|   | 
Details
   web
Records
Author Neyts, E.C.
Title Special Issue on future directions in plasma nanoscience Type Editorial
Year 2019 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
Volume 13 Issue 2 Pages 199-200
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000468848400001 Publication Date 2019-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.712 Times cited (down) Open Access Not_Open_Access
Notes Approved Most recent IF: 1.712
Call Number UA @ admin @ c:irua:160277 Serial 5280
Permanent link to this record
 

 
Author Bal, K.M.; Bogaerts, A.; Neyts, E.C.
Title Ensemble-Based Molecular Simulation of Chemical Reactions under Vibrational Nonequilibrium Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett
Volume 11 Issue 2 Pages 401-406
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We present an approach to incorporate the effect of vibrational nonequilibrium in molecular dynamics (MD) simulations. A perturbed canonical ensemble, in which selected modes are excited to higher temperature while all others remain equilibrated at low temperature, is simulated by applying a specifically tailored bias potential. Our method can be readily applied to any (classical or quantum mechanical) MD setup at virtually no additional computational cost and allows the study of reactions of vibrationally excited molecules in nonequilibrium environments such as plasmas. In combination with enhanced sampling methods, the vibrational efficacy and mode selectivity of vibrationally stimulated reactions can then be quantified in terms of chemically relevant observables, such as reaction rates and apparent free energy barriers. We first validate our method for the prototypical hydrogen exchange reaction and then show how it can capture the effect of vibrational excitation on a symmetric SN2 reaction and radical addition on CO2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000508473400008 Publication Date 2020-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.7 Times cited (down) Open Access
Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 12ZI420N ; Departement Economie, Wetenschap en Innovatie van de Vlaamse Overheid; K.M.B. was funded as a junior postdoctoral fellow of the FWO (Research Foundation − Flanders), Grant 12ZI420N, and through a TOP-BOF research project of the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government− department EWI. Approved Most recent IF: 5.7; 2020 IF: 9.353
Call Number PLASMANT @ plasmant @c:irua:165587 Serial 5442
Permanent link to this record
 

 
Author Fukuhara, S.; Bal, K.M.; Neyts, E.C.; Shibuta, Y.
Title Accelerated molecular dynamics simulation of large systems with parallel collective variable-driven hyperdynamics Type A1 Journal article
Year 2020 Publication Computational Materials Science Abbreviated Journal Comp Mater Sci
Volume 177 Issue Pages 109581
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The limitation in time and length scale is a major issue of molecular dynamics (MD) simulation. Although several methods have been developed to extend the MD time scale, their performance usually deteriorates with increasing system size. Therefore, an acceleration method which is applicable to large systems is required to bridge the gap between the MD simulations and target phenomena. In this study, an accelerated MD method for large system is developed based on the collective variable-driven hyperdynamics (CVHD) method [K.M. Bal and E.C. Neyts, 2015]. The key idea is to run CVHD in parallel with rate control and accelerate multiple possible events simultaneously. Using this novel method, carbon diffusion in bcc-iron bicrystal with grain boundary is examined as an application for practical materials. Carbon atoms reaching at the grain boundary are trapped whereas carbon atoms in the bulk region diffuse randomly, and both dynamic regimes can be simultaneously accelerated with the parallel CVHD technique.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000519576300001 Publication Date 2020-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited (down) Open Access
Notes JSPS, J22727 ; Japan Society for the Promotion of Science; This work was supported by Grant-in-Aid for Scientific Research (B) (No.19H02415) and Grant-in-Aid for JSPS Research Fellow (No.18J22727) from Japan Society for the Promotion of Science (JSPS), Japan. S.F. was supported by JSPS through the Program for Leading Graduate Schools (MERIT). Data availability The data required to reproduce these findings are available from the corresponding authors upon reasonable request. Approved Most recent IF: 3.3; 2020 IF: 2.292
Call Number PLASMANT @ plasmant @c:irua:166773 Serial 6333
Permanent link to this record
 

 
Author Jafarzadeh, A.; Bal, K.M.; Bogaerts, A.; Neyts, E.C.
Title Activation of CO2on Copper Surfaces: The Synergy between Electric Field, Surface Morphology, and Excess Electrons Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 12 Pages 6747-6755
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, we use density functional theory calculations to study the combined effect of external electric fields, surface morphology, and surface charge on CO2 activation over Cu(111), Cu(211), Cu(110), and Cu(001) surfaces. We observe that the binding energy of the CO2 molecule on Cu surfaces increases significantly upon increasing the applied electric field strength. In addition, rougher surfaces respond more effectively to the presence of the external electric field toward facilitating the formation of a carbonate-like CO2 structure and the transformation of the most stable adsorption mode from physisorption to chemisorption. The presence of surface charges further strengthens the electric field effect and consequently causes an improved bending of the CO2 molecule and C−O bond length elongation. On the other hand, a net charge in the absence of an externally applied electric field shows only a marginal effect on CO2 binding. The chemisorbed CO2 is more stable and further activated when the effects of an external electric field, rough surface, and surface charge are combined. These results can help to elucidate the underlying factors that control CO2 activation in heterogeneous and plasma catalysis, as well as in electrochemical processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526396900030 Publication Date 2020-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited (down) Open Access
Notes Bijzonder Onderzoeksfonds, 32249 ; The financial support from the TOP research project of the Research Fund of the University of Antwerp (grant ID: 32249) is highly acknowledged by the authors. The computational resources used in this study were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Governmentdepartment EWI. Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:168606 Serial 6361
Permanent link to this record
 

 
Author Engelmann, Y.; Mehta, P.; Neyts, E.C.; Schneider, W.F.; Bogaerts, A.
Title Predicted Influence of Plasma Activation on Nonoxidative Coupling of Methane on Transition Metal Catalysts Type A1 Journal article
Year 2020 Publication Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng
Volume 8 Issue 15 Pages 6043-6054
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract The combination of catalysis and nonthermal plasma holds promise for enabling difficult chemical conversions. The possible synergy between both depends strongly on the nature of the reactive plasma species and the catalyst material. In this paper, we show how vibrationally excited species and plasma-generated radicals interact with transition metal catalysts and how changing the catalyst material can improve the conversion rates and product selectivity. We developed a microkinetic model to investigate the impact of vibrational excitations and plasma-generated radicals on the nonoxidative coupling of methane over transition metal surfaces. We predict a significant increase in ethylene formation for vibrationally excited methane. Plasma-generated radicals have a stronger impact on the turnover frequencies with high selectivity toward ethylene on noble catalysts and mixed selectivity on non-noble catalysts. In general, we show how the optimal catalyst material depends on the desired products as well as the plasma conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526884000025 Publication Date 2020-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited (down) Open Access
Notes Herculesstichting; University of Notre Dame; Universiteit Antwerpen; Division of Engineering Education and Centers, EEC-1647722 ; We would like to thank Tom Butterworth for his work on methane vibrational distribution functions (VDF) and for sharing his thoughts and experiences on this matter, specifically regarding the VDF of the degenerate modes of methane. We ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article https://dx.doi.org/10.1021/acssuschemeng.0c00906 ACS Sustainable Chem. Eng. 2020, 8, 6043−6054 6052 also acknowledge financial support from the DOC-PRO3 and the TOP-BOF projects of the University of Antwerp. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the University of Antwerp. Support for W.F.S. was provided by the National Science Foundation under cooperative agreement no. EEC-1647722, an Engineering Research Center for the Innovative and Strategic Transformation of Alkane Resources (CISTAR). P.M. acknowledges support through the Eilers Graduate Fellowship of the University of Notre Dame. Approved Most recent IF: 8.4; 2020 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:169228 Serial 6366
Permanent link to this record
 

