toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A. pdf  url
doi  openurl
  Title Transport of cystine across xC-antiporter Type A1 Journal article
  Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal Arch Biochem Biophys  
  Volume 664 Issue Pages 117-126  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Extracellular cystine (CYC) uptake by xC antiporter is important for the cell viability. Especially in cancer cells, the upregulation of xC activity is observed, which protects these cells from intracellular oxidative stress. Hence, inhibition of the CYC uptake may eventually lead to cancer cell death. Up to now, the molecular level mechanism of the CYC uptake by xC antiporter has not been studied in detail. In this study, we applied several different simulation techniques to investigate the transport of CYC through xCT, the light subunit of the xC antiporter, which is responsible for the CYC and glutamate translocation. Specifically, we studied the permeation of CYC across three model systems, i.e., outward facing (OF), occluded (OCC) and inward facing (IF) configurations of xCT. We also investigated the effect of mutation of Cys327 to Ala within xCT, which was also studied experimentally in literature. This allowed us to qualitatively compare our computation results with experimental observations, and thus, to validate our simulations. In summary, our simulations provide a molecular level mechanism of the transport of CYC across the xC antiporter, more specifically, which amino acid residues in the xC antiporter play a key role in the uptake, transport and release of CYC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461411200014 Publication Date 2019-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.165 Times cited (up) 3 Open Access OpenAccess  
  Notes Research Foundation − FlandersResearch Foundation − Flanders (FWO), 1200216N 1200219N ; Hercules FoundationHercules Foundation; Flemish GovernmentFlemish Government (department EWI); UAUA; M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant numbers 1200216N and 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved Most recent IF: 3.165  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158571 Serial 5183  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title Carrier transport in two-dimensional topological insulator nanoribbons in the presence of vacancy defects Type A1 Journal article
  Year 2019 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 6 Issue 2 Pages 025011  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the non-equilibrium Green's function formalism, we study carrier transport through imperfect two-dimensional (2D) topological insulator (TI) ribbons. In particular, we investigate the effect of vacancy defects on the carrier transport in 2D TI ribbons with hexagonal lattice structure. To account for the random distribution of the vacancy defects, we present a statistical study of varying defect densities by stochastically sampling different defect configurations. We demonstrate that the topological edge states of TI ribbons are fairly robust against a high concentration (up to 2%) of defects. At very high defect densities, we observe an increased inter-edge interaction, mediated by the localisation of the edge states within the bulk region. This effect causes significant back-scattering of the, otherwise protected, edge-states at very high defect concentrations (>2%), resulting in a loss of conduction through the TI ribbon. We discuss how this coherent vacancy scattering can be used to our advantage for the development of TI-based transistors. We find that there is an optimal concentration of vacancies yielding an ON-OFF current ratio of up to two orders of magnitude. Finally, we investigate the importance of spin-orbit coupling on the robustness of the edge states in the TI ribbon and show that increased spin-orbit coupling could further increase the ON-OFF ratio.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457856400002 Publication Date 2019-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited (up) 3 Open Access  
  Notes ; This material is based in part upon work supported by the National Science Foundation under Grant Number 1710066. The project or effort depicted was or is sponsored by the Department of Defense, Defense Threat Reduction Agency. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:157464 Serial 5198  
Permanent link to this record
 

 
Author Aslani, Z.; Sisakht, E.T.; Fazileh, F.; Ghorbanfekr-Kalashami, H.; Peeters, F.M. url  doi
openurl 
  Title Conductance fluctuations of monolayer GeSnH2$ in the topological phase using a low-energy effective tight-binding Hamiltonian Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 11 Pages 115421  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract An effective tight-binding (TB) Hamiltonian for monolayer GeSnH2 is constructed which has an inversion-asymmetric honeycomb structure. The low-energy band structure of our TB model agrees very well with previous ab initio calculations even under biaxial tensile strain. Our model predicts a phase transition at 7.5% biaxial tensile strain in agreement with DFT calculations. Upon 8.5% strain the system exhibits a band gap of 134 meV, suitable for room temperature applications. It is shown that an external applied magnetic field produces a special phase which is a combination of the quantum Hall (QH) and quantum spin Hall (QSH) phases; and at a critical magnetic field strength the QSH phase completely disappears. The topological nature of the phase transition is confirmed from: (1) the calculation of the Z(2) topological invariant, and (2) quantum transport properties of disordered GeSnH2 nanoribbons which allows us to determine the universality class of the conductance fluctuations. The application of an external applied magnetic field reduces the conductance fluctuations by a factor of root 2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461958900006 Publication Date 2019-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 3 Open Access  
  Notes ; This work was supported by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:158538 Serial 5199  
Permanent link to this record
 

 
Author Neek-Amal, M.; Rashidi, R.; Nair, R.R.; Neilson, D.; Peeters, F.M. url  doi
openurl 
  Title Electric-field-induced emergent electrical connectivity in graphene oxide Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 11 Pages 115425  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Understanding the appearance of local electrical connectivity in liquid filled layered graphene oxide subjected to an external electric field is important to design electrically controlled smart permeable devices and also to gain insight into the physics behind electrical effects on confined water permeation. Motivated by recent experiments [K. G. Zhou et al. Nature (London) 559, 236 (2018)], we introduce a new model with random percolating paths for electrical connectivity in micron thick water filled layered graphene oxide, which mimics parallel resistors connected across the top and bottom electrodes. We find that a strong nonuniform radial electric field of the order similar to 10-50 mV/nm can be induced between layers depending on the current flow through the formed conducting paths. The maxima of the induced fields are not necessarily close to the electrodes and may be localized in the middle region of the layered material. The emergence of electrical connectivity and the associated electrical effects have a strong influence on the surrounding fluid in terms of ionization and wetting which subsequently determines the permeation properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461960100001 Publication Date 2019-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 3 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:158534 Serial 5206  
Permanent link to this record
 

