|   | 
Details
   web
Records
Author Kundys, D.; Van Duppen, B.; Marshall, O.P.; Rodriguez, F.; Torre, I.; Tomadin, A.; Polini, M.; Grigorenko, A.N.
Title Nonlinear light mixing by graphene plasmons Type A1 Journal article
Year 2018 Publication Nano letters Abbreviated Journal Nano Lett
Volume 18 Issue 1 Pages 282-287
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Graphene is known to possess strong optical nonlinearity which turned out to be suitable for creation of efficient saturable absorbers in mode locked fiber lasers. Nonlinear response of graphene can be further enhanced by the presence of graphene plasmons. Here, we report a novel nonlinear effect observed in nanostructured graphene which comes about due to excitation of graphene plasmons. We experimentally detect and theoretically explain enhanced mixing of near-infrared and mid-infrared light in arrays of graphene nanoribbons. Strong compression of light by graphene plasmons implies that the described effect of light mixing is nonlocal in nature and orders of magnitude larger than the conventional local graphene nonlinearity. Both second and third order nonlinear effects were observed in our experiments with the recalculated third-order nonlinearity coefficient reaching values of 4.5 x 10(-6) esu. The suggested effect could be used in variety of applications including nonlinear light modulators, light multiplexers, light logic, and sensing devices.'));
Address
Corporate Author Thesis
Publisher (up) Place of Publication Washington Editor
Language Wos 000420000000039 Publication Date 2017-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 12 Open Access
Notes ; This work was supported by the European Union's Horizon 2020 research and innovation programme under Grant Agreement 696656 “GrapheneCorel”, Bluestone Global Technology, and Fondazione Istituto Italiano di Tecnologia. B.V.D. is supported by a postdoctoral fellowship granted by FWO-Vl and wishes to thank Scuola Normale Superiore (Pisa, Italy) for their hospitality during the final stages of preparation of this work. ; Approved Most recent IF: 12.712
Call Number UA @ lucian @ c:irua:148457UA @ admin @ c:irua:148457 Serial 4887
Permanent link to this record
 

 
Author Sanchez-Barriga, J.; Ogorodnikov, I.I.; Kuznetsov, M.V.; Volykhov, A.A.; Matsui, F.; Callaert, C.; Hadermann, J.; Verbitskiy, N.I.; Koch, R.J.; Varykhalov, A.; Rader, O.; Yashina, L.V.
Title Observation of hidden atomic order at the interface between Fe and topological insulator Bi2Te3 Type A1 Journal article
Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 19 Issue 45 Pages 30520-30532
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('To realize spintronic devices based on topological insulators (TIs), well-defined interfaces between magnetic metals and TIs are required. Here, we characterize atomically precisely the interface between the 3d transition metal Fe and the TI Bi2Te3 at different stages of its formation. Using photoelectron diffraction and holography, we show that after deposition of up to 3 monolayers Fe on Bi2Te3 at room temperature, the Fe atoms are ordered at the interface despite the surface disorder revealed by our scanning-tunneling microscopy images. We find that Fe occupies two different sites: a hollow adatom deeply relaxed into the Bi2Te3 quintuple layers and an interstitial atom between the third (Te) and fourth (Bi) atomic layers. For both sites, our core-level photoemission spectra and density-functional theory calculations demonstrate simultaneous chemical bonding of Fe to both Te and Bi atoms. We further show that upon deposition of Fe up to a thickness of 20 nm, the Fe atoms penetrate deeper into the bulk forming a 2-5 nm interface layer containing FeTe. In addition, excessive Bi is pushed down into the bulk of Bi2Te3 leading to the formation of septuple layers of Bi3Te4 within a distance of similar to 25 nm from the interface. Controlling the magnetic properties of the complex interface structures revealed by our work will be of critical importance when optimizing the efficiency of spin injection in TI-based devices.'));
Address
Corporate Author Thesis
Publisher (up) Place of Publication Cambridge Editor
Language Wos 000416054400023 Publication Date 2017-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 4 Open Access OpenAccess
Notes ; The authors acknowledge financial support within the bilateral program “Russian-German Laboratory at BESSY II” and thank Helmholtz Zentrum Berlin for granting access to the beamlines RGBL, UE112-PGM2a and U49-PGM1. The Supercomputing Center of Lomonosov Moscow State University is gratefully acknowledged for granting access to the “Lomonosov” supercomputer. The work was partially supported by DFG priority program SPP 1666, Impuls- und Vernetzungsfonds der Helmholtz-Gemeinschaft (Grant No. HRJRG-408) and Russian Foundation for Basic Research (Grants No. 13-02-91327 and No. 16-29-06410). C. C. acknowledges support from the University of Antwerp through the BOF grant 31445. The authors thank Dr Vera Neudachina, Daria Tsukanova, Dr Elmar Kataev and Dr Maria Batuk for their support during the XPS and TEM experiments. ; Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:147659 Serial 4888
Permanent link to this record
 

 
Author Wang, Y.-L.; Glatz, A.; Kimmel, G.J.; Aranson, I.S.; Thoutam, L.R.; Xiao, Z.-L.; Berdiyorov, G.R.; Peeters, F.M.; Crabtree, G.W.; Kwok, W.-K.
Title Parallel magnetic field suppresses dissipation in superconducting nanostrips Type A1 Journal article
Year 2017 Publication America Abbreviated Journal P Natl Acad Sci Usa
Volume 114 Issue 48 Pages E10274-E10280
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the \u0022holy grail\u0022 of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo0.79Ge0.21 nanostrip reveal the emergence of a dissipative state with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.'));
Address
Corporate Author Thesis
Publisher (up) Place of Publication Washington, D.C. Editor
Language Wos 000416891600007 Publication Date 2017-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.661 Times cited 18 Open Access
Notes ; This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. The simulation was supported by the Scientific Discovery through Advanced Computing program funded by US DOE, Office of Science, Advanced Scientific Computing Research and Basic Energy Science, Division of Materials Science and Engineering. L.R.T. and Z.-L.X. acknowledge support through National Science Foundation Grant DMR-1407175. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the DOE, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. ; Approved Most recent IF: 9.661
Call Number UA @ lucian @ c:irua:147697 Serial 4889
Permanent link to this record
 