 
Author Khalilov, U.; Neyts, E.C.
Title Mechanisms of selective nanocarbon synthesis inside carbon nanotubes Type A1 Journal article
Year 2021 Publication Carbon Abbreviated Journal Carbon
Volume 171 Issue Pages 72-78
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The possibility of confinement effects inside a carbon nanotube provides new application opportunities, e.g., growth of novel carbon nanostructures. However, the understanding the precise role of catalystfeedstock in the nanostructure synthesis is still elusive. In our simulation-based study, we investigate the Ni-catalyzed growth mechanism of encapsulated carbon nanostructures, viz. double-wall carbon nanotube and graphene nanoribbon, from carbon and hydrocarbon growth precursors, respectively. Specifically, we find that the tube and ribbon growth is determined by a catalyst-vs-feedstock competition effect. We compare our results, i.e., growth mechanism and structure morphology with all available theoretical and experimental data. Our calculations show that all encapsulated nanostructures contain metal (catalyst) atoms and such structures are less stable than their pure counterparts. Therefore, we study the purification mechanism of these structures. In general, this study opens a possible route to the controllable synthesis of tubular and planar carbon nanostructures for today’s nanotechnology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000598371500009 Publication Date 2020-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.337 Times cited (down) Open Access OpenAccess
Notes Fund of Scientific Research Flanders, 12M1318N ; Universiteit Antwerpen; Flemish Supercomputer Centre; Hercules Foundation; Flemish Government; The authors gratefully acknowledge the financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant number 12M1318N. The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Centre (VSC), funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA, Belgium. Approved Most recent IF: 6.337
Call Number PLASMANT @ plasmant @c:irua:172459 Serial 6414
Permanent link to this record
 

 
Author Bal, K.M.; Fukuhara, S.; Shibuta, Y.; Neyts, E.C.
Title Free energy barriers from biased molecular dynamics simulations Type A1 Journal article
Year 2020 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
Volume 153 Issue 11 Pages 114118
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Atomistic simulation methods for the quantification of free energies are in wide use. These methods operate by sampling the probability density of a system along a small set of suitable collective variables (CVs), which is, in turn, expressed in the form of a free energy surface (FES). This definition of the FES can capture the relative stability of metastable states but not that of the transition state because the barrier height is not invariant to the choice of CVs. Free energy barriers therefore cannot be consistently computed from the FES. Here, we present a simple approach to calculate the gauge correction necessary to eliminate this inconsistency. Using our procedure, the standard FES as well as its gauge-corrected counterpart can be obtained by reweighing the same simulated trajectory at little additional cost. We apply the method to a number of systems—a particle solvated in a Lennard-Jones fluid, a Diels–Alder reaction, and crystallization of liquid sodium—to demonstrate its ability to produce consistent free energy barriers that correctly capture the kinetics of chemical or physical transformations, and discuss the additional demands it puts on the chosen CVs. Because the FES can be converged at relatively short (sub-ns) time scales, a free energy-based description of reaction kinetics is a particularly attractive option to study chemical processes at more expensive quantum mechanical levels of theory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000574665600004 Publication Date 2020-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.4 Times cited (down) Open Access
Notes Japan Society for the Promotion of Science, 19H02415 18J22727 ; Fonds Wetenschappelijk Onderzoek, 12ZI420N ; This work was supported, in part, by a Grant-in-Aid for Scientific Research (B) (Grant No. 19H02415) and Grant-in-Aid for a JSPS Research Fellow (Grant No. 18J22727) from the Japan Society for the Promotion of Science (JSPS), Japan. K.M.B. was funded as a junior postdoctoral fellow of the FWO (Research Foundation – Flanders), Grant No. 12ZI420N. S.F. was supported by JSPS through the Program for Leading Graduate Schools (MERIT). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. The authors are grateful to Pablo Piaggi for making the pair entropy CV code publicly available. Approved Most recent IF: 4.4; 2020 IF: 2.965
Call Number PLASMANT @ plasmant @c:irua:172456 Serial 6420
Permanent link to this record
 

