|
Record |
Links |
|
Author |
Rizzo, F.; Augieri, A.; Kursumovic, A.; Bianchetti, M.; Opherden, L.; Sieger, M.; Huehne, R.; Haenisch, J.; Meledin, A.; Van Tendeloo, G.; MacManus-Driscoll, J.L.; Celentano, G. |
|
|
Title |
Pushing the limits of applicability of REBCO coated conductor films through fine chemical tuning and nanoengineering of inclusions |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Nanoscale |
Abbreviated Journal |
Nanoscale |
|
|
Volume |
10 |
Issue |
17 |
Pages |
8187-8195 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
An outstanding current carrying performance (namely critical current density, J(c)) over a broad temperature range of 10-77 K for magnetic fields up to 12 T is reported for films of YBa2Cu3O7-x with Ba2Y(Nb,Ta)O-6 inclusion pinning centres (YBCO-BYNTO) and thicknesses in the range of 220-500 nm. J(c) values of 10 MA cm(-2) were measured at 30 K – 5 T and 10 K – 9 T with a corresponding maximum of the pinning force density at 10 K close to 1 TN m(-3). The system is very flexible regarding properties and microstructure tuning, and the growth window for achieving a particular microstructure is wide, which is very important for industrial processing. Hence, the dependence of J(c) on the magnetic field angle was readily controlled by fine tuning the pinning microstructure. Transmission electron microscopy (TEM) analysis highlighted that higher growth rates induce more splayed and denser BYNTO nanocolumns with a matching field as high as 5.2 T. Correspondingly, a strong peak at the B||c-axis is noticed when the density of vortices is lower than the nanocolumn density. YBCO-BYNTO is a very robust and reproducible composite system for high-current coated conductors over an extended range of magnetic fields and temperatures. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Cambridge |
Editor |
|
|
|
Language |
|
Wos |
000432261400037 |
Publication Date |
2018-03-26 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2040-3364 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
7.367 |
Times cited |
9 |
Open Access |
OpenAccess |
|
|
Notes |
; This work was partially financially supported by EUROTAPES, a collaborative project funded by the European Commission's Seventh Framework Program (FP7/ 2007-2013) under Grant Agreement No. 280432. This work has been partially carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement no. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. ; |
Approved |
Most recent IF: 7.367 |
|
|
Call Number |
UA @ lucian @ c:irua:151520 |
Serial |
5038 |
|
Permanent link to this record |