 
Author Grieb, T.; Tewes, M.; Schowalter, M.; Müller-Caspary, K.; Krause, F.F.; Mehrtens, T.; Hartmann, J.-M.; Rosenauer, A.
Title Quantitative HAADF STEM of SiGe in presence of amorphous surface layers from FIB preparation Type A1 Journal article
Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 184 Issue B Pages 29-36
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('The chemical composition of four Si1-xGex layers grown on silicon was determined from quantitative scanning transmission electron microscopy (STEM). The chemical analysis was performed by a comparison of the high-angle annular dark field (HAADF) intensity with multislice simulations. It could be shown that amorphous surface layers originating from the preparation process by focused-ion beam (FIB) at 30 kV have a strong influence on the quantification: the local specimen thickness is overestimated by approximately a factor of two, and the germanium concentration is substantially underestimated. By means of simulations, the effect of amorphous surface layers on the HAADF intensity of crystalline silicon and germanium is investigated. Based on these simulations, a method is developed to analyze the experimental HAADF-STEM images by taking the influence of the amorphous layers into account which is done by a reduction of the intensities by multiplication with a constant factor. This suggested modified HAADF analysis gives germanium concentrations which are in agreement with the nominal values. The same TEM lamella was treated with low-voltage ion milling which removed the amorphous surface layers completely. The results from subsequent quantitative HAADF analyses are in agreement with the nominal concentrations which validates the applicability of the used frozen-lattice based multislice simulations to describe the HAADF scattering of Si1-xGex in STEM. (C) 2017 Elsevier B.V. All rights reserved.'));
Address
Corporate Author Thesis
Publisher (up) Place of Publication Amsterdam Editor
Language Wos 000417779800004 Publication Date 2017-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 7 Open Access Not_Open_Access
Notes ; This work was supported by the German Research Foundation (DFG) under Contract No. RO2057/11-1. ; Approved Most recent IF: 2.843
Call Number UA @ lucian @ c:irua:148500 Serial 4893
Permanent link to this record
 

 
Author Vanherck, J.; Schulenborg, J.; Saptsov, R.B.; Splettstoesser, J.; Wegewijs, M.R.
Title Relaxation of quantum dots in a magnetic field at finite bias -Charge, spin, and heat currents Type A1 Journal article
Year 2017 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 254 Issue 3 Pages Unsp 1600614
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('We perform a detailed study of the effect of finite bias and magnetic field on the tunneling-induced decay of the state of a quantum dot by applying a recently discovered general duality [Phys. Rev. B 93, 81411 (2016)]. This duality provides deep physical insight into the decay dynamics of electronic open quantum systems with strong Coulomb interaction. It associates the amplitudes of decay eigenmodes of the actual system to the eigenmodes of a so-called dual system with attractive interaction. Thereby, it predicts many surprising features in the transient transport and its dependence on experimental control parameters: the attractive interaction of the dual model shows up as sharp features in the amplitudes of measurable time-dependent currents through the actual repulsive system. In particular, for interacting quantum dots, the time-dependent heat current exhibits a decay mode that dissipates the interaction energy and that is tied to the fermion parity of the system. We show that its decay amplitude has an unexpected gate-voltage dependence that is robust up to sizable bias voltages and then bifurcates, reflecting that the Coulomb blockade is lifted in the dual system. Furthermore, combining our duality relation with the known Iche-duality, we derive new symmetry properties of the decay rates as a function of magnetic field and gate voltage. Finally, we quantify charge- and spin-mode mixing due to the magnetic field using a single mixing parameter.'));
Address
Corporate Author Thesis
Publisher (up) Place of Publication Berlin Editor
Language Wos 000395441500011 Publication Date 2017-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 4 Open Access
Notes ; We acknowledge the financial support of Erasmus Mundus (J. V.), DFG project SCHO 641/7-1 (R.B.S. and M.R.W), the Swedish VR (J.Sc., J.Sp.), and the Knut and Alice Wallenberg Foundation (J. Sp.). The authors thank F. Haupt and N. Dittmann for useful discussions on the topic. ; Approved Most recent IF: 1.674
Call Number UA @ lucian @ c:irua:142510 Serial 4894
Permanent link to this record
 

 
Author Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Seovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Ricco, M.; Bulusheva, L.G.; Okotrub, A.V.
Title Single-walled carbon nanotube reactor for redox transformation of mercury dichloride Type A1 Journal article
Year 2017 Publication ACS nano Abbreviated Journal Acs Nano
Volume 11 Issue 9 Pages 8643-8649
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Single-walled carbon nanotubes (SWCNTs) possessing a confined inner space protected by chemically resistant shells are promising for delivery, storage, and desorption of various compounds, as well as carrying out specific reactions. Here, we show that SWCNTs interact with molten mercury dichloride (HgCl2) and guide its transformation into dimercury dichloride (Hg2Cl2) in the cavity. The chemical state of host SWCNTs remains almost unchanged except for a small p-doping from the guest Hg2Cl2 nanocrystals. The density functional theory calculations reveal that the encapsulated HgCl2 molecules become negatively charged and start interacting via chlorine bridges when local concentration increases. This reduces the bonding strength in HgCl2, which facilitates removal of chlorine, finally leading to formation of Hg2Cl2 species. The present work demonstrates that SWCNTs not only serve as a template for growing nanocrystals but also behave as an electron-transfer catalyst in the spatially confined redox reaction by donation of electron density for temporary use by the guests.'));
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos 000411918200012 Publication Date 2017-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 11 Open Access Not_Open_Access
Notes ; Collaboration between partner institutions was partially supported by European FP7 IRSES project 295180. We are grateful to the bilateral Program “Russian-German Laboratory at BESSY II” for the assistance in XPS and NEXAFS measurements. We acknowledge C. Tollan for proofreading the manuscript. We are grateful to Dr. Y.V. Shubin for XRD measurements of graphite with HgCl<INF>2</ INF>. ; Approved Most recent IF: 13.942
Call Number UA @ lucian @ c:irua:146770 Serial 4895
Permanent link to this record
 

 
Author Groenendijk, D.J.; Autieri, C.; Girovsky, J.; Martinez-Velarte, M.C.; Manca, N.; Mattoni, G.; Monteiro, A.M.R.V.L.; Gauquelin, N.; Verbeeck, J.; Otte, A.F.; Gabay, M.; Picozzi, S.; Caviglia, A.D.
Title Spin-orbit semimetal SrIrO3 in the two-dimensional limit Type A1 Journal article
Year 2017 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 119 Issue 25 Pages 256403
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('We investigate the thickness-dependent electronic properties of ultrathin SrIrO3 and discover a transition from a semimetallic to a correlated insulating state below 4 unit cells. Low-temperature magnetoconductance measurements show that spin fluctuations in the semimetallic state are significantly enhanced while approaching the transition point. The electronic properties are further studied by scanning tunneling spectroscopy, showing that 4 unit cell SrIrO(3)d is on the verge of a gap opening. Our density functional theory calculations reproduce the critical thickness of the transition and show that the opening of a gap in ultrathin SrIrO3 requires antiferromagnetic order.'));
Address
Corporate Author Thesis
Publisher (up) Place of Publication New York, N.Y. Editor
Language Wos 000418619100014 Publication Date 2017-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 79 Open Access OpenAccess
Notes ; This work was supported by The Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience program (NanoFront), by the Dutch Foundation for Fundamental Research on Matter (FOM), and by the European Research Council under the European Union's H2020 programme/ERC Grant Agreement No. [677458]. The authors thank R. Claessen, P. Schutz, D. Di Sante, G. Sangiovanni, and A. Santander Syro for useful discussions. M. G. gratefully acknowledges support from the French National Research Agency (ANR) (Project LACUNES No. ANR-13-BS04-0006-01). C. A. and S. P. acknowledge financial support from Fondazione Cariplo via the project Magister (Project No. 2013-0726) and from CNR-SPIN via the Seed Project “CAMEO”. N. G. and J. V. acknowledge support from the GOA project “Solarpaint” of the University of Antwerp. The Qu-AntEM microscope was partly funded by the Hercules fund from the Flemish Government. ; Approved Most recent IF: 8.462
Call Number UA @ lucian @ c:irua:148510 Serial 4897
Permanent link to this record
 