 
Author Fukuhara, S.; Bal, K.M.; Neyts, E.C.; Shibuta, Y.
Title Entropic and enthalpic factors determining the thermodynamics and kinetics of carbon segregation from transition metal nanoparticles Type A1 Journal article
Year 2021 Publication Carbon Abbreviated Journal Carbon
Volume 171 Issue Pages 806-813
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The free energy surface (FES) for carbon segregation from nickel nanoparticles is obtained from advanced molecular dynamics simulations. A suitable reaction coordinate is developed that can distinguish dissolved carbon atoms from segregated dimers, chains and junctions on the nanoparticle surface. Because of the typically long segregation time scale (up to ms), metadynamics simulations along the developed reaction coordinate are used to construct FES over a wide range of temperatures and carbon concentrations. The FES revealed the relative stability of different stages in the segregation process, and free energy barriers and rates of the individual steps could then be calculated and decomposed into enthalpic and entropic contributions. As the carbon concentration in the nickel nanoparticle increases, segregated carbon becomes more stable in terms of both enthalpy and entropy. The activation free energy of the reaction also decreases with the increase of carbon concentration, which can be mainly attributed to entropic effects. These insights and the methodology developed to obtain them improve our understanding of carbon segregation process across materials science in general, and the nucleation and growth of carbon nanotube in particular.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000598371500084 Publication Date 2020-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited (down) Open Access OpenAccess
Notes Scientific Research, 19H02415 ; JSPS, 18J22727 ; Japan Society for the Promotion of Science; JSPS; JSPS; FWO; Research Foundation; Flanders, 12ZI420N ; This work was supported by Grant-in-Aid for Scientific Research (B) (No.19H02415) and Grant-in-Aid for JSPS Research Fellow (No.18J22727) from Japan Society for the Promotion of Science (JSPS), Japan. S.F. was supported by JSPS through the Program for 812 Approved Most recent IF: 6.337
Call Number PLASMANT @ plasmant @c:irua:172452 Serial 6421
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title Direct oxidation of methane to methanol on Co embedded N-doped graphene: Comparing the role of N₂O and O₂ as oxidants Type A1 Journal article
Year 2020 Publication Applied Catalysis A-General Abbreviated Journal Appl Catal A-Gen
Volume 602 Issue Pages 117716-10
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, the effects of N-doping into the Co-doped single vacancy (Co-SV-G) and di-vacancy graphene flake (Co-dV-G) are investigated and compared toward direct oxidation of methane to methanol (DOMM) employing two different oxidants (N2O and O-2) using density functional theory (DFT) calculation. We found that DOMM on CoN3-G utilizing the N2O molecule as oxygen-donor proceeds via a two-step reaction with low activation energies. In addition, we found that although CoN3-G might be a good catalyst for methane conversion, it can also catalyze the oxidation of methanol to CO2 and H2O due to the required low activation barriers. Moreover, the adsorption behaviors of CHx (x = 0-4) species and dehydrogenation of CHx (x = 1-4) species on CoN3-G are investigated. We concluded that CoN3-G can be used as an efficient catalyst for DOMM and N-2O reduction at ambient conditions which may serve as a guide for fabricating effective C/N catalysts in energy-related devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000554006800046 Publication Date 2020-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-860x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited (down) Open Access
Notes ; This work was performed with the financial support from the Doctoral Fund of the Antwerp University (NO. BOFLP33099). All the simulations are performed on resources provided by the high-performance computing center of Antwerp University. ; Approved Most recent IF: 5.5; 2020 IF: 4.339
Call Number UA @ admin @ c:irua:171219 Serial 6485
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Surmenev, R.A.; Neyts, E.C.
Title Effect of van der Waals interactions on the adhesion strength at the interface of the hydroxyapatite-titanium biocomposite : a first-principles study Type A1 Journal article
Year 2020 Publication RSC advances Abbreviated Journal
Volume 10 Issue 62 Pages 37800-37805
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Hydroxyapatite (HAP) is frequently used as biocompatible coating on Ti-based implants. In this context, the HAP-Ti adhesion is of crucial importance. Here, we report ab initio calculations to investigate the influence of Si incorporation into the amorphous calcium-phosphate (a-HAP) structure on the interfacial bonding mechanism between the a-HAP coating and an amorphous titanium dioxide (a-TiO2) substrate, contrasting two different density functionals: PBE-GGA, and DFT-D3, which are capable of describing the influence of the van der Waals (vdW) interactions. In particular, we discuss the effect of dispersion on the work of adhesion (W-ad), equilibrium geometries, and charge density difference (CDD). We find that replacement of P by Si in a-HAP (a-Si-HAP) with the creation of OH vacancies as charge compensation results in a significant increase in the bond strength between the coating and substrate in the case of using the PBE-GGA functional. However, including the vdW interactions shows that these forces considerably contribute to the W-ad. We show that the difference (W-ad – W-ad(vdW)) is on average more than 1.1 J m(-2) and 0.5 J m(-2) for a-HAP/a-TiO2 and a-Si-HAP/a-TiO2, respectively. These results reveal that including vdW interactions is essential for accurately describing the chemical bonding at the a-HAP/a-TiO2 interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000583523300025 Publication Date 2020-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (down) Open Access
Notes ; The authors gratefully acknowledge financial support from the Russian president's grant MK-330.2020.8 and BOF Fellowships for International Joint PhD students funded by University of Antwerp (UAntwerp, project number 32545). The work was carried out at Tomsk Polytechnic University within the framework of Tomsk Polytechnic University Competitiveness Enhancement Program grant and in part using the Turing HPC infrastructure of the CalcUA core facility of the UAntwerp, a division of the Flemish Supercomputer Centre (VSC), funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerp, Belgium. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:173603 Serial 6499
Permanent link to this record
 

 
Author Marinov, D.; de Marneffe, J.-F.; Smets, Q.; Arutchelvan, G.; Bal, K.M.; Voronina, E.; Rakhimova, T.; Mankelevich, Y.; El Kazzi, S.; Nalin Mehta, A.; Wyndaele, P.-J.; Heyne, M.H.; Zhang, J.; With, P.C.; Banerjee, S.; Neyts, E.C.; Asselberghs, I.; Lin, D.; De Gendt, S.
Title Reactive plasma cleaning and restoration of transition metal dichalcogenide monolayers Type A1 Journal article
Year 2021 Publication npj 2D Materials and Applications Abbreviated Journal npj 2D Mater Appl
Volume 5 Issue 1 Pages 17
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The cleaning of two-dimensional (2D) materials is an essential step in the fabrication of future devices, leveraging their unique physical, optical, and chemical properties. Part of these emerging 2D materials are transition metal dichalcogenides (TMDs). So far there is limited understanding of the cleaning of “monolayer” TMD materials. In this study, we report on the use of downstream H<sub>2</sub>plasma to clean the surface of monolayer WS<sub>2</sub>grown by MOCVD. We demonstrate that high-temperature processing is essential, allowing to maximize the removal rate of polymers and to mitigate damage caused to the WS<sub>2</sub>in the form of sulfur vacancies. We show that low temperature in situ carbonyl sulfide (OCS) soak is an efficient way to resulfurize the material, besides high-temperature H<sub>2</sub>S annealing. The cleaning processes and mechanisms elucidated in this work are tested on back-gated field-effect transistors, confirming that transport properties of WS<sub>2</sub>devices can be maintained by the combination of H<sub>2</sub>plasma cleaning and OCS restoration. The low-damage plasma cleaning based on H<sub>2</sub>and OCS is very reproducible, fast (completed in a few minutes) and uses a 300 mm industrial plasma etch system qualified for standard semiconductor pilot production. This process is, therefore, expected to enable the industrial scale-up of 2D-based devices, co-integrated with silicon technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000613258900001 Publication Date 2021-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (down) Open Access OpenAccess
Notes Daniil Marinov has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 752164. Ekaterina Voronina, Yuri Mankelevitch, and Tatyana Rakhimova are thankful to the Russian Science Foundation (RSF) for financial support (Grant No. 16-12-10361). This study was carried out using the equipment of the shared research facilities of high-performance computing resources at Lomonosov Moscow State University and the computational resources and services of the HPC core facility CalcUA of the University of Antwerp, and VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government. Patrick With gratefully acknowledges imec’s CTO office for financial support during his stay at imec. The authors thank Mr. Surajit Sutar (imec) for his help during sample electrical characterization, and Patrick Verdonck for lab processing. Jean-François de Marneffe thank Prof. Simone Napolitano from the Free University of Brussels for useful discussions on irreversibly adsorbed polymer layers, and Cédric Huyghebaert (imec) for his continuous support in the framework of the Graphene FET Flagship core project. All authors acknowledge the support of imec’s pilot line and materials characterization and analysis (MCA) group, namely Jonathan Ludwig, Stefanie Sergeant, Thomas Nuytten, Olivier Richard, and Thierry Conard. Finally, Daniil Marinov thank Mikhail Krishtab (imec/KU Leuven) for his help in selecting the optimal plasma etch system for this work. Part of this project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 649953. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:175871 Serial 6671
Permanent link to this record
 

