|
Record |
Links |
|
Author |
Zhang, Z.; Rosalie, J.M.; Medhekar, N.V.; Bourgeois, L. |
|
|
Title |
Resolving the FCC/HCP interfaces of the \gamma'(Ag2Al) precipitate phase in aluminium |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
Acta materialia |
Abbreviated Journal |
Acta Mater |
|
|
Volume |
174 |
Issue |
174 |
Pages |
116-130 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
The gamma'(Ag2Al) phase in the Al-Ag alloy system has served as a textbook example for understanding phase transformations, precipitating hexagonal close-packed (HCP) crystals in the face-centred cubic (FCC) aluminium matrix. The gamma' precipitates display fully coherent interfaces at their broad facets and semicoherent interfaces at their edges. Shockley partial dislocations are expected to decorate the semicoherent interface due to the FCC-HCP structural transformation. Determining the exact locations and core structures of interfacial dislocations, however, remains challenging. In this study, we used aberration-corrected scanning transmission electron microscopy and atomistic simulations to re-visit this classical system. We characterised and explained the Ag segregation at coherent interfaces in the early stage of precipitation. For semicoherent interfaces, interfacial dislocations and reconstructions were revealed by bridging advanced microstructure characterisation and atomistic simulations. In particular, we discovered a new FCC/HCP interfacial structure that displays a unique combination of Shockley partial, Lomer-Cottrell and Hirth dislocations that evolve from the known interfacial structure purely composed by Shockley partial dislocations. Our findings show that the FCC-HCP transformation is more complex than hitherto considered, due to the interplay between structure and composition confined at interfaces. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000474501300011 |
Publication Date |
2019-05-18 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1359-6454 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
5.301 |
Times cited |
3 |
Open Access |
|
|
|
Notes |
; The authors acknowledge funding from the Australian Research Council (LE0454166, LE110100223), the Victorian State Government and Monash University for instrumentation, and use of the facilities within the Monash Centre for Electron Microscopy. LB and NM acknowledge the financial support of the Australian Research Council (DP150100558). The authors also gratefully acknowledge the computational support from Monash Advanced Research Computing Hybrid, the National Computational Infrastructure and Pawsey Supercomputing Centre. ZZ is thankful to Monash University for a Monash Graduate Scholarship, a Monash International Postgraduate Research Scholarship and a Monash Centre for Electron Microscopy Postgraduate Scholarship. ZZ is indebted to Matthew Weyland for his training in aberration-corrected electron microscopy, Scott Findlay for his help on image simulations, Xiang Gao for alloy casting and Ian Polmear for discussions. ; |
Approved |
Most recent IF: 5.301 |
|
|
Call Number |
UA @ admin @ c:irua:161192 |
Serial |
5395 |
|
Permanent link to this record |