF-3DF-2DP).

V. CONCLUSIONS

Using MD simulations, we analyzed the dynamics of driven
pancake vortices in layered superconductors. Depending on
the strength of the interlayer coupling, the static configurations
are as follows: 3D pinned vortex lines or individually pinned
pancake vortices. With increasing driving force, these 3D
pinned vortex lines either directly depin for weak pinning,
or they first transform to 2D pinned states, then to depinned
2D flow, and finally to 3D depinned flow for strong pinning.
In the intermediate pinning region, a NDR effect is revealed
associated with the following dynamical regimes: 3D pinned,
3D flow, 2D pinned, and another 3D flow. Note that here there
is a reentrant pinned state as well as a reentrant 3D flow state.
The 2D flow regime is missing here since the 2D pinned state
at the transition point is a supercooled state, which can directly
transform to a 3D flow state, jumping over the 2D flow state.
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For small interlayer coupling, generally, the 2D pinned state
reorders to the 3D flow state via passing an intermediate
2D flow state. For extremely strong pinning, the thermal-
like Langevin forces generated by the random pinning in
the fast-sliding regime lead to melting of the vortex lines,
therefore, no 3D flow is formed. However, there exists an
intermediate regime where this 2D flow first orders to 3D
flow, and then vortex lines in this 3D flow state stretch in
the longitudinal direction. These stretched vortex lines are
then melted by the thermal-like Langevin force to uncoupled
pancakes due to a decrease in the melting point. This
discovered coupling-decoupling transition results in a peak
effect in the z-direction order parameter cz, which however
cannot be observed experimentally by measuring I -V curves.
By calculating the in-layer RDF, we find the second (reentrant)
2D flow state, formed by melting of stretched vortex lines,
which is partially ordered within the superconducting plane,
whereas for the first 2D flow that appears just after depinning,
it is completely disordered. With decreasing fp, a small cz

peak caused by the formation of vortex lines deformed in the
transverse direction is revealed. This deformation is caused by
the dynamical locking effect.

Based on these results, we summarized our main results
in a dynamical phase diagram on the plane of interlayer
coupling strength sm versus pinning strength fp. Our find-
ings can be useful for the analysis of vortex dynamics in
layered superconductors. They can also be applicable for
other layered systems, such as multilayered colloidal systems
[41] or biological systems [42,43]. Similar phenomena may
also appear in binary or multicomponent systems, such as
vortices composed of different contributions in two-band or
multiband superconductors where the dissociation of each
component is similar to the decoupling transitions in layered
systems.
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