 
Author Schulenborg, J.; Di Marco, A.; Vanherck, J.; Wegewijs, M.R.; Splettstoesser, J.
Title Thermoelectrics of interacting nanosystems-exploiting superselection instead of time-reversal symmetry Type A1 Journal article
Year 2017 Publication Entropy: an international and interdisciplinary journal of entropy and information studies Abbreviated Journal Entropy-Switz
Volume 19 Issue 12 Pages 668
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Thermoelectric transport is traditionally analyzed using relations imposed by time-reversal symmetry, ranging from Onsager\u0027s results to fluctuation relations in counting statistics. In this paper, we show that a recently discovered duality relation for fermionic systems-deriving from the fundamental fermion-parity superselection principle of quantum many-particle systems-provides new insights into thermoelectric transport. Using a master equation, we analyze the stationary charge and heat currents through a weakly coupled, but strongly interacting single-level quantum dot subject to electrical and thermal bias. In linear transport, the fermion-parity duality shows that features of thermoelectric response coefficients are actually dominated by the average and fluctuations of the charge in a dual quantum dot system, governed by attractive instead of repulsive electron-electron interaction. In the nonlinear regime, the duality furthermore relates most transport coefficients to much better understood equilibrium quantities. Finally, we naturally identify the fermion-parity as the part of the Coulomb interaction relevant for both the linear and nonlinear Fourier heat. Altogether, our findings hence reveal that next to time-reversal, the duality imposes equally important symmetry restrictions on thermoelectric transport. As such, it is also expected to simplify computations and clarify the physical understanding for more complex systems than the simplest relevant interacting nanostructure model studied here.'));
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos 000419007900037 Publication Date 2017-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1099-4300 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.821 Times cited 3 Open Access
Notes ; We thank Rafael Sanchez for useful comments on the manuscript. We acknowledge funding from the Knut and Alice Wallenberg foundation through their Academy Fellows program (J.Sp. and A.D.M.), from the Swedish VR (J.Sp. and J.Sc.), from the Erasmus Mundus program (J.V.), and from the DFG project SCHO 641/7-1 (M.R.W.). ; Approved Most recent IF: 1.821
Call Number UA @ lucian @ c:irua:148548 Serial 4900
Permanent link to this record
 

 
Author Jiang, Y.; Mao, J.; Moldovan, D.; Masir, M.R.; Li, G.; Watanabe, K.; Taniguchi, T.; Peeters, F.M.; Andrei, E.Y.
Title Tuning a circular p-n junction in graphene from quantum confinement to optical guiding Type A1 Journal article
Year 2017 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol
Volume 12 Issue 11 Pages 1045-+
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('The photon-like propagation of the Dirac electrons in graphene, together with its record-high electronic mobility(1-3), can lead to applications based on ultrafast electronic response and low dissipation(4-6). However, the chiral nature of the charge carriers that is responsible for the high mobility also makes it difficult to control their motion and prevents electronic switching. Here, we show how to manipulate the charge carriers by using a circular p-n junction whose size can be continuously tuned from the nanometre to the micrometre scale(7,8). The junction size is controlled with a dual-gate device consisting of a planar back gate and a point-like top gate made by decorating a scanning tunnelling microscope tip with a gold nanowire. The nanometre-scale junction is defined by a deep potential well created by the tip-induced charge. It traps the Dirac electrons in quantum-confined states, which are the graphene equivalent of the atomic collapse states (ACSs) predicted to occur at supercritically charged nuclei(9-13). As the junction size increases, the transition to the optical regime is signalled by the emergence of whispering-gallery modes(14-16), similar to those observed at the perimeter of acoustic or optical resonators, and by the appearance of a Fabry-Perot interference pattern(17-20) for junctions close to a boundary.'));
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos 000414531800011 Publication Date 2017-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 38.986 Times cited 65 Open Access
Notes ; The authors acknowledge funding provided by DOE-FG02-99ER45742 (STM/STS) and NSF DMR 1708158 (fabrication). Theoretical work was supported by ESF-EUROCORES-EuroGRAPHENE, FWO VI and the Methusalem program of the Flemish government. ; Approved Most recent IF: 38.986
Call Number UA @ lucian @ c:irua:147406 Serial 4902
Permanent link to this record
 

 
Author Chin, C.-M.; Battle, P.D.; Blundell, S.J.; Hunter, E.; Lang, F.; Hendrickx, M.; Sena, R.P.; Hadermann, J.
Title Comparative study of the magnetic properties of La3Ni2B'O9 for B' = Nb, Ta or Sb Type A1 Journal article
Year 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 258 Issue 258 Pages 825-834
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycrystalline samples of La3Ni2NbO9 and La3Ni2TaO9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (mu SR); the latter technique was also applied to La3Ni2SbO9. On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random 1/3Ni/2/3B' mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La3Ni2B'O-9 (B' = Nb or Ta) at 5 K although in each case mu SR identified the presence of static spins below 30 K. Magnetometry showed that La3Ni2NbO9 behaves as a spin glass below 29 K but significant short-range interactions are present in La3Ni2NbO9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.
Address
Corporate Author Thesis
Publisher (up) Place of Publication London Editor
Language Wos 000423650400107 Publication Date 2017-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 6 Open Access Not_Open_Access
Notes ; We thank EPSRC for funding through Grants EP/M0189541 and EP/N023803. CMC thanks the Croucher Foundation and Oxford University for a graduate scholarship. We are grateful E. Suard for experimental assistance at ILL. ; Approved Most recent IF: 2.299
Call Number UA @ lucian @ c:irua:149284 Serial 4928
Permanent link to this record
 

 
Author Klimin, S.N.; Tempere, J.; Milošević, M.V.
Title Diversified vortex phase diagram for a rotating trapped two-band Fermi gas in the BCS-BEC crossover Type A1 Journal article
Year 2018 Publication New journal of physics Abbreviated Journal New J Phys
Volume 20 Issue 20 Pages 025010
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract We report the equilibrium vortex phase diagram of a rotating two-band Fermi gas confined to a cylindrically symmetric parabolic trapping potential, using the recently developed finite-temperature effective field theory (Klimin et al 2016 Phys. Rev. A 94 023620). A non-monotonic resonant dependence of the free energy as a function of the temperature and the rotation frequency is revealed for a two-band superfluid. We particularly focus on novel features that appear as a result of interband interactions and can be experimentally resolved. The resonant dependence of the free energy is directly manifested in vortex phase diagrams, where areas of stability for both integer and fractional vortex states are found. The study embraces the BCS-BEC crossover regime and the entire temperature range below the critical temperature T-c. Significantly different behavior of vortex matter as a function of the interband coupling is revealed in the BCS and BEC regimes.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Bristol Editor
Language Wos 000426002900001 Publication Date 2018-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 6 Open Access
Notes ; We thank C A R Sa de Melo and N Verhelst for valuable discussions. This work has been supported by the Research Foundation-Flanders (FWO-Vl), project nrs. G.0115.12N, G.0119.12N, G.0122.12N, G.0429.15N, G.0666.16N, by the Scientific Research Network of the Flemish Research Foundation, WO.033.09N, and by the Research Fund of the University of Antwerp. ; Approved Most recent IF: 3.786
Call Number UA @ lucian @ c:irua:149909UA @ admin @ c:irua:149909 Serial 4930
Permanent link to this record
 