 
Author Yi, Y.; Wang, X.; Jafarzadeh, A.; Wang, L.; Liu, P.; He, B.; Yan, J.; Zhang, R.; Zhang, H.; Liu, X.; Guo, H.; Neyts, E.C.; Bogaerts, A.
Title Plasma-Catalytic Ammonia Reforming of Methane over Cu-Based Catalysts for the Production of HCN and H2at Reduced Temperature Type A1 Journal article
Year 2021 Publication Acs Catalysis Abbreviated Journal Acs Catal
Volume 11 Issue 3 Pages 1765-1773
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Industrial production of HCN from NH3 and CH4 not only uses precious Pt or Pt−Rh catalysts but also requires extremely high temperatures (∼1600 K). From an energetic, operational, and safety perspective, a drastic decrease in temperature is highly desirable. Here, we report ammonia reforming of methane for the production of HCN and H2 at 673 K by the combination of CH4/NH3 plasma and a supported Cu/silicalite-1 catalyst. 30% CH4 conversion has been achieved with 79% HCN selectivity. Catalyst characterization and plasma diagnostics reveal that the excellent reaction performance is attributed to metallic Cu active sites. In addition, we propose a possible reaction pathway, viz. E-R reactions with N, NH, NH2, and CH radicals produced in the plasma, for the production of HCN, based on density functional theory calculations. Importantly, the Cu/silicalite-1 catalyst costs less than 5% of the commercial Pt mesh catalyst.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000618540300057 Publication Date 2021-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.614 Times cited (down) Open Access OpenAccess
Notes Universiteit Antwerpen, 32249 ; China Postdoctoral Science Foundation, 2015M580220 2016T90217 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; National Natural Science Foundation of China, 21503032 ; We acknowledge financial support from the National Natural Science Foundation of China [21503032], the China Postdoctoral Science Foundation [grant numbers 2015M580220 and 2016T90217, 2016], the PetroChina Innovation Foundation [2018D-5007-0501], and the TOP research project of the Research Fund of the University of Antwerp [grant ID 32249]. Approved Most recent IF: 10.614
Call Number PLASMANT @ plasmant @c:irua:175880 Serial 6675
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Khalilov, U.; Hamoudi, H.; Neyts, E.C.
Title Effect of chemical modification on electronic transport properties of carbyne Type A1 Journal article
Year 2021 Publication Journal Of Computational Electronics Abbreviated Journal J Comput Electron
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using density functional theory in combination with the Green’s functional formalism, we study the effect of surface functionalization on the electronic transport properties of 1D carbon allotrope—carbyne. We found that both hydrogenation and fluorination result in structural changes and semiconducting to metallic transition. Consequently, the current in the functionalization systems increases significantly due to strong delocalization of electronic states along the carbon chain. We also study the electronic transport in partially hydrogenated carbyne and interface structures consisting of pristine and functionalized carbyne. In the latter case, current rectification is obtained in the system with rectification ratio up to 50%. These findings can be useful for developing carbyne-based structures with tunable electronic transport properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000617664900001 Publication Date 2021-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-8025 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.526 Times cited (down) Open Access OpenAccess
Notes Computational resources were provided by the research computing facilities of Qatar Environment and Energy Research Institute. Calculations are also conducted using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. U. Khalilov gratefully acknowledges financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant number 12M1315N. Approved Most recent IF: 1.526
Call Number PLASMANT @ plasmant @c:irua:176169 Serial 6708
Permanent link to this record
 