 
Author Kontogiannidou, E.; Karavasili, C.; Kouskoura, M.G.; Filippousi, M.; Van Tendeloo, G.; Andreadis, I.I.; Eleftheriadis, G.K.; Kontopoulou, I.; Markopoulou, C.K.; Bouropoulos, N.; Fatouros, D.G. pdf  url
doi  openurl
  Title In vitro and ex vivo assessment of microporous Faujasite zeolite (NaX-FAU) as a carrier for the oral delivery of danazol Type A1 Journal article
  Year 2019 Publication Journal of drug delivery science and technology Abbreviated Journal J Drug Deliv Sci Tec  
  Volume 51 Issue 51 Pages 177-184  
  Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)  
  Abstract Microporous zeolite NaX-FAU has been systemically evaluated for the oral delivery of the poorly water-soluble compound danazol. For this purpose, danazol-loaded zeolitic particles were prepared by the incipient wetness method and were characterized by means of N-2 physisorption, X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and high-resolution transmission electron microscopy (HRTEM). The zeolitic formulation shows a high drug payload and drug stability over a period of six months under accelerated storage conditions. The dissolution profile of danazol-loaded zeolitic particles was assessed in simulated gastric fluid (SGF) pH 1.2; fasted state simulated intestinal fluids (FaSSIF) and fed state simulated intestinal fluid (FeSSIF) showing a gradual and increasing drug dissolution in the different media. Ex vivo studies using the everted gut sac model show an increased drug transport across rat intestinal epithelium when loaded in the zeolitic particles. Our results suggest that microporous Faujasite zeolite (NaX-FAU) could be used as a drug delivery system to facilitate the oral delivery of poorly water soluble compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468750300018 Publication Date 2019-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1773-2247; 2588-8943 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.194 Times cited (up) 3 Open Access Not_Open_Access: Available from 27.08.2020  
  Notes ; This research was supported by General Secretariat for Research and Technology, Greece – Research Program “Excellence II, 4766”. The authors acknowledge financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI). ; Approved Most recent IF: 1.194  
  Call Number UA @ admin @ c:irua:160279 Serial 5252  
Permanent link to this record
 

 
Author Charalampopoulou, E.; Cautaerts, N.; Van der Donck, T.; Schryvers, D.; Lambrinou, K.; Delville, R. pdf  doi
openurl 
  Title Orientation relationship of the austenite-to-ferrite transformation in austenitic stainless steels due to dissolution corrosion in contact with liquid Pb-Bi eutectic Type A1 Journal article
  Year 2019 Publication Scripta materialia Abbreviated Journal Scripta Mater  
  Volume 167 Issue 167 Pages 66-70  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The orientation relationship of an austenite-to-ferrite phase transformation in 316L stainless steels induced by the loss of austenite stabilizers resulting from the steel dissolution corrosion in liquid Pb-Bi eutectic was studied by means of electron backscatter diffraction. The misorientations at the austenite/ferrite interface were compared to the prevailing orientation relationship models in steels. The Pitsch orientation relationship model was found to be predominant, which is unusual for austenite-to-ferrite bulk transformations in steels. The nature of this particular transformation, which involves loss of steel alloying elements and the presence of an interfacial liquid metal layer, is discussed to explain this finding. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468720000014 Publication Date 2019-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.747 Times cited (up) 3 Open Access Not_Open_Access  
  Notes ; The authors would like to thank J. Joris (SCK center dot CEN) for technical support during corrosion testing, J. Lim (SCK center dot CEN) for the manufacture and calibration of the oxygen sensors used in this work and W. Van Renterghem (SCK center dot CEN) for his valuable help with the EBSD measurements. The steel suppliers were: Industeel, ArcelorMittal Group, for the 316L-SA plate, and Panchmahal Steel Ltd., India, for the 316L-CWrod. The authors gratefully acknowledge the financial support provided within the framework of the ongoing development of the MYRRHA irradiation facility. The research leading to these results falls within the framework of the European Energy Research Alliance Joint Programme on Nuclear Materials (EERA JPNM). ; Approved Most recent IF: 3.747  
  Call Number UA @ admin @ c:irua:160228 Serial 5257  
Permanent link to this record
 

 
Author Wang, C.; Xin, X.; Shu, M.; Huang, S.; Zhang, Y.; Li, X. pdf  doi
openurl 
  Title Scalable synthesis of one-dimensional Na2Li2Ti6O14 nanofibers as ultrahigh rate capability anodes for lithium-ion batteries Type A1 Journal article
  Year 2019 Publication Inorganic Chemistry Frontiers Abbreviated Journal Inorg Chem Front  
  Volume 6 Issue 3 Pages 646-653  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Carbon anode materials for Li-ion batteries have been operated close to their theoretical rate and cycle limits. Therefore, titanium-based materials have attracted great attention due to their high stability. Here, Na2Li2Ti6O14 nanofibers as anode materials were prepared through a controlled electrospinning method. The Na2Li2Ti6O14 nanofibers presented superior electrochemical performance with high rate capability and long cycle life and can be regarded as a competitive anode candidate for advanced Li-ion batteries. One-dimensional (1D) Na2Li2Ti6O14 nanofibers are able to deliver a capacity of 128.5 mA h g(-1) at 0.5C, and demonstrate superior high-rate charge-discharge capability and cycling stability (the reversible charge capacity is 77.8 mA h g(-1) with a capacity retention of 99.45% at the rate of 10C after 800 cycles). The 1D structure is considered to contribute remarkably to increased rate capability and stability. This simple and scalable method indicates that the Na2Li2Ti6O14 nanofibers have a practical application potential for high performance lithium-ion batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461092500027 Publication Date 2018-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-1553 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.036 Times cited (up) 3 Open Access Not_Open_Access  
  Notes ; The authors acknowledge financial support from the National Natural Science Foundation of China (21571110), Natural Science Foundation of Zhejiang Province (LY18B010003), and the Ningbo Key Innovation Team (2014B81005), and sponsorship by the K.C. Wong Magna Fund in Ningbo University. ; Approved Most recent IF: 4.036  
  Call Number UA @ admin @ c:irua:158566 Serial 5258  
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Delville, R.; Neuville, D.R.; Hennet, L.; Thiaudiere, D.; Ouisse, T.; Hadermann, J.; Vleugels, J.; Lambrinou, K. pdf  doi
openurl 
  Title Synthesis and Characterization of Double Solid Solution (Zr,Ti)(2)(Al,Sn)C MAX Phase Ceramics Type A1 Journal article
  Year 2019 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 58 Issue 10 Pages 6669-6683  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Quasi phase-pure (>98 wt %) MAX phase solid solution ceramics with the (ZryTi)(2)(Al-0.5,Sn-0.5)C stoichiometry and variable Zr/Ti ratios were synthesized by both reactive hot pressing and pressureless sintering of ZrH2, TiH2, Al, Sn, and C powder mixtures. The influence of the different processing parameters, such as applied pressure and sintering atmosphere, on phase purity and microstructure of the produced ceramics was investigated. The addition of Sn to the (Zr,Ti)(2)AlC system was the key to achieve phase purity. Its effect on the crystal structure of a 211-type MAX phase was assessed by calculating the distortions of the octahedral M6C and trigonal M(6)A prisms due to steric effects. The M(6)A prismatic distortion values were found to be smaller in Sn-containing double solid solutions than in the (Zr,Ti)(2)AlC MAX phases. The coefficients of thermal expansion along the < a > and < c > directions were measured by means of Rietveld refinement of high-temperature synchrotron X-ray diffraction data of (Zr1-x,Ti-x)(2)(Al-0.5,Sn-0.5)C MAX phase solid solutions with x = 0, 0.3, 0.7, and 1. The thermal expansion coefficient data of the Ti-2(Al-0.5,Sn-0.5)C solid solution were compared with those of the Ti2AlC and Ti2SnC ternary compounds. The thermal expansion anisotropy increased in the (Zr,Ti)(2)(Al-0.5,Sn-0.5)C double solid solution MAX phases as compared to the Zr-2(Al-0.5,Sn-0.5)C and Ti-2(Al-0.5,Sn-0.5)C end-members.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469304700014 Publication Date 2019-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited (up) 3 Open Access Not_Open_Access  
  Notes ; H. Roussel and D. Pinek are acknowledged for the Ti<INF>2</INF>SnC single-crystal production and high-temperature XRD measurements performed at Grenoble INP-LMGP-CMTC. This research was funded partly by the European Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. 604862 (FP7MatISSE), and partly by the Euratom research and training programme 2014-2018 under Grant Agreement No. 740415 (H2020 IL TROVATORE). T.L. thanks the Agency for Innovation by Science and Technology (IWT), Flanders, Belgium, for Ph.D. Grant No. 131081. B.T. acknowledges the financial support of the SCK.CEN Academy for Nuclear Science and Technology. All authors gratefully acknowledge Synchrotron SOLEIL for the allocated time at the DIFFABS beamline in association with Project 20161410 entitled “Investigation of (Zr-Ti)-Al-C MAX phases with in-situ high-temperature XRD” and the Hercules Foundation for Project AKUL/1319 (CombiS(T)EM). ; Approved Most recent IF: 4.857  
  Call Number UA @ admin @ c:irua:160318 Serial 5261  
Permanent link to this record
 