 
Author Pramanik, G.; Humpolickova, J.; Valenta, J.; Kundu, P.; Bals, S.; Bour, P.; Dracinsky, M.; Cigler, P.
Title Gold nanoclusters with bright near-infrared photoluminescence Type A1 Journal article
Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 10 Issue 10 Pages 3792-3798
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The increase in nonradiative pathways with decreasing emission energy reduces the luminescence quantum yield (QY) of near-infrared photoluminescent (NIR PL) metal nanoclusters. Efficient surface ligand chemistry can significantly improve the luminescence QY of NIR PL metal nanoclusters. In contrast to the widely reported but modestly effective thiolate ligand-to-metal core charge transfer, we show that metal-to-ligand charge transfer (MLCT) can be used to greatly enhance the luminescence QY of NIR PL gold nanoclusters (AuNCs). We synthesized water-soluble and colloidally stable NIR PL AuNCs with unprecedentedly high QY (similar to 25%) upon introduction of triphenylphosphonium moieties into the surface capping layer. By using a combination of spectroscopic and theoretical methods, we provide evidence for gold core-to-ligand charge transfer occurring in AuNCs. We envision that this work can stimulate the development of these unusually bright AuNCs for promising optoelectronic, bioimaging, and other applications.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Cambridge Editor
Language Wos 000426148500026 Publication Date 2018-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 97 Open Access OpenAccess
Notes ; The authors acknowledge support from the GACR project Nr. 18-12533S. J. V. acknowledges funding from the Ministry of Education, Youth and Sports of the Czech Republic via the V4+Japan project No. 8F15001 (cofinanced by the International Visegrad Fund). P. B. acknowledges GACR project No. 16-05935S and Ministry of Education, Youth and Sports of the Czech Republic project No. LTC17012. ; Approved Most recent IF: 7.367
Call Number UA @ lucian @ c:irua:149901UA @ admin @ c:irua:149901 Serial 4935
Permanent link to this record
 

 
Author Istomin, S.Y.; Morozov, A.V.; Abdullayev, M.M.; Batuk, M.; Hadermann, J.; Kazakov, S.M.; Sobolev, A.V.; Presniakov, I.A.; Antipov, E.V.
Title High-temperature properties of (La,Ca)(Fe,Mg,Mo)O3-\delta perovskites as prospective electrode materials for symmetrical SOFC Type A1 Journal article
Year 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 258 Issue 258 Pages 1-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract La1-yCayFe0.5+x(Mg,Mo)(0.5-x)O3-delta oxides with the orthorhombic GdFeO3-type perovskite structure have been synthesized at 1573 K. Transmission electron microscopy study for selected samples shows the coexistence of domains of perovskite phases with ordered and disordered B-cations. Mossbauer spectroscopy studies performed at 300 K and 573 K show that while compositions with low Ca-content (La0.55Ca0.45Fe0.5Mg0.2625Mo0.2375O3-delta and La0.5Ca0.5Fe0.6Mg0.175Mo0.225O3-delta) are nearly oxygen stoichiometric, La0.2Ca0.8Fe0.5Mg0.2625Mo0.2375O3-delta is oxygen deficient with delta approximate to 0.15. Oxides are stable in reducing atmosphere (Ar/H-2, 8%) at 1173 K for 12 h. No additional phases have been observed at XRPD patterns of all studied perovskites and Ce1-xGdxO2-x/2 electrolyte mixtures treated at 1173-1373K, while Fe-rich compositions (x >= 0.1) react with Zr1-xYxO2-x/2 electrolyte above 1273 K. Dilatometry studies reveal that all samples show rather low thermal expansion coefficients (TECs) in air of 11.4-12.7 ppm K-1. In reducing atmosphere their TECs were found to increase up to 12.1-15.4 ppm K-1 due to chemical expansion effect. High-temperature electrical conductivity measurements in air and Ar/H-2 atmosphere show that the highest conductivity is observed for Fe- and Ca-rich compositions. Moderate values of electrical conductivity and TEC together with stability towards chemical interaction with typical SOFC electrolytes make novel Fe-containing perovskites promising electrode materials for symmetrical solid oxide fuel cell.
Address
Corporate Author Thesis
Publisher (up) Place of Publication London Editor
Language Wos 000423650400001 Publication Date 2017-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 5 Open Access Not_Open_Access
Notes ; This work was financially supported by Russian Science Foundation (project number 16-13-10327). ; Approved Most recent IF: 2.299
Call Number UA @ lucian @ c:irua:149283 Serial 4936
Permanent link to this record
 

 
Author Lombardo, J.; Jelić, Ž.L.; Baumans, X.D.A.; Scheerder, J.E.; Nacenta, J.P.; Moshchalkov, V.V.; Van de Vondel, J.; Kramer, R.B.G.; Milošević, M.V.; Silhanek, A.V.
Title In situ tailoring of superconducting junctions via electro-annealing Type A1 Journal article
Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 10 Issue 4 Pages 1987-1996
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We demonstrate the in situ engineering of superconducting nanocircuitry by targeted modulation of material properties through high applied current densities. We show that the sequential repetition of such customized electro-annealing in a niobium (Nb) nanoconstriction can broadly tune the superconducting critical temperature T-c and the normal-state resistance R-n in the targeted area. Once a sizable R-n is reached, clear magneto-resistance oscillations are detected along with a Fraunhofer-like field dependence of the critical current, indicating the formation of a weak link but with further adjustable characteristics. Advanced Ginzburg-Landau simulations fully corroborate this picture, employing the detailed parametrization from the electrical characterization and high resolution electron microscope images of the region within the constriction where the material has undergone amorphization by electro-annealing.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Cambridge Editor
Language Wos 000423355300049 Publication Date 2017-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 23 Open Access
Notes ; The authors thank the Fonds de la Recherche Scientifique – FNRS, the ARC grant 13/18-08 for Concerted Research Actions, financed by the French Community of Belgium (Wallonia-Brussels Federation), the Research Foundation – Flanders (FWO-Vlaanderen) and the COST action NanoCoHybri (CA16218). The work is also suppported by Methusalem Funding by the Flemish Government. J. Lombardo acknowledges support from F. R. S.-FNRS (FRIA Research Fellowship). The LANEF framework (ANR-10-LABX-51-01) and the Nanoscience Foundation are acknowledged for their support with mutualized infrastructure. The work of A. V. Silhanek is partially supported by PDR T.0106.16 of the F. R. S.-FNRS. The authors thank the ULg Microscopy facility CAREM for part of the SEM investigations. ; Approved Most recent IF: 7.367
Call Number UA @ lucian @ c:irua:149315UA @ admin @ c:irua:149315 Serial 4937
Permanent link to this record
 