 
Author Izadi, M.E.; Bal, K.M.; Maghari, A.; Neyts, E.C.
Title Reaction mechanisms of C(3PJ) and C+(2PJ) with benzene in the interstellar medium from quantum mechanical molecular dynamics simulations Type A1 Journal article
Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys
Volume 23 Issue 7 Pages 4205-4216
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract While spectroscopic data on small hydrocarbons in interstellar media in combination with crossed molecular beam (CMB) experiments have provided a wealth of information on astrochemically relevant species, much of the underlying mechanistic pathways of their formation remain elusive. Therefore, in this work, the chemical reaction mechanisms of C(<sup>3</sup>P<sub>J</sub>) + C<sub>6</sub>H<sub>6</sub>and C<sup>+</sup>(<sup>2</sup>P) + C<sub>6</sub>H<sub>6</sub>systems using the quantum mechanical molecular dynamics (QMMD) technique at the PBE0-D3(BJ) level of theory is investigated, mimicking a CMB experiment. Both the dynamics of the reactions as well as the electronic structure for the purpose of the reaction network are evaluated. The method is validated for the first reaction by comparison to the available experimental data. The reaction scheme for the C(<sup>3</sup>P<sub>J</sub>) + C<sub>6</sub>H<sub>6</sub>system covers the literature data,<italic>e.g.</italic>the major products are the 1,2-didehydrocycloheptatrienyl radical (C<sub>7</sub>H<sub>5</sub>) and benzocyclopropenyl radical (C<sub>6</sub>H<sub>5</sub>–CH), and it reveals the existence of less common pathways for the first time. The chemistry of the C<sup>+</sup>(<sup>2</sup>P<sub>J</sub>) + C<sub>6</sub>H<sub>6</sub>system is found to be much richer, and we have found that this is because of more exothermic reactions in this system in comparison to those in the C(<sup>3</sup>P<sub>J</sub>) + C<sub>6</sub>H<sub>6</sub>system. Moreover, using the QMMD simulation, a number of reaction paths have been revealed that produce three distinct classes of reaction products with different ring sizes. All in all, at all the collision energies and orientations, the major product is the heptagon molecular ion for the ionic system. It is also revealed that the collision orientation has a dominant effect on the reaction products in both systems, while the collision energy mostly affects the charged system. These simulations both prove the applicability of this approach to simulate crossed molecular beams, and provide fundamental information on reactions relevant for the interstellar medium.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000621595300016 Publication Date 2021-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited (down) Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 12ZI420N ; Ministry of Science Research and Technology; Universiteit Antwerpen; The financial support from the Iran Ministry of Science, Research and Technology and PLASMANT Research Group University of Antwerp is highly acknowledged by the authors. K.M.B. was funded as a junior postdoctoral fellow of the FWO (Research Foundation – Flanders), Grant 12ZI420N. The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. Approved Most recent IF: 4.123
Call Number PLASMANT @ plasmant @c:irua:176672 Serial 6742
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
Title Quantifying the impact of vibrational nonequilibrium in plasma catalysis: insights from a molecular dynamics model of dissociative chemisorption Type A1 Journal Article;plasma catalysis
Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 54 Issue 39 Pages 394004
Keywords A1 Journal Article;plasma catalysis; vibrational nonequilibrium; dissociative chemisorption; free energy barriers; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The rate, selectivity and efficiency of plasma-based conversion processes is strongly affected by nonequilibrium phenomena. High concentrations of vibrationally excited molecules are such a plasma-induced effect. It is frequently assumed that vibrationally excited molecules are important in plasma catalysis because their presence lowers the apparent activation energy of dissociative chemisorption reactions and thus increases the conversion rate. A detailed atomic-level understanding of vibrationally stimulated catalytic reactions in the context of plasma catalysis is however lacking. Here, we couple a recently developed statistical model of a plasma-induced vibrational nonequilibrium to molecular dynamics simulations, enhanced sampling methods, and machine learning techniques. We quantify the impact of a vibrational nonequilibrium on the dissociative chemisorption barrier of H2 and CH4 on nickel catalysts over a wide range of vibrational temperatures. We investigate the effect of surface structure and compare the role of different vibrational modes of methane in the dissociation process. For low vibrational temperatures, very high vibrational efficacies are found, and energy in bend vibrations appears to dominate the dissociation of methane. The relative impact of vibrational nonequilibrium is much higher on terrace sites than on surface steps. We then show how our simulations can help to interpret recent experimental results, and suggest new paths to a better understanding of plasma catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000674464100001 Publication Date 2021-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited (down) Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 12ZI420N ; K M B was funded as a junior postdoctoral fellow of the FWO (Research Foundation—Flanders), Grant 12ZI420N. The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. HLDA calculations were performed with a script provided by G Piccini. Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @c:irua:179830 Serial 6808
Permanent link to this record
 

 
Author Engelmann, Y.; van ’t Veer, K.; Gorbanev, Y.; Neyts, E.C.; Schneider, W.F.; Bogaerts, A.
Title Plasma Catalysis for Ammonia Synthesis: A Microkinetic Modeling Study on the Contributions of Eley–Rideal Reactions Type A1 Journal Article;Plasma catalysis
Year 2021 Publication Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng
Volume 9 Issue 39 Pages 13151-13163
Keywords A1 Journal Article;Plasma catalysis; Eley−Rideal reactions; Volcano plots; Vibrational excitation; Radical reactions; Dielectric barrier discharge; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma catalysis is an emerging new technology for the electrification and downscaling of NH3 synthesis. Increasing attention is being paid to the optimization of plasma catalysis with respect to the plasma conditions, the catalyst material, and their mutual interaction. In this work we use microkinetic models to study how the total conversion process is impacted by the combination of different plasma conditions and transition metal catalysts. We study how plasma-generated radicals and vibrationally excited N2 (present in a dielectric barrier discharge plasma) interact with the catalyst and impact the NH3 turnover frequencies (TOFs). Both filamentary and uniform plasmas are studied, based on plasma chemistry models that provided plasma phase speciation and vibrational distribution functions. The Langmuir−Hinshelwood reaction rate coefficients (i.e., adsorption reactions and subsequent reactions among adsorbates) are determined using conventional scaling relations. An additional set of Eley−Rideal reactions (i.e., direct reactions of plasma radicals with adsorbates) was added and a sensitivity analysis on the assumed reaction rate coefficients was performed. We first show the impact of different vibrational distribution functions on the catalytic dissociation of N2 and subsequent production of NH3, and we gradually include more radical reactions, to illustrate the contribution of these species and their corresponding reaction pathways. Analysis over a large range of catalysts indicates that different transition metals (metals such as Rh, Ni, Pt, and Pd) optimize the NH3TOFs depending on the population of the vibrational levels of N2. At higher concentrations of plasma-generated radicals, the NH3 TOFs become less dependent on the catalyst material, due to radical adsorptions on the more noble catalysts and Eley−Rideal reactions on the less noble catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000705367800004 Publication Date 2021-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.951 Times cited (down) Open Access OpenAccess
Notes Basic Energy Sciences, DE-SC0021107 ; Vlaamse regering, HBC.2019.0108 ; H2020 European Research Council, 810182 ; Methusalem project – University of Antwerp; Excellence of science FWO-FNRS, GoF9618n ; TOP-BOF – University of Antwerp; DOCPRO3 – University of Antwerp; We acknowledge the financial support from the DOC-PRO3, the TOP-BOF, and the Methusalem project of the University of Antwerp, as well as from the European Research Council (ERC) (grant agreement No, 810182−SCOPE ERC Synergy project), under the European Union’s Horizon 2020 research and innovation programme, the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108), and the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). Calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), 13162 Approved Most recent IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:182482 Serial 6811
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.C.; Guaitella, O.; Murphy, A.B.
Title Foundations of plasma catalysis for environmental applications Type A1 Journal article
Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is gaining increasing interest for various applications, but the underlying mechanisms are still far from understood. Hence, more fundamental research is needed to understand these mechanisms. This can be obtained by both modelling and experiments. This foundations paper describes the fundamental insights in plasma catalysis, as well as efforts to gain more insights by modelling and experiments. Furthermore, it discusses the state-of-the-art of the major plasma catalysis applications, as well as successes and challenges of technology transfer of these applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000804396200001 Publication Date 2022-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.8 Times cited (down) Open Access OpenAccess
Notes H2020 Marie Skłodowska-Curie Actions, 823745 ; H2020 European Research Council, 810182 ; We acknowldege financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (Grant Agreement No. 810182 – SCOPE ERC Synergy project) and the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 813393 (PIONEER). Approved Most recent IF: 3.8
Call Number PLASMANT @ plasmant @c:irua:188539 Serial 7070
Permanent link to this record
 