 
Author Brault, P.; Chamorro-Coral, W.; Chuon, S.; Caillard, A.; Bauchire, J.-M.; Baranton, S.; Coutanceau, C.; Neyts, E. pdf  doi
openurl 
  Title Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source Type A1 Journal article
  Year 2019 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng  
  Volume 13 Issue 2 Pages 324-329  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations are carried out for describing growth of Pd and PdO nanoclusters using the ReaxFF force field. The resulting nanocluster structures are successfully compared to those of nanoclusters experimentally grown in a gas aggregation source. The PdO structure is quasi-crystalline as revealed by high resolution transmission microscope analysis for experimental PdO nanoclusters. The role of the nanocluster temperature in the molecular dynamics simulated growth is highlighted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468848400009 Publication Date 2019-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.712 Times cited (up) 3 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.712  
  Call Number UA @ admin @ c:irua:160278 Serial 5276  
Permanent link to this record
 

 
Author Zhang, Z.; Rosalie, J.M.; Medhekar, N.V.; Bourgeois, L. pdf  doi
openurl 
  Title Resolving the FCC/HCP interfaces of the \gamma'(Ag2Al) precipitate phase in aluminium Type A1 Journal article
  Year 2019 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 174 Issue 174 Pages 116-130  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The gamma'(Ag2Al) phase in the Al-Ag alloy system has served as a textbook example for understanding phase transformations, precipitating hexagonal close-packed (HCP) crystals in the face-centred cubic (FCC) aluminium matrix. The gamma' precipitates display fully coherent interfaces at their broad facets and semicoherent interfaces at their edges. Shockley partial dislocations are expected to decorate the semicoherent interface due to the FCC-HCP structural transformation. Determining the exact locations and core structures of interfacial dislocations, however, remains challenging. In this study, we used aberration-corrected scanning transmission electron microscopy and atomistic simulations to re-visit this classical system. We characterised and explained the Ag segregation at coherent interfaces in the early stage of precipitation. For semicoherent interfaces, interfacial dislocations and reconstructions were revealed by bridging advanced microstructure characterisation and atomistic simulations. In particular, we discovered a new FCC/HCP interfacial structure that displays a unique combination of Shockley partial, Lomer-Cottrell and Hirth dislocations that evolve from the known interfacial structure purely composed by Shockley partial dislocations. Our findings show that the FCC-HCP transformation is more complex than hitherto considered, due to the interplay between structure and composition confined at interfaces. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000474501300011 Publication Date 2019-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited (up) 3 Open Access  
  Notes ; The authors acknowledge funding from the Australian Research Council (LE0454166, LE110100223), the Victorian State Government and Monash University for instrumentation, and use of the facilities within the Monash Centre for Electron Microscopy. LB and NM acknowledge the financial support of the Australian Research Council (DP150100558). The authors also gratefully acknowledge the computational support from Monash Advanced Research Computing Hybrid, the National Computational Infrastructure and Pawsey Supercomputing Centre. ZZ is thankful to Monash University for a Monash Graduate Scholarship, a Monash International Postgraduate Research Scholarship and a Monash Centre for Electron Microscopy Postgraduate Scholarship. ZZ is indebted to Matthew Weyland for his training in aberration-corrected electron microscopy, Scott Findlay for his help on image simulations, Xiang Gao for alloy casting and Ian Polmear for discussions. ; Approved Most recent IF: 5.301  
  Call Number UA @ admin @ c:irua:161192 Serial 5395  
Permanent link to this record
 