 
Author Radi, A.; Khalil-Allafi, J.; Etminanfar, M.R.; Pourbabak, S.; Schryvers, D.; Amin-Ahmadi, B.
Title Influence of stress aging process on variants of nano-N4Ti3precipitates and martensitic transformation temperatures in NiTi shape memory alloy Type A1 Journal article
Year 2018 Publication Materials & design Abbreviated Journal Mater Design
Volume 262 Issue 262 Pages 74-81
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this study, the effect of a stress aging process on the microstructure and martensitic phase transformation of NiTi shape memory alloy has been investigated. NiTi samples were aged at 450 degrees C for 1 h and 5 h under different levels of external tensile stress of 15, 60 and 150 MPa. Transmission electron microscopy (TEM) was used to characterize different variants and morphology of precipitates. The results show that application of all stress levels restricts the formation of precipitates variants in the microstructure after I h stress aging process. However, all variants can be detected by prolonging aging time to 5 h at 15 MPa stress level and the variants formation is again restricted by increasing the stress level. Moreover, the stress aging process resulted in changing the shape of precipitates in comparison with that of the stress-free aged samples. Coffee-bean shaped morphologies were detected for precipitates in all stress levels. According to the Differential Scanning Calorimetry (DSC) results, the martensite start temperature (M-s) on cooling shifts to higher temperatures with increasing the tensile stress during the aging process. This can be related to the change ofaustenite to martensite interface energy due to the different volume fractions and variants of precipitates. (c) 2018 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos Publication Date 2018-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-1275 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles
Impact Factor 4.364 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.364
Call Number UA @ lucian @ c:irua:149854 Serial 4938
Permanent link to this record
 

 
Author Aierken, Y.; Sevik, C.; Gulseren, O.; Peeters, F.M.; Çakir, D.
Title MXenes/graphene heterostructures for Li battery applications : a first principles study Type A1 Journal article
Year 2018 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 6 Issue 5 Pages 2337-2345
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract MXenes are the newest class of two-dimensional (2D) materials, and they offer great potential in a wide range of applications including electronic devices, sensors, and thermoelectric and energy storage materials. In this work, we combined the outstanding electrical conductivity, that is essential for battery applications, of graphene with MXene monolayers (M2CX2 where M = Sc, Ti, V and X = OH, O) to explore its potential in Li battery applications. Through first principles calculations, we determined the stable stacking configurations of M2CX2/graphene bilayer heterostructures and their Li atom intercalation by calculating the Li binding energy, diffusion barrier and voltage. We found that: (1) for the ground state stacking, the interlayer binding is strong, yet the interlayer friction is small; (2) Li binds more strongly to the O-terminated monolayer, bilayer and heterostructure MXene systems when compared with the OHterminated MXenes due to the H+ induced repulsion to the Li atoms. The binding energy of Li decreases as the Li concentration increases due to enhanced repulsive interaction between the positively charged Li ions; (3) Ti2CO2/graphene and V2CO2/graphene heterostructures exhibit large Li atom binding energies making them the most promising candidates for battery applications. When fully loaded with Li atoms, the binding energy is -1.43 eV per Li atom and -1.78 eV per Li atom for Ti2CO2/graphene and V2CO2/graphene, respectively. These two heterostructures exhibit a nice compromise between storage capacity and kinetics. For example, the diffusion barrier of Li in Ti2CO2/graphene is around 0.3 eV which is comparable to that of graphite. Additionally, the calculated average voltages are 1.49 V and 1.93 V for Ti2CO2/graphene and V2CO2/graphene structures, respectively; (4) a small change in the in-plane lattice parameters (<1%), interatomic bond lengths and interlayer distances (<0.5 angstrom) proves the stability of the heterostructures against Li intercalation, and the impending phase separation into constituent layers and capacity fading during charge-discharge cycles in real battery applications; (5) as compared to bare M2CX2 bilayers, M2CX2/graphene heterostructures have lower molecular mass, offering high storage capacity; (6) the presence of graphene ensures good electrical conductivity that is essential for battery applications. Given these advantages, Ti2CO2/graphene and V2CO2/graphene heterostructures are predicted to be promising for lithium-ion battery applications.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Cambridge Editor
Language Wos 000423981200049 Publication Date 2018-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 131 Open Access
Notes ; This work was supported by the bilateral project between the Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by the TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from the TUBITAK (Grant No. 115F024 and 116F080). Part of this work was supported by the BAGEP Award of the Science Academy. ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:149265UA @ admin @ c:irua:149265 Serial 4945
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Rivera-Julio, J.; Peeters, F.M.; Mendoza-Estrada, V.; Gonzalez-Hernandez, R.
Title Structural, mechanical and electronic properties of two-dimensional structure of III-arsenide (111) binary compounds: An ab-initio study Type A1 Journal article
Year 2018 Publication Computational materials science Abbreviated Journal Comp Mater Sci
Volume 144 Issue 144 Pages 285-293
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Structural, mechanical and electronic properties of two-dimensional single-layer hexagonal structures in the (111) crystal plane of IIIAs-ZnS systems (III = B, Ga and In) are studied by first-principles calculations based on density functional theory (DFT). Elastic and phonon dispersion relation display that 2D h-IIIAs systems (III = B, Ga and In) are both mechanical and dynamically stable. Electronic structures analysis show that the semiconducting nature of the 3D-IIIAs compounds is retained by their 2D single layer counterpart. Furthermore, density of states reveals the influence of sigma and pi bonding in the most stable geometry (planar or buckled) for 2D h-IIIAs systems. Calculations of elastic constants show that the Young's modulus, bulk modulus and shear modulus decrease for 2D h-IIIAs binary compounds as we move down on the group of elements of the periodic table. In addition, as the bond length between the neighboring cation-anion atoms increases, the 2D h-IIIAs binary compounds display less stiffness and more plasticity. Our findings can be used to understand the contribution of the r and p bonding in the most stable geometry (planar or buckled) for 2D h-IIIAs systems. Structural and electronic properties of h-IIIAs systems as a function of the number of layers have been also studied. It is shown that h-BAs keeps its planar geometry while both h-GAs and h-InAs retained their buckled ones obtained by their single layers. Bilayer h-IIIAs present the same bandgap nature of their counterpart in 3D. As the number of layers increase from 2 to 4, the bandgap width for layered h-IIIAs decreases until they become semimetal or metal. Interestingly, these results are different to those found for layered h-GaN. The results presented in this study for single and few-layer h-IIIAs structures could give some physical insights for further theoretical and experimental studies of 2D h-IIIV-like systems. (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos 000424902300036 Publication Date 2017-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.292 Times cited 3 Open Access
Notes ; This work has been carried out by the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712 – Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216. ; Approved Most recent IF: 2.292
Call Number UA @ lucian @ c:irua:149897UA @ admin @ c:irua:149897 Serial 4949
Permanent link to this record
 