 
Author Nematollahi, P.; Barbiellini, B.; Bansil, A.; Lamoen, D.; Qingying, J.; Mukerjee, S.; Neyts, E.C.
Title Identification of a Robust and Durable FeN4CxCatalyst for ORR in PEM Fuel Cells and the Role of the Fifth Ligand Type A1 Journal article
Year 2022 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume Issue Pages 7541-7549
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Although recent studies have advanced the understanding of pyrolyzed

Fe−N−C materials as oxygen reduction reaction (ORR) catalysts, the atomic and

electronic structures of the active sites and their detailed reaction mechanisms still remain unknown. Here, based on first-principles density functional theory (DFT) computations, we discuss the electronic structures of three FeN4 catalytic centers with different local topologies of the surrounding C atoms with a focus on unraveling the mechanism of their ORR activity in acidic electrolytes. Our study brings back a forgotten, synthesized pyridinic Fe−N coordinate to the community’s attention, demonstrating that this catalyst can exhibit excellent activity for promoting direct four-electron ORR through the addition of a fifth ligand such as −NH2, −OH, and −SO4. We also identify sites with good stability properties through the combined use of our DFT calculations and Mössbauer spectroscopy data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000823193100001 Publication Date 2022-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS full record; WoS citing articles
Impact Factor 12.9 Times cited (down) Open Access OpenAccess
Notes Basic Energy Sciences, DE-FG02-07ER46352 ; Fonds Wetenschappelijk Onderzoek, 1261721N ; Opetus- ja Kulttuuriministeri?; Department of Energy, DE-EE0008416 ; Approved Most recent IF: 12.9
Call Number EMAT @ emat @c:irua:189000 Serial 7073
Permanent link to this record
 

 
Author Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
Title Comment on “Misinterpretation of the Shuttleworth equation” Type A1 Journal Article
Year 2024 Publication Scripta Materialia Abbreviated Journal Scripta Materialia
Volume 250 Issue Pages 116186
Keywords A1 Journal Article; CMT
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462 ISBN Additional Links
Impact Factor 6 Times cited (down) Open Access
Notes Research Foundation Flanders; Approved Most recent IF: 6; 2024 IF: 3.747
Call Number UA @ lucian @ CMT Serial 9116
Permanent link to this record
 

 
Author Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
Title Capillary Condensation of Water in Graphene Nanocapillaries Type A1 Journal Article
Year 2024 Publication Nano Letters Abbreviated Journal Nano Lett.
Volume 24 Issue 18 Pages 5625-5630
Keywords A1 Journal Article; CMT
Abstract Recent experiments have revealed that the macroscopic Kelvin equation remains surprisingly accurate even for nanoscale capillaries. This phenomenon was so far explained by the oscillatory behavior of the solid−liquid interfacial free energy. We here demonstrate thermodynamic and capillarity inconsistencies with this explanation. After revising the Kelvin equation, we ascribe its validity at nanoscale confinement to the effect of disjoining pressure.

To substantiate our hypothesis, we employed molecular dynamics simulations to evaluate interfacial heat transfer and wetting properties. Our assessments unveil a breakdown in a previously established proportionality between the work of adhesion and the Kapitza conductance at capillary heights below 1.3 nm, where the dominance of the work of adhesion shifts primarily from energy to entropy. Alternatively, the peak density of the initial water layer can effectively probe the work of adhesion. Unlike under bulk conditions, high confinement renders the work of adhesion entropically unfavorable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links
Impact Factor 10.8 Times cited (down) Open Access
Notes This work was supported by Research Foundation-Flanders (FWO, project No. G099219N). The computational resources used in this work were provided by the HPC core facility CalcUA of the University of Antwerp, and the Flemish Supercomputer Center (VSC), funded by FWO and the Flemish Government. Approved Most recent IF: 10.8; 2024 IF: 12.712
Call Number UA @ lucian @ Serial 9123
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Peeters, F.M.
Title Reduction-enhanced water flux through layered graphene oxide (GO) membranes stabilized with H3O+ and OH- ions Type A1 Journal article
Year 2024 Publication Physical chemistry, chemical physics Abbreviated Journal
Volume 26 Issue 13 Pages 10265-10272
Keywords A1 Journal article; Condensed Matter Theory (CMT); Modelling and Simulation in Chemistry (MOSAIC)
Abstract Graphene oxide (GO) is one of the most promising candidates for next generation of atomically thin membranes. Nevertheless, one of the major issues for real world application of GO membranes is their undesirable swelling in an aqueous environment. Recently, we demonstrated that generation of H3O+ and OH- ions (e.g., with an external electric field) in the interlayer gallery could impart aqueous stability to the layered GO membranes (A. Gogoi, ACS Appl. Mater. Interfaces, 2022, 14, 34946). This, however, compromises the water flux through the membrane. In this study, we report on reducing the GO nanosheets as a solution to this issue. With the reduction of the GO nanosheets, the water flux through the layered GO membrane initially increases and then decreases again beyond a certain degree of reduction. Here, two key factors are at play. Firstly, the instability of the H-bond network between water molecules and the GO nanosheets, which increases the water flux. Secondly, the pore size reduction in the interlayer gallery of the membranes, which decreases the water flux. We also observe a significant improvement in the salt rejection of the membranes, due to the dissociation of water molecules in the interlayer gallery. In particular, for the case of 10% water dissociation, the water flux through the membranes can be enhanced without altering its selectivity. This is an encouraging observation as it breaks the traditional tradeoff between water flux and salt rejection of a membrane.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001186465400001 Publication Date 2024-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.3 Times cited (down) Open Access
Notes Approved Most recent IF: 3.3; 2024 IF: 4.123
Call Number UA @ admin @ c:irua:204792 Serial 9168
Permanent link to this record
 