 
Author Yuan, H.F.; Xu, W.; Zhao, X.N.; Song, D.; Zhang, G.R.; Xiao, Y.M.; Ding, L.; Peeters, F.M. url  doi
openurl 
  Title Quantum and transport mobilities of a Na3Bi-based three-dimensional Dirac system Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 23 Pages 235303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic and transport properties of a three-dimensional (3D) Dirac system are investigated theoretically, which is motivated by recent experimental measurements on quantum and transport mobilities in the 3D Dirac semimetal Na3Bi by J. Xiong et al. [Science 350, 413 (2015); Europhys. Lett. 114, 27002 (2016)]. The electron Hamiltonian is taken from a simplified k center dot p approach. From the obtained electronic band structure and the Fermi energy, we explain why the anomalous effect induced by the chiral anomaly and the Berry curvature in the energy band can be observed experimentally in magnetotransport coefficients in both low-and high-density samples. Moreover, the quantum and transport mobilities are calculated on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation with the electron-impurity interaction. The quantum and transport mobilities obtained from this study agree both qualitatively and quantitatively with those measured experimentally. We also examine the electron mobilities along different crystal directions in Na3Bi and find them largely anisotropic. The theoretical findings from this work can be helpful in gaining an in-depth understanding of the experimental results and of the basic electronic and transport properties of newly developed 3D Dirac systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000471983500006 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 3 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:161329 Serial 5425  
Permanent link to this record
 

 
Author Florea, A.; Cowen, T.; Piletsky, S.; De Wael, K. url  doi
openurl 
  Title Electrochemical analysis of cocaine in real samples based on electrodeposited biomimetic affinity ligands Type A1 Journal article
  Year 2019 Publication The analyst Abbreviated Journal Analyst  
  Volume 144 Issue 15 Pages 4639-4646  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A selective electrochemical sensor for direct detection of cocaine was developed based on molecularly imprinted polymers electropolymerized onto graphene-modified electrodes. Palladium nanoparticles were integrated in the sensing layer for the benefit of enhancing the communication between imprinted sites and electrode and improving their homogenous distribution. The molecularly imprinted polymer was synthesized by cyclic voltammetry using p-aminobenzoic acid as high affinity monomer selected by computational modeling, and cocaine as template molecule. Experimental parameters related to the electrochemical deposition of palladium nanoparticles, pH, composition of electropolymerization mixture, extraction and rebinding condition were studied and optimized. Under optimized conditions the oxidation peak current varied linearly with cocaine concentration in the range of 100-500 µM, with a detection limit of 50 µM (RSD 0.71%, n=3). The molecularly imprinted sensor was able to detect cocaine in saliva and river water with good recoveries after sample pretreatment and was successfully applied for screening real street samples for cocaine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000476812000021 Publication Date 2019-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2654 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.885 Times cited (up) 3 Open Access  
  Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753223 Narcoreader. ; Approved Most recent IF: 3.885  
  Call Number UA @ admin @ c:irua:160062 Serial 5586  
Permanent link to this record
 

 
Author Hellemans, K.; Cagno, S.; Bogana, L.; Janssens, K.; Mendera, M. pdf  doi
openurl 
  Title LA-ICP-MS labels early medieval Tuscan finds from Siena and Donoratico as late natron glass Type A1 Journal article
  Year 2019 Publication Journal of Archaeological Science: Reports Abbreviated Journal  
  Volume 23 Issue 23 Pages 844-853  
  Keywords A1 Journal article; History; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The late antique/early medieval age in Central Italy is a well-suited context to verify the implications of the end of the natron glass supplies, and to explore the beginnings of the new plant-ash glass technology. We present the results of a LA-ICP-MS analysis campaign conducted on archaeological glass finds excavated at the Santa Maria della Scala hospital site in Siena and in Donoratico. This provided us with major, minor and trace element quantitative data for 49 glass samples belonging to drinking vessels and lamps, dated mainly between the 5th and the 8th century. On the basis of these data, we have sought to identify the working processes and possible glassware trade that are reflected in the glass composition. Major and minor element contents revealed that most samples, also at the later boundary of the explored timeframe, fit well within known late Roman glass classifications (e.g. HIMT, Levantine). Trace element analysis provided further information on the raw materials that were used in the glassmaking process, indicating the use of coastal sands as a silica source and allowing us to formulate different hypotheses on the materials used for the colouring process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000462119900071 Publication Date 2018-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-409x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) 3 Open Access  
  Notes ; This research was supported by the Hercules Foundation (Brussels, Belgium) under grant AUHA09004, FWO (Brussels, Belgium) project nos. G.0C12.13 and G.01769.09. We would also like to thank our referees for their valuable input during the review process. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:159450 Serial 5685  
Permanent link to this record
 

 
Author De Meyer, S.; Vanmeert, F.; Vertongen, R.; Van Loon, A.; Gonzalez, V.; Delaney, J.; Dooley, K.; Dik, J.; van der Snickt, G.; Vandivere, A.; Janssens, K. url  doi
openurl 
  Title Macroscopic x-ray powder diffraction imaging reveals Vermeer's discriminating use of lead white pigments in Girl with a Pearl Earring Type A1 Journal article
  Year 2019 Publication Science Advances Abbreviated Journal  
  Volume 5 Issue 8 Pages eaax1975  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract Until the 19th century, lead white was the most important white pigment used in oil paintings. Lead white is typically composed of two crystalline lead carbonates: hydrocerussite [2PbCO(3)center dot Pb(OH)(2)] and cerussite (PbCO3). Depending on the ratio between hydrocerussite and cerussite, lead white can be classified into different subtypes, each with different optical properties. Current methods to investigate and differentiate between lead white subtypes involve invasive sampling on a microscopic scale, introducing problems of paint damage and representativeness. In this study, a 17th century painting Girl with a Pearl Earring (by Johannes Vermeer, c. 1665, collection of the Mauritshuis, NL) was analyzed with a recently developed mobile and noninvasive macroscopic x-ray powder diffraction (MA-XRPD) scanner within the project Girl in the Spotlight. Four different subtypes of lead white were identified using XRPD imaging at the macroscopic and microscopic scale, implying that Vermeer was highly discriminatory in his use of lead white.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000491121200021 Publication Date 2019-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) 3 Open Access  
  Notes ; K.J. wishes to thank the Research Council of the University of Antwerp for financial support through GOA project SolarPaint. Also, FWO, Brussels is acknowledged for financial support through grants G056619N and G054719N. The support of InterReg programme Smart*Light is appreciated. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163815 Serial 5700  
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Cleland, T.P.; Kavich, G.M.; Janssens, K.; Newsome, G.A. pdf  doi
openurl 
  Title Rapid evaluation of the debromination mechanism of eosin in oil paint by direct analysis in real time and direct infusion-electrospray ionization mass spectrometry Type A1 Journal article
  Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 91 Issue 16 Pages 10856-10863  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Eosin is a synthetic organic colorant prone to fading under the influence of light. On the basis of the growing interest in the understanding of the discoloration mechanism of eosin-based lakes, this study compares the ability of two ultrafast and ultrasensitive mass spectrometry techniques to detect eosin derivatives in complex matrices, such as oil media without the use of conventional separation columns or additional sample preparation protocols. Direct analysis in real time mass spectrometry (DART-MS) and direct infusion electrospray ionization mass spectrometry (DI-ESI-MS) were used to characterize the degradation pathway of eosin in oil media. The analysis protocols developed in this study are applied to discern the degradation mechanism of the lake pigment eosin (comprising the molecule per se complexed to an inorganic substrate) dispersed in linseed oil to create an oil paint. The analysis of oil paints by high resolution MS without an extraction methodology that modifies the system chemistry allowed us to identify the degradation forms without causing any additional fragmentation. Both techniques revealed the primary photodegradation pathway of eosin in linseed oil, and DI-ESI-MS provided additional information on the native conformation of the lake.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482545300069 Publication Date 2019-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited (up) 3 Open Access  
  Notes ; The authors would like to acknowledge the SolarPaint project (GOA program, Antwerp University Research Council) and Smithsonian Institution for financial support. ; Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:162879 Serial 5800  
Permanent link to this record
 