 
Author Iyikanat, F.; Yagmurcukardes, M.; Senger, R.T.; Sahin, H.
Title Tuning electronic and magnetic properties of monolayer \alpha-RuCl3 by in-plane strain Type A1 Journal article
Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 6 Issue 8 Pages 2019-2025
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By employing density functional theory-based methods, the structural, vibrational, electronic, and magnetic properties of monolayer -RuCl3 were investigated. It was demonstrated that ferromagnetic (FM) and zigzag-antiferromagnetic (ZZ-AFM) spin orders in the material have very close total energies with the latter being the ground state. We found that each Ru atom possesses a magnetic moment of 0.9 (B) and the material exhibits strong magnetic anisotropy. While both phases exhibit indirect gaps, the FM phase is a magnetic semiconductor and the ZZ-AFM phase is a non-magnetic semiconductor. The structural stability of the material was confirmed by phonon calculations. Moreover, dynamical analysis revealed that the magnetic order in the material can be monitored via Raman measurements of the crystal structure. In addition, the magnetic ground state of the material changes from ZZ-AFM to FM upon certain applied strains. Valence and conduction band-edges of the material vary considerably under in-plane strains. Owing to the stable lattice structure and unique and controllable magnetic properties, monolayer -RuCl3 is a promising material in nanoscale device applications.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos 000426483800015 Publication Date 2018-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 16 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. acknowledges financial support from TUBITAK under project number 116C073. H. S. also acknowledges support from Bilim Akademisi-The Science Academy, Turkey, under the BAGEP program. ; Approved Most recent IF: 5.256
Call Number UA @ lucian @ c:irua:149900UA @ admin @ c:irua:149900 Serial 4952
Permanent link to this record
 

 
Author Perez, A.J.; Jacquet, Q.; Batuk, D.; Iadecola, A.; Saubanere, M.; Rousse, G.; Larcher, D.; Vezin, H.; Doublet, M.-L.; Tarascon, J.-M.
Title Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4 Type A1 Journal article
Year 2017 Publication Nature energy Abbreviated Journal Nat Energy
Volume 2 Issue 12 Pages 954-962
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The Li-rich rocksalt oxides Li2MO3 (M = 3d/4d/5d transition metal) are promising positive-electrode materials for Li-ion batteries, displaying capacities exceeding 300 mAh g(-1) thanks to the participation of the oxygen non-bonding O(2p) orbitals in the redox process. Understanding the oxygen redox limitations and the role of the O/M ratio is therefore crucial for the rational design of materials with improved electrochemical performances. Here we push oxygen redox to its limits with the discovery of a Li3IrO4 compound (O/M = 4) that can reversibly take up and release 3.5 electrons per Ir and possesses the highest capacity ever reported for any positive insertion electrode. By quantitatively monitoring the oxidation process, we demonstrate the material's instability against O-2 release on removal of all Li. Our results show that the O/M parameter delineates the boundary between the material's maximum capacity and its stability, hence providing valuable insights for further development of high-capacity materials.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos 000430218300001 Publication Date 2017-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2058-7546 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 55 Open Access Not_Open_Access
Notes ; We thank P. Pearce for providing the beta-Li<INF>2</INF>IrO<INF>3</INF> and L. Lemarquis for helping in the DEMS experiment. We are particularly grateful to S. Belin, V. Briois and L. Stievano for helpful discussions on XAS analysis and synchrotron SOLEIL (France) for providing beamtime at the ROCK beamline (financed by the French National Research Agency (ANR) as part of the 'Investissements d'Avenir' programme, reference: ANR-10-EQPX-45). A.J.P and A. I. acknowledge the GdR C(RS) 2 for the workshop organized on a chemometric approach for XAS data analysis. V. Nassif is acknowledged for her help during neutron diffraction experiments performed at Institut Laue Langevin on D1B. Use of the 11-BM mail service of the APS at Argonne National Laboratory was supported by the US Department of Energy under contract No. DE-AC02-06CH11357 and is gratefully acknowledged. This work has been performed with the support of the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116 ARPEMA. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:150926 Serial 4962
Permanent link to this record
 

 
Author Zhang, R.; Wu, Z.; Li, X.J.; Li, L.L.; Chen, Q.; Li, Y.-M.; Peeters, F.M.
Title Fano resonances in bilayer phosphorene nanoring Type A1 Journal article
Year 2018 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 29 Issue 21 Pages 215202
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Tunable transport properties and Fano resonances are predicted in a circular bilayer phosphorene nanoring. The conductance exhibits Fano resonances with varying incident energy and applied perpendicular magnetic field. These Fano resonance peaks can be accurately fitted with the well known Fano curves. When a magnetic field is applied to the nanoring, the conductance oscillates periodically with magnetic field which is reminiscent of the Aharonov-Bohm effect. Fano resonances are tightly related to the discrete states in the central nanoring, some of which are tunable by the magnetic field.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Bristol Editor
Language Wos 000428920200001 Publication Date 2018-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 4 Open Access
Notes ; This work was supported by Grant No. 2017YFA0303400 from the National Key R&D Program of China, the Flemish Science Foundation, the grants No. 2016YFE0110000, No. 2015CB921503, and No. 2016YFA0202300 from the MOST of China, the NSFC (Grants Nos. 11504366, 11434010, 61674145 and 61774168) and CAS (Grants No. QYZDJ-SSW-SYS001). ; Approved Most recent IF: 3.44
Call Number UA @ lucian @ c:irua:150713UA @ admin @ c:irua:150713 Serial 4968
Permanent link to this record
 

 
Author Mayer, J.A.; Offermans, T.; Chrapa, M.; Pfannmöller, M.; Bals, S.; Ferrini, R.; Nisato, G.
Title Optical enhancement of a printed organic tandem solar cell using diffractive nanostructures Type A1 Journal article
Year 2018 Publication Optics express Abbreviated Journal Opt Express
Volume 26 Issue 26 Pages A240
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Solution processable organic tandem solar cells offer a promising approach to achieve cost-effective, lightweight and flexible photovoltaics. In order to further enhance the efficiency of optimized organic tandem cells, diffractive light-management nanostructures were designed for an optimal redistribution of the light as function of both wavelength and propagation angles in both sub-cells. As the fabrication of these optical structures is compatible with roll-to-roll production techniques such as hot-embossing or UV NIL imprinting, they present an optimal cost-effective solution for printed photovoltaics. Tandem cells with power conversion efficiencies of 8-10% were fabricated in the ambient atmosphere by doctor blade coating, selected to approximate the conditions during roll-to-roll manufacturing. Application of the light management structure onto an 8.7% efficient encapsulated tandem cell boosted the conversion efficiency of the cell to 9.5%. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos 000427900400003 Publication Date 2018-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.307 Times cited 9 Open Access OpenAccess
Notes ; FP7 European collaborative project SUNFLOWER (FP7-ICT-2011-7, grant number 287594); German Federal Ministry of Education and Research (BMBF) (03xEK3504, project TAURUS); FP7 European project ESTEEM2 (grant number 312483); HEiKA centre FunTECH-3D. ; Approved Most recent IF: 3.307
Call Number UA @ lucian @ c:irua:150839UA @ admin @ c:irua:150839 Serial 4975
Permanent link to this record
 