 
Author Kovács, A.; Billen, P.; Cornet, I.; Wijnants, M.; Neyts, E.C.
Title Modeling the physicochemical properties of natural deep eutectic solvents : a review Type A1 Journal article
Year 2020 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 13 Issue 15 Pages 3789-3804
Keywords A1 Journal article; Engineering sciences. Technology; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Natural deep eutectic solvents (NADES) are mixtures of naturally derived compounds with a significantly decreased melting point due to the specific interactions among the constituents. NADES have benign properties (low volatility, flammability, toxicity, cost) and tailorable physicochemical properties (by altering the type and molar ratio of constituents), hence they are often considered as a green alternative to common organic solvents. Modeling the relation between their composition and properties is crucial though, both for understanding and predicting their behavior. Several efforts were done to this end, yet this review aims at structuring the present knowledge as an outline for future research. First, we reviewed the key properties of NADES and relate them to their structure based on the available experimental data. Second, we reviewed available modeling methods applicable to NADES. At the molecular level, density functional theory and molecular dynamics allow interpreting density differences and vibrational spectra, and computation of interaction energies. Additionally, properties at the level of the bulk media can be explained and predicted by semi-empirical methods based on ab initio methods (COSMO-RS) and equation of state models (PC-SAFT). Finally, methods based on large datasets are discussed; models based on group contribution methods and machine learning. A combination of bulk media and dataset modeling allows qualitative prediction and interpretation of phase equilibria properties on the one hand, and quantitative prediction of melting point, density, viscosity, surface tension and refractive indices on the other hand. In our view, multiscale modeling, combining the molecular and macroscale methods, will strongly enhance the predictability of NADES properties and their interaction with solutes, yielding truly tailorable solvents to accommodate (bio)chemical reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000541499100001 Publication Date 2020-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited (down) Open Access
Notes Approved Most recent IF: 8.4; 2020 IF: 7.226
Call Number UA @ admin @ c:irua:168851 Serial 6770
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title Distribution pattern of metal atoms in bimetal-doped pyridinic-N₄ pores determines their potential for electrocatalytic N₂ reduction Type A1 Journal article
Year 2022 Publication Journal Of Physical Chemistry A Abbreviated Journal J Phys Chem A
Volume 126 Issue 20 Pages 3080-3089
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Doping two single transition-metal (TM) atoms on a substrate host opens numerous possibilities for catalyst design. However, what if the substrate contains more than one vacancy site? Then, the combination of two TMs along with their distribution patterns becomes a design parameter potentially complementary to the substrate itself and the bimetal composition. In this study, we investigate ammonia synthesis under mild electrocatalytic conditions on a transition-metal-doped porous C24N24 catalyst using density functional theory (DFT). The TMs studied include Ti, Mn, and Cu in a 2:4 dopant ratio (Ti2Mn4@C24N24 and Ti2Cu4@N-24(24)). Our computations show that a single Ti atom in both catalysts exhibits the highest selectivity for N-2 fixation at ambient conditions. This work is a good theoretical model to establish the structure-activity relationship, and the knowledge earned from the metal-N-4 moieties may help studies of related nanomaterials, especially those with curved structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000804119800003 Publication Date 2022-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1089-5639; 1520-5215 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.9 Times cited (down) Open Access OpenAccess
Notes Approved Most recent IF: 2.9
Call Number UA @ admin @ c:irua:189023 Serial 7146
Permanent link to this record
 

 
Author Cui, Z.; Meng, S.; Yi, Y.; Jafarzadeh, A.; Li, S.; Neyts, E.C.; Hao, Y.; Li, L.; Zhang, X.; Wang, X.; Bogaerts, A.
Title Plasma-catalytic methanol synthesis from CO₂ hydrogenation over a supported Cu cluster catalyst : insights into the reaction mechanism Type A1 Journal article
Year 2022 Publication Acs Catalysis Abbreviated Journal Acs Catal
Volume 12 Issue 2 Pages 1326-1337
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-catalytic CO, hydrogenation for methanol production is gaining increasing interest, but our understanding of its reaction mechanism remains primitive. We present a combined experimental/computational study on plasma-catalytic CO, hydrogenation to CH3OH over a size-selected Cu/gamma-Al2O3 catalyst. Our experiments demonstrate a synergistic effect between the Cu/gamma-Al2O3 catalyst and the CO2/H-2 plasma, achieving a CO2 conversion of 10% at 4 wt % Cu loading and a CH3OH selectivity near 50% further rising to 65% with H2O addition (for a H2O/CO2 ratio of 1). Furthermore, the energy consumption for CH3OH production was more than 20 times lower than with plasma only. We carried out density functional theory calculations over a Cu-13/gamma-Al2O3 model, which reveal that the interfacial sites of the Cu-13 cluster and gamma-Al2O3 support show a bifunctional effect: they not only activate the CO2 molecules but also strongly adsorb key intermediates to promote their hydrogenation further. Reactive plasma species can regulate the catalyst surface reactions via the Eley-Rideal (E-R) mechanism, which accelerates the hydrogenation process and promotes the generation of the key intermediates. H2O can promote the CH3OH desorption by competitive adsorption over the Cu-13/gamma-Al2O3 surface. This study provides new insights into CO2 hydrogenation through plasma catalysis, and it provides inspiration for the conversion of some other small molecules (CH4, N-2, CO, etc.) by plasma catalysis using supported-metal clusters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000742735600001 Publication Date 2022-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.9 Times cited (down) Open Access OpenAccess
Notes Approved Most recent IF: 12.9
Call Number UA @ admin @ c:irua:186416 Serial 7192
Permanent link to this record
 