 
Author Terzano, R.; Denecke, M.A.; Falkenberg, G.; Miller, B.; Paterson, D.; Janssens, K. url  doi
openurl 
  Title Recent advances in analysis of trace elements in environmental samples by X-ray based techniques (IUPAC Technical Report) Type A1 Journal article
  Year 2019 Publication Pure and applied chemistry Abbreviated Journal Pure Appl Chem  
  Volume 91 Issue 6 Pages 1029-1063  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Trace elements analysis is a fundamental challenge in environmental sciences. Scientists measure trace elements in environmental media in order to assess the quality and safety of ecosystems and to quantify the burden of anthropogenic pollution. Among the available analytical techniques, X-ray based methods are particularly powerful, as they can quantify trace elements in situ. Chemical extraction is not required, as is the case for many other analytical techniques. In the last few years, the potential for X-ray techniques to be applied in the environmental sciences has dramatically increased due to developments in laboratory instruments and synchrotron radiation facilities with improved sensitivity and spatial resolution. In this report, we summarize the principles of the X-ray based analytical techniques most frequently employed to study trace elements in environmental samples. We report on the most recent developments in laboratory and synchrotron techniques, as well as advances in instrumentation, with a special attention on X-ray sources, detectors, and optics. Lastly, we inform readers on recent applications of X-ray based analysis to different environmental matrices, such as soil, sediments, waters, wastes, living organisms, geological samples, and atmospheric particulate, and we report examples of sample preparation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000471262400011 Publication Date 2019-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-4545 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.626 Times cited (up) 3 Open Access  
  Notes ; This document was developed as a part of IUPAC, Funder Id: http://dx.doi.org/ 10.13039/100006987, Project #2016-019-2-600 “Trace elements analysis of environmental samples with X-rays: from synchrotron to lab and from lab to synchrotron” led by Roberto Terzano (Task Group Chair). Task Group Members for this project were: Melissa Anne Denecke, Gerald Falkenberg, Armin Gross, Koen Janssens, Bradley Miller, David Paterson, Ryan Tappero, Fang-Jie Zhao. Their contribution to the project is gratefully acknowledged. ; Approved Most recent IF: 2.626  
  Call Number UA @ admin @ c:irua:161369 Serial 5803  
Permanent link to this record
 

 
Author Einhäupl, P.V.; Krook, J.; Svensson, N.; Van Acker, K.; Van Passel, S. pdf  url
doi  openurl
  Title Eliciting stakeholder needs : an anticipatory approach assessing enhanced landfill mining Type A1 Journal article
  Year 2019 Publication Waste Management Abbreviated Journal Waste Manage  
  Volume 98 Issue 98 Pages 113-125  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Landfill owners, governmental institutions, technology providers, academia and local communities are important stakeholders involved in Enhanced Landfill Mining (ELFM). This concept of excavating and processing historical waste streams to higher added values can be seen as a continuation of traditional landfill mining (LFM) and seems to be an innovative and promising idea for potential environmental and societal benefits. However, ELFM's profitability is still under debate, and environmental as well as societal impacts have to be further investigated. This study provides a first step towards an anticipatory approach, assessing ELFM through stakeholder integration. In the study, semi-structured interviews were conducted with various stakeholders, involved in a case study in Flanders, Belgium. Participants were selected across a quadruple helix (QH) framework, i.e. industrial, governmental, scientific, and local community actors. The research comprises 13 interviews conducted with an aim to elicit stakeholder needs for ELFM implementation using a general inductive approach. In total 18 different stakeholder needs were identified. The paper explains how the stakeholder needs refer to the different dimensions of sustainability, which groups of stakeholders they primarily affect, and what types of uncertainty could be influenced by their implementation. The stakeholder needs are structured into societal, environmental, regulatory and techno-economic needs. Results show additional economic, environmental, and societal aspects of ELFM to be integrated into ELFM research, as well as a need for the dynamic modeling of impacts. (C) 2019 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487175500012 Publication Date 2019-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.03 Times cited (up) 3 Open Access  
  Notes ; This project has received funding from the European Union's EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 721185. ; Approved Most recent IF: 4.03  
  Call Number UA @ admin @ c:irua:163760 Serial 6193  
Permanent link to this record
 