 
Author Domingos, J.L.C.; Peeters, F.M.; Ferreira, W.P.
Title Self-assembly and clustering of magnetic peapod-like rods with tunable directional interaction Type A1 Journal article
Year 2018 Publication PLoS ONE Abbreviated Journal Plos One
Volume 13 Issue 4 Pages e0195552
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Based on extensive Langevin Dynamics simulations we investigate the structural properties of a two-dimensional ensemble of magnetic rods with a peapod-like morphology, i.e, rods consisting of aligned single dipolar beads. Self-assembled configurations are studied for different directions of the dipole with respect to the rod axis. We found that with increasing misalignment of the dipole from the rod axis, the smaller the packing fraction at which the percolation transition is found. For the same density, the system exhibits different aggregation states for different misalignment. We also study the stability of the percolated structures with respect to temperature, which is found to be affected by the microstructure of the assembly of rods.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.806 Times cited Open Access
Notes Approved Most recent IF: 2.806
Call Number UA @ lucian @ c:irua:150778UA @ admin @ c:irua:150778 Serial 4977
Permanent link to this record
 

 
Author Garud, S.; Gampa, N.; Allen, T.G.; Kotipalli, R.; Flandre, D.; Batuk, M.; Hadermann, J.; Meuris, M.; Poortmans, J.; Smets, A.; Vermang, B.
Title Surface passivation of CIGS solar cells using gallium oxide Type A1 Journal article
Year 2018 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume 215 Issue 7 Pages 1700826
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This work proposes gallium oxide grown by plasma-enhanced atomic layer deposition, as a surface passivation material at the CdS buffer interface of Cu(In,Ga)Se-2 (CIGS) solar cells. In preliminary experiments, a metal-insulator-semiconductor (MIS) structure is used to compare aluminium oxide, gallium oxide, and hafnium oxide as passivation layers at the CIGS-CdS interface. The findings suggest that gallium oxide on CIGS may show a density of positive charges and qualitatively, the least interface trap density. Subsequent solar cell results with an estimated 0.5nm passivation layer show an substantial absolute improvement of 56mV in open-circuit voltage (V-OC), 1mAcm(-2) in short-circuit current density (J(SC)), and 2.6% in overall efficiency as compared to a reference (with the reference showing 8.5% under AM 1.5G).
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos 000430128500015 Publication Date 2018-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 8 Open Access Not_Open_Access
Notes ; The work published in this paper was supported by the European Research Council (ERC) under the Union's Horizon 2020 research and innovation programme (grant agreement No 715027). The authors would also like to thank Dr. Marcel Simor (Solliance) for the CIGS layer fabrication and Prof. Johan Lauwaert (Universtiy of Ghent) for his guidance on DLTS measurements. ; Approved Most recent IF: 1.775
Call Number UA @ lucian @ c:irua:150761 Serial 4981
Permanent link to this record
 

 
Author Mei, H.; Xu, W.; Wang, C.; Yuan, H.; Zhang, C.; Ding, L.; Zhang, J.; Deng, C.; Wang, Y.; Peeters, F.M.
Title Terahertz magneto-optical properties of bi- and tri-layer graphene Type A1 Journal article
Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 30 Issue 17 Pages 175701
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magneto-optical (MO) properties of bi- and tri-layer graphene are investigated utilizing terahertz time-domain spectroscopy (THz TDS) in the presence of a strong magnetic field at room-temperature. In the Faraday configuration and applying optical polarization measurements, we measure the real and imaginary parts of the longitudinal and transverse MO conductivities of different graphene samples. The obtained experimental data fits very well with the classical MO Drude formula. Thus, we are able to obtain the key sample and material parameters of bi- and tri-layer graphene, such as the electron effective mass, the electronic relaxation time and the electron density. It is found that in high magnetic fields the electronic relaxation time tau for bi- and tri-layer graphene increases with magnetic field B roughly in a form tau similar to B-2. Most importantly, we obtain the electron effective mass for bi- and tri-layer graphene at room-temperature under non-resonant conditions. This work shows how the advanced THz MO techniques can be applied for the investigation into fundamental physics properties of atomically thin 2D electronic systems.
Address
Corporate Author Thesis
Publisher (up) Place of Publication London Editor
Language Wos 000429329500001 Publication Date 2018-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 11 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China (11574319, 11304317, 11304272), the Ministry of Science and Technology of China (2011YQ130018), the Center of Science and Technology of Hefei Academy of Science, the Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:150715UA @ admin @ c:irua:150715 Serial 4983
Permanent link to this record
 

 
Author Pereira, J.R.V.; Tunes, T.M.; De Arruda, A.S.; Godoy, M.
Title Thermal properties of the mixed spin-1 and spin-3/2 Ising ferrimagnetic system with two different random single-ion anisotropies Type A1 Journal article
Year 2018 Publication Physica: A : theoretical and statistical physics Abbreviated Journal Physica A
Volume 500 Issue 500 Pages 265-272
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this work, we have performed Monte Carlo simulations to study a mixed spin-1 and spin-3/2 Ising ferrimagnetic system on a square lattice with two different random single-ion anisotropies. This lattice is divided in two interpenetrating sublattices with spins S-A = 1 in the sublattice A and S-B = 3/2 in the sublattice B. The exchange interaction between the spins on the sublattices is antiferromagnetic (J < 0). We used two random single-ion anisotropies, D-i(A) and D-j(B), on the sublattices A and B, respectively. We have determined the phase diagram of the model in the critical temperature T-c versus strength of the random single-ion anisotropy D plane and we shown that it exhibits only second-order phase transition lines. We also shown that this system displays compensation temperatures for some cases of the random single-ion distribution. (C) 2018 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Amsterdam Editor
Language Wos 000430027400025 Publication Date 2018-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4371 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.243 Times cited 3 Open Access
Notes ; The authors acknowledge financial support by the Brazilian agencies CNPq, Brazil, CAPES, Brazil (Grant No. 88881.120851/2016-01) and FAPEMAT, Brazil. ; Approved Most recent IF: 2.243
Call Number UA @ lucian @ c:irua:150706UA @ admin @ c:irua:150706 Serial 4985
Permanent link to this record
 

 
Author Zhao, C.X.; Xu, W.; Dong, H.M.; Yu, Y.; Qin, H.; Peeters, F.M.
Title Enhancement of plasmon-photon coupling in grating coupled graphene inside a Fabry-Perot cavity Type A1 Journal article
Year 2018 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 280 Issue 280 Pages 45-49
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a theoretical investigation of the plasmon-polariton modes in grating coupled graphene inside a Fabry-Perot cavity. The cavity or photon modes of the device are determined by the Finite Difference Time Domain (FDTD) simulations and the corresponding plasmon-polariton modes are obtained by applying a many-body self-consistent field theory. We find that in such a device structure, the electric field strength of the incident electromagnetic (EM) field can be significantly enhanced near the edges of the grating strips. Thus, the strong coupling between the EM field and the plasmons in graphene can be achieved and the features of the plasmon-polariton oscillations in the structure can be observed. It is found that the frequencies of the plasmon-polariton modes are in the terahertz (THz) bandwidth and depend sensitively on electron density which can be tuned by applying a gate voltage. Moreover, the coupling between the cavity photons and the plasmons in graphene can be further enhanced by increasing the filling factor of the device. This work can help us to gain an in-depth understanding of the THz plasmonic properties of graphene-based structures.
Address
Corporate Author Thesis
Publisher (up) Place of Publication New York, N.Y. Editor
Language Wos 000439059600008 Publication Date 2018-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 1 Open Access
Notes ; This work is supported by the National Natural Science Foundation of China (Grand No. 11604192 and Grant No. 11574319); the Center of Science and Technology of Hefei Academy of Science; the Ministry of Science and Technology of China (Grant No. 2011YQ130018); Department of Science and Technology of Yunnan Province; Chinese Academy of Sciences. ; Approved Most recent IF: 1.554
Call Number UA @ lucian @ c:irua:152369UA @ admin @ c:irua:152369 Serial 5024
Permanent link to this record
 

 
Author Aierken, Y.; Sevik, C.; Gulseren, O.; Peeters, F.M.; Çakir, D.
Title In pursuit of barrierless transition metal dichalcogenides lateral heterojunctions Type A1 Journal article
Year 2018 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 29 Issue 29 Pages 295202
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract There is an increasing need to understand interfaces between two-dimensional materials to realize an energy efficient boundary with low contact resistance and small heat dissipation. In this respect, we investigated the impact of charge and substitutional atom doping on the electronic transport properties of the hybrid metallic-semiconducting lateral junctions, formed between metallic (1T and 1T(d)) and semiconducting (1H) phases of MoS2 by means of first-principles and non-equilibrium Green function formalism based calculations. Our results clearly revealed the strong influence of the type of interface and crystallographic orientation of the metallic phase on the transport properties of these systems. The Schottky barrier height, which is the dominant mechanism for contact resistance, was found to be as large as 0.63 eV and 1.19 eV for holes and electrons, respectively. We found that armchair interfaces are more conductive as compared to zigzag termination due to the presence of the metallic Mo zigzag chains that are directed along the transport direction. In order to manipulate these barrier heights we investigated the influence of electron doping of the metallic part (i.e. 1T(d) -MoS2). We observed that the Fermi level of the hybrid system moves towards the conduction band of semiconducting 1H-MoS2 due to filling of 4d-orbital of metallic MoS2, and thus the Schottky barrier for electrons decreases considerably. Besides electron doping, we also investigated the effect of substitutional doping of metallic MoS2 by replacing Mo atoms with either Re or Ta. Due to its valency, Re (Ta) behaves as a donor (acceptor) and reduces the Schottky barrier for electrons (holes). Since Re and Ta based transition metal dichalcogenides crystallize in either the 1T(d) or 1T phase, substitutional doping with these atom favors the stabilization of the 1T(d) phase of MoS2. Co-doping of hybrid structure results in an electronic structure, which facilities easy dissociation of excitons created in the 1H part.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Bristol Editor
Language Wos 000432823800002 Publication Date 2018-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 4 Open Access
Notes ; This work was supported by the bilateral project between the The Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from TUBITAK (Grant No. 115F024). ; Approved Most recent IF: 3.44
Call Number UA @ lucian @ c:irua:151451UA @ admin @ c:irua:151451 Serial 5029
Permanent link to this record
 

 
Author Deshmukh, S.; Sankaran, K.J.; Srinivasu, K.; Korneychuk, S.; Banerjee, D.; Barman, A.; Bhattacharya, G.; Phase, D.M.; Gupta, M.; Verbeeck, J.; Leou, K.C.; Lin, I.N.; Haenen, K.; Roy, S.S.
Title Local probing of the enhanced field electron emission of vertically aligned nitrogen-doped diamond nanorods and their plasma illumination properties Type A1 Journal article
Year 2018 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
Volume 83 Issue 83 Pages 118-125
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A detailed conductive atomic force microscopic investigation is carried out to directly image the electron emission behavior for nitrogen-doped diamond nanorods (N-DNRs). Localized emission measurements illustrate uniform distribution of high-density electron emission sites from N-DNRs. Emission sites coupled to nano graphitic phases at the grain boundaries facilitate electron transport and thereby enhance field electron emission from N-DNRs, resulting in a device operation at low turn-on fields of 6.23 V/mu m, a high current density of 1.94 mA/cm(2) (at an applied field of 11.8 V/mu m) and a large field enhancement factor of 3320 with a long lifetime stability of 980 min. Moreover, using N-DNRs as cathodes, a microplasma device that can ignite a plasma at a low threshold field of 390 V/mm achieving a high plasma illumination current density of 3.95 mA/cm2 at an applied voltage of 550 V and a plasma life-time stability for a duration of 433 min was demonstrated.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Amsterdam Editor
Language Wos 000430767200017 Publication Date 2018-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 9 Open Access Not_Open_Access
Notes ; S. Deshmulch, D. Banerjee and G. Bhattacharya are indebted to Shiv Nadar University for providing Ph.D. scholarships. K.J. Sankaran and K. Haenen like to thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. K.J. Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). The Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S. Korneychuk and J. Verbeeck acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: 2.561
Call Number UA @ lucian @ c:irua:151609UA @ admin @ c:irua:151609 Serial 5030
Permanent link to this record
 

 
Author Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F.M.
Title Phase transition and field effect topological quantum transistor made of monolayer MoS2 Type A1 Journal article
Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 30 Issue 23 Pages 235303
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q(2)) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q(2) diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q(2) diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.
Address
Corporate Author Thesis
Publisher (up) Place of Publication London Editor
Language Wos 000432821600001 Publication Date 2018-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:151457UA @ admin @ c:irua:151457 Serial 5035
Permanent link to this record
 

 
Author Rizzo, F.; Augieri, A.; Kursumovic, A.; Bianchetti, M.; Opherden, L.; Sieger, M.; Huehne, R.; Haenisch, J.; Meledin, A.; Van Tendeloo, G.; MacManus-Driscoll, J.L.; Celentano, G.
Title Pushing the limits of applicability of REBCO coated conductor films through fine chemical tuning and nanoengineering of inclusions Type A1 Journal article
Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 10 Issue 17 Pages 8187-8195
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract An outstanding current carrying performance (namely critical current density, J(c)) over a broad temperature range of 10-77 K for magnetic fields up to 12 T is reported for films of YBa2Cu3O7-x with Ba2Y(Nb,Ta)O-6 inclusion pinning centres (YBCO-BYNTO) and thicknesses in the range of 220-500 nm. J(c) values of 10 MA cm(-2) were measured at 30 K – 5 T and 10 K – 9 T with a corresponding maximum of the pinning force density at 10 K close to 1 TN m(-3). The system is very flexible regarding properties and microstructure tuning, and the growth window for achieving a particular microstructure is wide, which is very important for industrial processing. Hence, the dependence of J(c) on the magnetic field angle was readily controlled by fine tuning the pinning microstructure. Transmission electron microscopy (TEM) analysis highlighted that higher growth rates induce more splayed and denser BYNTO nanocolumns with a matching field as high as 5.2 T. Correspondingly, a strong peak at the B||c-axis is noticed when the density of vortices is lower than the nanocolumn density. YBCO-BYNTO is a very robust and reproducible composite system for high-current coated conductors over an extended range of magnetic fields and temperatures.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Cambridge Editor
Language Wos 000432261400037 Publication Date 2018-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 9 Open Access OpenAccess
Notes ; This work was partially financially supported by EUROTAPES, a collaborative project funded by the European Commission's Seventh Framework Program (FP7/ 2007-2013) under Grant Agreement No. 280432. This work has been partially carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement no. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. ; Approved Most recent IF: 7.367
Call Number UA @ lucian @ c:irua:151520 Serial 5038
Permanent link to this record