 
Author Kovács, A.; Yusupov, M.; Cornet, I.; Billen, P.; Neyts, E.C.
Title Effect of natural deep eutectic solvents of non-eutectic compositions on enzyme stability Type A1 Journal article
Year 2022 Publication Journal Of Molecular Liquids Abbreviated Journal J Mol Liq
Volume 366 Issue Pages 120180-17
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Natural deep eutectic solvents (NADES) represent a green alternative to common organic solvents in the biochemical industry due to their benign behavior and tailorable properties, in particular as media for enzymatic reactions. However, to fully exploit their potential in enzymatic reactions, there is a need for a more fundamental understanding of how these neoteric solvents influence the course of these reac-tions. Thus, the aim of this study is to investigate the influence of NADES with various molar composi-tions on the stability and structure of enzymes, applying molecular dynamics simulations. This can help to better understand the effect of individual compounds of NADES, in addition to eutectic mixtures. More specifically, we simulate the behavior of Candida antarctica lipase B (CALB) enzyme in NADES com-posed of choline chloride with either urea, ethylene glycol or glycerol. Hereto, we monitor the NADES microstructure, the general stability of the enzyme and changes in the structure of its active sites and sur-face residues. Our simulations show that none of the studied NADES systems significantly disrupt the microstructure of the solvent or the stability of the CALB enzyme within the time scales of the simula-tions. The enzyme preserves its initial structure, size and intra-chain hydrogen bonds in all investigated compositions and, for the first time reported, also in NADES with increased hydrogen bond donating com-pound ratios. As the main novelty, our results indicate that, in addition to the composition, the molar ratio can be an additional variable to fine-tune the physicochemical properties of NADES without altering the enzyme characteristics. These findings could facilitate the development and application of task -tailored NADES media for biocatalytic processes. (c) 2022 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000865431800010 Publication Date 2022-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-7322 ISBN Additional Links UA library record; WoS full record
Impact Factor 6 Times cited (down) Open Access Not_Open_Access
Notes Approved Most recent IF: 6
Call Number UA @ admin @ c:irua:191538 Serial 7265
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
Title Extending and validating bubble nucleation rate predictions in a Lennard-Jones fluid with enhanced sampling methods and transition state theory Type A1 Journal article
Year 2022 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
Volume 157 Issue 18 Pages 184113-10
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We calculate bubble nucleation rates in a Lennard-Jones fluid through explicit molecular dynamics simulations. Our approach-based on a recent free energy method (dubbed reweighted Jarzynski sampling), transition state theory, and a simple recrossing correction-allows us to probe a fairly wide range of rates in several superheated and cavitation regimes in a consistent manner. Rate predictions from this approach bridge disparate independent literature studies on the same model system. As such, we find that rate predictions based on classical nucleation theory, direct brute force molecular dynamics simulations, and seeding are consistent with our approach and one another. Published rates derived from forward flux sampling simulations are, however, found to be outliers. This study serves two purposes: First, we validate the reliability of common modeling techniques and extrapolation approaches on a paradigmatic problem in materials science and chemical physics. Second, we further test our highly generic recipe for rate calculations, and establish its applicability to nucleation processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000885260600002 Publication Date 2022-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.4 Times cited (down) Open Access OpenAccess
Notes Approved Most recent IF: 4.4
Call Number UA @ admin @ c:irua:192076 Serial 7266
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title Identification of a unique pyridinic FeN4Cx electrocatalyst for N₂ reduction : tailoring the coordination and carbon topologies Type A1 Journal article
Year 2022 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 126 Issue 34 Pages 14460-14469
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Although the heterogeneity of pyrolyzed Fe???N???C materials is known and has been reported previously, the atomic structure of the active sites and their detailed reaction mechanisms are still unknown. Here, we identified two pyridinic Fe???N4-like centers with different local C coordinates, i.e., FeN4C8 and FeN4C10, and studied their electrocatalytic activity for the nitrogen reduction reaction (NRR) based on density functional theory (DFT) calculations. We also discovered the influence of the adsorption of NH2 as a functional ligand on catalyst performance on the NRR. We confirmed that the NRR selectivity of the studied catalysts is essentially governed either by the local C coordination or by the dynamic structure associated with the FeII/FeIII. Our investigations indicate that the proposed traditional pyridinic FeN4C10 has higher catalytic activity and selectivity for the NRR than the robust FeN4C8 catalyst, while it may have outstanding activity for promoting other (electro)catalytic reactions. <comment>Superscript/Subscript Available</comment
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000859545200001 Publication Date 2022-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited (down) Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:191469 Serial 7268
Permanent link to this record
 

 
Author Van de Sompel, P.; Khalilov, U.; Neyts, E.C.
Title Contrasting H-etching to OH-etching in plasma-assisted nucleation of carbon nanotubes Type A1 Journal article
Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 125 Issue 14 Pages 7849-7855
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract To gain full control over the growth of carbon nanotubes (CNTs) using plasma-enhanced chemical vapor deposition (PECVD), a thorough understanding of the underlying plasma-catalyst mechanisms is required. Oxygen-containing species are often used as or added to the growth precursor gas, but these species also yield various radicals and ions, which may simultaneously etch the CNT during the growth. At present, the effect of these reactive species on the growth onset has not yet been thoroughly investigated. We here report on the etching mechanism of incipient CNT structures from OH and O radicals as derived from combined (reactive) molecular dynamics (MD) and force-bias Monte Carlo (tfMC) simulations. Our results indicate that the oxygen-containing radicals initiate a dissociation process. In particular, we show how the oxygen species weaken the interaction between the CNT and the nanocluster. As a result of this weakened interaction, the CNT closes off and dissociates from the cluster in the form of a fullerene. Beyond the specific systems studied in this work, these results are generically important in the context of PECVD-based growth of CNTs using oxygen-containing precursors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000641307100032 Publication Date 2021-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.536 Times cited (down) Open Access OpenAccess
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:178393 Serial 7729
Permanent link to this record
 

 
Author Nematollahi, P.; Ma, H.; Schneider, W.F.; Neyts, E.C.
Title DFT and microkinetic comparison of ru-doped porphyrin-like graphene and nanotubes toward catalytic formic acid decomposition and formation Type A1 Journal article
Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 125 Issue 34 Pages 18673-18683
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Immobilization of single metal atoms on a solid host opens numerous possibilities for catalyst designs. If that host is a two-dimensional sheet, sheet curvature becomes a design parameter potentially complementary to host and metal composition. Here, we use a combination of density functional theory calculations and microkinetic modeling to compare the mechanisms and kinetics of formic acid decomposition and formation, chosen for their relevance as a potential hydrogen storage medium, over single Ru atoms anchored to pyridinic nitrogen in a planar graphene flake (RuN4-G) and curved carbon nanotube (RuN4-CNT). Activation barriers are lowered and the predicted turnover frequencies are increased over RuN4-CNT relative to RuN4-CNT. The results highlight the potential of curvature control as a means to achieve high performance and robust catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000693413400013 Publication Date 2021-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited (down) Open Access OpenAccess
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:181538 Serial 7805
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title Linking bi-metal distribution patterns in porous carbon nitride fullerene to its catalytic activity toward gas adsorption Type A1 Journal article
Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 11 Issue 7 Pages 1794
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Immobilization of two single transition metal (TM) atoms on a substrate host opens numerous possibilities for catalyst design. If the substrate contains more than one vacancy site, the combination of TMs along with their distribution patterns becomes a design parameter potentially complementary to the substrate itself and the bi-metal composition. By means of DFT calculations, we modeled three dissimilar bi-metal atoms (Ti, Mn, and Cu) doped into the six porphyrin-like cavities of porous C24N24 fullerene, considering different bi-metal distribution patterns for each binary complex, viz. TixCuz@C24N24, TixMny@C24N24, and MnyCuz@C24N24 (with x, y, z = 0-6). We elucidate whether controlling the distribution of bi-metal atoms into the C24N24 cavities can alter their catalytic activity toward CO2, NO2, H-2, and N-2 gas capture. Interestingly, Ti2Mn4@C24N24 and Ti2Cu4@C24N24 complexes showed the highest activity and selectively toward gas capture. Our findings provide useful information for further design of novel few-atom carbon-nitride-based catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000676140500001 Publication Date 2021-07-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited (down) Open Access OpenAccess
Notes Approved Most recent IF: 3.553
Call Number UA @ admin @ c:irua:180372 Serial 8174
Permanent link to this record