 
Author Maes, D.; Van Passel, S. pdf  doi
openurl 
  Title Effective bioeconomy policies for the uptake of innovative technologies under resource constraints Type A1 Journal article
  Year 2019 Publication Biomass & Bioenergy Abbreviated Journal Biomass Bioenerg  
  Volume 120 Issue 120 Pages 91-106  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract The bioeconomy is a shared vision for a future European industry entirely based on organic matter. Authorities support this technological development with subsidies and policies stimulating R&D. One major limitation for the bioeconomy is that R&D and industrial growth require the continuous availability of biomass as a primary resource. This resource dependence is already present during the formative years of new biobased innovations and influences the pilot and demonstration phase of the development. Traditionally, it is assumed that public support for pilot and demonstration initiatives may overcome this hurdle. In this paper, we investigate how this resource constraint limits the effectiveness of bioeconomy policies. The future development of the biobased sector is simulated including the inherent dependence of industrial activity on biomass. We simulate the future growth and technological diversity of an emerging biotechnological sector: the sector of manure transformation in Belgium. The paper reports the evolutions for three policy scenarios. The model explicitly accounts for endogenous innovation and knowledge transfer mechanisms. The results show that policies may have an important impact on the sector structure in the long run, but the sector growth remains ultimately constrained by the availability of inputs. So bioeconomy policies to promote innovation will be less effective, unless mechanisms are included to alleviate the resource constraint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454887700011 Publication Date 2018-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.219 Times cited (up) 3 Open Access  
  Notes ; ; Approved Most recent IF: 3.219  
  Call Number UA @ admin @ c:irua:156757 Serial 6191  
Permanent link to this record
 

 
Author Susi, T.; Madsen, J.; Ludacka, U.; Mortensen, J.J.; Pennycook, T.J.; Lee, Z.; Kotakoski, J.; Kaiser, U.; Meyer, J.C. doi  openurl
  Title Efficient first principles simulation of electron scattering factors for transmission electron microscopy Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 197 Issue 197 Pages 16-22  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron microscopy is a powerful tool for studying the properties of materials down to their atomic structure. In many cases, the quantitative interpretation of images requires simulations based on atomistic structure models. These typically use the independent atom approximation that neglects bonding effects, which may, however, be measurable and of physical interest. Since all electrons and the nuclear cores contribute to the scattering potential, simulations that go beyond this approximation have relied on computationally highly demanding all-electron calculations. Here, we describe a new method to generate ab initio electrostatic potentials when describing the core electrons by projector functions. Combined with an interface to quantitative image simulations, this implementation enables an easy and fast means to model electron scattering. We compare simulated transmission electron microscopy images and diffraction patterns to experimental data, showing an accuracy equivalent to earlier all-electron calculations at a much lower computational cost.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456311700003 Publication Date 2018-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 3 Open Access  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:165938 Serial 6296  
Permanent link to this record
 

 
Author Guzzinati, G.; Béché, A.; McGrouther, D.; Verbeeck, J. pdf  url
doi  openurl
  Title Prospects for out-of-plane magnetic field measurements through interference of electron vortex modes in the TEM Type A1 Journal article
  Year 2019 Publication Journal of optics Abbreviated Journal J Optics-Uk  
  Volume 21 Issue 12 Pages 124002  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Magnetic field mapping in transmission electron microscopy is commonplace, but all conventional methods provide only a projection of the components of the magnetic induction perpendicular to the electron trajectory. Recent experimental advances with electron vortices have shown that it is possible to map the out of plane magnetic induction in a TEM setup via interferometry with a specifically prepared electron vortex state carrying high orbital angular momentum (OAM). The method relies on the Aharonov?Bohm phase shift that the electron undergoes when going through a longitudinal field. Here we show how the same effect naturally occurs for any electron wave function, which can always be described as a superposition of OAM modes. This leads to a clear connection between the occurrence of high-OAM partial waves and the amount of azimuthal rotation in the far field angular distribution of the beam. We show that out of plane magnetic field measurement can thus be obtained with a much simpler setup consisting of a ring-like aperture with azimuthal spokes. We demonstrate the experimental setup and explore the achievable sensitivity of the magnetic field measurement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000499367800001 Publication Date 2019-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-8978 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.741 Times cited (up) 3 Open Access  
  Notes The authors thank V Grillo and T Harvey for interesting and fruitful discussion. GG acknowledges support from a postdoctoral fellow-ship grant from the Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. AB acknowledges funding from FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy'). DM gratefully acknowledges funding of the FEBID capability through joint funding by University of Glasgow & EPSRC through a Strategic Equipment Grant (EP/P001483/1). Approved Most recent IF: 1.741  
  Call Number UA @ admin @ c:irua:165116 Serial 6319  
Permanent link to this record
 

 
Author van den Bos, K.H.W.; Janssens, L.; De Backer, A.; Nellist, P.D.; Van Aert, S. url  doi
openurl 
  Title The atomic lensing model: new opportunities for atom-by-atom metrology of heterogeneous nanomaterials Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 203 Issue Pages 155  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The atomic lensing model has been proposed as a promising method facilitating atom-counting in heterogeneous nanocrystals [1]. Here, image simulations will validate the model, which describes dynamical diffraction as a superposition of individual atoms focussing the incident electrons. It will be demonstrated that the model is reliable in the annular dark field regime for crystals having columns containing dozens of atoms. By using the principles of statistical detection theory, it will be shown that this model gives new opportunities for detecting compositional differences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465021000020 Publication Date 2018-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 4 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0369.15N, G.0502.18N and WO.010.16N), and by personal grants to K.H.W. van den Bos and A. De Backer. This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No. 770887). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @UA @ admin @ c:irua:155721 Serial 5074  
Permanent link to this record
 

 
Author Jimenez-Mena, N.; Jacques, P.J.; Ding, L.; Gauquelin, N.; Schryvers, D.; Idrissi, H.; Delannay, F.; Simar, A. pdf  url
doi  openurl
  Title Enhancement of toughness of Al-to-steel Friction Melt Bonded welds via metallic interlayers Type A1 Journal article
  Year 2019 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct  
  Volume 740-741 Issue Pages 274-284  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The toughness of Al-to-steel welds decreases with increasing thickness of the intermetallic (IM) layer formed at the interface. Co plating has been added as interlayer in Al-to-steel Friction Melt Bonded (FMB) welds to control the nature and thickness of the IM layer. In comparison to a weld without interlayer, Co plating brings about a reduction of the thickness of the IM layer by 70%. The critical energy release rate of the crack propagating in the weld is used as an indicator of toughness. It is evaluated via an adapted crack propagation test using an energy conservation criterion. For a weld without interlayer, critical energy release rate is found to increase when the thickness of the intermetallic layer decreases. When the intermetallic layer is thick, the crack propagates in a brittle manner through the intermetallic whereas, at low layer thickness, the crack deviates and partially propagates through the Al plate, which causes an increase of toughness. The use of a Co interlayer brings about an increase of toughness by causing full deviation of the crack towards the Al plate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453494500029 Publication Date 2018-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.094 Times cited (up) 4 Open Access Not_Open_Access: Available from 25.10.2020  
  Notes The authors acknowledge the financial support of the Interuniversity Attraction Poles Program from the Belgian State through the Belgian Policy Agency, Belgium, contract IAP7/21 INTEMATE. N. Jimenez-Mena acknowledges the financial support of the (Fonds pour la formation à la recherchedans l'industrie et dans l'agriculture (FRIA), Belgium. A. Simar acknowledges the financial support of the (European Research Council – Starting Grant (ERC-StG), project ALUFIX, grant agreement no 716678. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS), Belgium. The authors also acknowledge M. Coulombier for the help provided in the measurement of the friction coefficient, and T. Pardoen and F. Lani for the fruitful discussions. Approved Most recent IF: 3.094  
  Call Number EMAT @ emat @c:irua:154866UA @ admin @ c:irua:154866 Serial 5061  
Permanent link to this record
 

 
Author Gorbanev, Y.; Van der Paal, J.; Van Boxem, W.; Dewilde, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Reaction of chloride anion with atomic oxygen in aqueous solutions: can cold plasma help in chemistry research? Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 8 Pages 4117-4121  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma in contact with solutions has many applications, but its chemistry contains many unknowns such as the undescribed reactions with solutes. By combining experiments and modelling, we report the first direct demonstration of the reaction of chloride with oxygen atoms in aqueous solutions exposed to cold plasma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461722500001 Publication Date 2019-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited (up) 4 Open Access Not_Open_Access: Available from 31.01.2020  
  Notes H2020 Marie Skłodowska-Curie Actions, 743151 ; Fonds Wetenschappelijk Onderzoek, 11U5416N ; Approved Most recent IF: 4.123  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:157688 Serial 5167  
Permanent link to this record
 

 
Author Heijkers, S.; Martini, L.M.; Dilecce, G.; Tosi, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Nanosecond Pulsed Discharge for CO2Conversion: Kinetic Modeling To Elucidate the Chemistry and Improve the Performance Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 19 Pages 12104-12116  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We study the mechanisms of CO2 conversion in a nanosecond repetitively pulsed (NRP) discharge, by means of a chemical kinetics model. The calculated conversions and energy efficiencies are in reasonable agreement with experimental results over a wide range of specific energy input values, and the same applies to the evolution of gas temperature and CO2 conversion as a function of time in the afterglow, indicating that our model provides a realistic picture of the underlying mechanisms in the NRP discharge and can be used to identify its limitations and thus to suggest further improvements. Our model predicts that vibrational excitation is very important in the NRP discharge, explaining why this type of plasma yields energy-efficient CO2 conversion. A significant part of the CO2 dissociation occurs by electronic excitation from the lower vibrational levels toward repulsive electronic states, thus resulting in dissociation. However, vibration−translation (VT) relaxation (depopulating the higher vibrational levels) and CO + O recombination (CO + O + M → CO2 + M), as well as mixing of the converted gas with fresh gas entering the plasma in between the pulses, are limiting factors for the conversion and energy efficiency. Our model predicts that extra cooling, slowing down the rate of VT relaxation and of the above recombination reaction, thus enhancing the contribution of the highest vibrational levels to the overall CO2 dissociation, can further improve the performance of the NRP discharge for energy-efficient CO2 conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468368800009 Publication Date 2019-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (up) 4 Open Access Not_Open_Access: Available from 26.04.2020  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; The authors acknowledge financial support from the Fund for Scientific Research, Flanders (FWO; Grant no. G.0383.16N). Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159976 Serial 5174  
Permanent link to this record
 

 
Author Moors, K.; Contino, A.; Van de Put, M.L.; Vandenberghe, W.G.; Fischetti, M., V; Magnus, W.; Sorée, B. url  doi
openurl 
  Title Theoretical study of scattering in graphene ribbons in the presence of structural and atomistic edge roughness Type A1 Journal article
  Year 2019 Publication Physical review materials Abbreviated Journal  
  Volume 3 Issue 2 Pages 024001  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the diffusive electron-transport properties of charge-doped graphene ribbons and nanoribbons with imperfect edges. We consider different regimes of edge scattering, ranging from wide graphene ribbons with (partially) diffusive edge scattering to ribbons with large width variations and nanoribbons with atomistic edge roughness. For the latter, we introduce an approach based on pseudopotentials, allowing for an atomistic treatment of the band structure and the scattering potential, on the self-consistent solution of the Boltzmann transport equation within the relaxation-time approximation and taking into account the edge-roughness properties and statistics. The resulting resistivity depends strongly on the ribbon orientation, with zigzag (armchair) ribbons showing the smallest (largest) resistivity and intermediate ribbon orientations exhibiting intermediate resistivity values. The results also show clear resistivity peaks, corresponding to peaks in the density of states due to the confinement-induced subband quantization, except for armchair-edge ribbons that show a very strong width dependence because of their claromatic behavior. Furthermore, we identify a strong interplay between the relative position of the two valleys of graphene along the transport direction, the correlation profile of the atomistic edge roughness, and the chiral valley modes, leading to a peculiar strongly suppressed resistivity regime, most pronounced for the zigzag orientation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458161800001 Publication Date 2019-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) 4 Open Access  
  Notes ; We acknowledge the Research Foundation – Flanders (FWO) for supporting K.M.'s research visit at the University of Texas at Dallas, as well as the support by the National Research Fund Luxembourg (FNR) with ATTRACT Grant No. 7556175. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:157499 Serial 5235  
Permanent link to this record
 

 
Author Van Pottelberge, R.; Peeters, F.M. url  doi
openurl 
  Title Tunable circular dipolelike system in graphene : mixed electron-hole states Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 12 Pages 125426  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Coupled electron-hole states are realized in a system consisting of a combination of an electrostatic potential barrier and ring-shaped potential well, which resembles a circular dipole. A perpendicular magnetic field induces confined states inside the Landau gaps which are mainly located at the barrier or ring. Hybridizations between the barrier and ring states are seen as anticrossings in the energy spectrum. As a consequence, the energy levels show an oscillating dependence on the electrostatic potential strength in combination with an oscillating migration of the wave functions between the barrier and ring. At the anticrossing points the quantum state consists of a mixture of electron and hole. The present system mimics closely the behavior of a relativistic dipole on gapped graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000462900200005 Publication Date 2019-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 4 Open Access  
  Notes ; We thank M. Van der Donck for fruitful discussions. This work was supported by the Research Foundation of Flanders (FWO-V1) through an aspirant research grant for RVP. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:159409 Serial 5237  
Permanent link to this record
 

 
Author Yin, C.; Krishnan, D.; Gauquelin, N.; Verbeeck, J.; Aarts, J. doi  openurl
  Title Controlling the interfacial conductance in LaAlO3/SrTiO3 in 90 degrees off-axis sputter deposition Type A1 Journal article
  Year 2019 Publication Physical review materials Abbreviated Journal  
  Volume 3 Issue 3 Pages 034002  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report on the fabrication of conducting interfaces between LaAlO3 and SrTiO3 by 90 degrees off-axis sputtering in an Ar atmosphere. At a growth pressure of 0.04 mbar the interface is metallic, with a carrier density of the order of 1 x 10(13) cm(-2) at 3 K. By increasing the growth pressure, we observe an increase of the out-of-plane lattice constants of the LaAlO3 films while the in-plane lattice constants do not change. Also, the low-temperature sheet resistance increases with increasing growth pressure, leading to an insulating interface when the growth pressure reaches 0.10 mbar. We attribute the structural variations to an increase of the La/Al ratio, which also explains the transition from metallic behavior to insulating behavior of the interfaces. Our research shows that the control which is furnished by the Ar pressure makes sputtering as versatile a process as pulsed laser deposition, and emphasizes the key role of the cation stoichiometry of LaAlO3 in the formation of the conducting interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461077100002 Publication Date 2019-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.926 Times cited (up) 4 Open Access Not_Open_Access  
  Notes ; We thank Nikita Lebedev, Aymen Ben Hamida, and Prateek Kumar for useful discussions and Giordano Mattoni, Jun Wang, Vincent Joly, and Hozanna Miro for their technical assistance. We also thank Jean-Marc Triscone and his group for sharing their design of the sputtering system with us. This work is part of the FOM research programme DESCO with Project No. 149, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO). C.Y. is supported by China Scholarship Council (CSC) with Grant No. 201508110214. N.G., D.K., and J.V. acknowledge financial support from the GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:158547 Serial 5243  
Permanent link to this record
 

 
Author Michielsen, I.; Uytdenhouwen, Y.; Bogaerts, A.; Meynen, V. url  doi
openurl 
  Title Altering conversion and product selectivity of dry reforming of methane in a dielectric barrier discharge by changing the dielectric packing material Type A1 Journal article
  Year 2019 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 9 Issue 1 Pages 51  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied the influence of dense, spherical packing materials, with different chemical compositions, on the dry reforming of methane (DRM) in a dielectric barrier discharge (DBD) reactor. Although not catalytically activated, a vast effect on the conversion and product selectivity could already be observed, an influence which is often neglected when catalytically activated plasma packing materials are being studied. The alpha-Al2O3 packing material of 2.0-2.24 mm size yields the highest total conversion (28%), as well as CO2 (23%) and CH4 (33%) conversion and a high product fraction towards CO (similar to 70%) and ethane (similar to 14%), together with an enhanced CO/H-2 ratio of 9 in a 4.5 mm gap DBD at 60 W and 23 kHz. gamma-Al2O3 is only slightly less active in total conversion (22%) but is even more selective in products formed than alpha-Al2O3 BaTiO3 produces substantially more oxygenated products than the other packing materials but is the least selective in product fractions and has a clear negative impact on CO2 conversion upon addition of CH4. Interestingly, when comparing to pure CO2 splitting and when evaluating differences in products formed, significantly different trends are obtained for the packing materials, indicating a complex impact of the presence of CH4 and the specific nature of the packing materials on the DRM process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459732000051 Publication Date 2019-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited (up) 4 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.082  
  Call Number UA @ admin @ c:irua:158666 Serial 5268  
Permanent link to this record
 

 
Author Trenchev, G.; Nikiforov, A.; Wang, W.; Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Atmospheric pressure glow discharge for CO2 conversion : model-based exploration of the optimum reactor configuration Type A1 Journal article
  Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 362 Issue 362 Pages 830-841  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We investigate the performance of an atmospheric pressure glow discharge (APGD) reactor for CO2 conversion in three different configurations, through experiments and simulations. The first (basic) configuration utilizes the well-known pin-to-plate design, which offers a limited conversion. The second configuration improves the reactor performance by employing a vortex-flow generator. The third, “confined” configuration is a complete redesign of the reactor, which encloses the discharge in a limited volume, significantly surpassing the conversion rate of the other two designs. The plasma properties are investigated using an advanced plasma model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457863500084 Publication Date 2019-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited (up) 4 Open Access Not_Open_Access: Available from 15.10.2019  
  Notes Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:157459 Serial 5269  
Permanent link to this record
 

 
Author Gu, J.-G.; Zhang, Y.; Gao, M.-X.; Wang, H.-Y.; Zhang, Q.-Z.; Yi, L.; Jiang, W. pdf  doi
openurl 
  Title Enhancement of surface discharge in catalyst pores in dielectric barrier discharges Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 125 Issue 15 Pages 153303  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The generation of high-density plasmas on the surface of porous catalysts is very important for plasma catalysis, as it determines the active surface of the catalyst that is available for the reaction. In this work, we investigate the mechanism of surface and volume plasma streamer formation and propagation near micro-sized pores in dielectric barrier discharges operating in air at atmospheric pressure. A two-dimensional particle-in-cell/ Monte Carlo collision model is used to model the individual kinetic behavior of plasma species. Our calculations indicate that the surface discharge is enhanced on the surface of the catalyst pores compared with the microdischarge inside the catalyst pores. The reason is that the surface ionization wave induces surface charging along the catalyst pore sidewalls, leading to a strong electric field along the pore sidewalls, which in turn further enhances the surface discharge. Therefore, highly concentrated reactive species occur on the surfaces of the catalyst pores, indicating high-density plasmas on the surface of porous catalysts. Indeed, the maximum electron impact excitation and ionization rates occur on the pore surface, indicating the more pronounced production of excited state and electron-ion pairs on the pore surface than inside the pore, which may profoundly affect the plasma catalytic process. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465441200022 Publication Date 2019-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited (up) 4 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:160397 Serial 5273  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: