toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Rizzo, F.; Augieri, A.; Kursumovic, A.; Bianchetti, M.; Opherden, L.; Sieger, M.; Huehne, R.; Haenisch, J.; Meledin, A.; Van Tendeloo, G.; MacManus-Driscoll, J.L.; Celentano, G. url  doi
openurl 
  Title Pushing the limits of applicability of REBCO coated conductor films through fine chemical tuning and nanoengineering of inclusions Type A1 Journal article
  Year (down) 2018 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 10 Issue 17 Pages 8187-8195  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract An outstanding current carrying performance (namely critical current density, J(c)) over a broad temperature range of 10-77 K for magnetic fields up to 12 T is reported for films of YBa2Cu3O7-x with Ba2Y(Nb,Ta)O-6 inclusion pinning centres (YBCO-BYNTO) and thicknesses in the range of 220-500 nm. J(c) values of 10 MA cm(-2) were measured at 30 K – 5 T and 10 K – 9 T with a corresponding maximum of the pinning force density at 10 K close to 1 TN m(-3). The system is very flexible regarding properties and microstructure tuning, and the growth window for achieving a particular microstructure is wide, which is very important for industrial processing. Hence, the dependence of J(c) on the magnetic field angle was readily controlled by fine tuning the pinning microstructure. Transmission electron microscopy (TEM) analysis highlighted that higher growth rates induce more splayed and denser BYNTO nanocolumns with a matching field as high as 5.2 T. Correspondingly, a strong peak at the B||c-axis is noticed when the density of vortices is lower than the nanocolumn density. YBCO-BYNTO is a very robust and reproducible composite system for high-current coated conductors over an extended range of magnetic fields and temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000432261400037 Publication Date 2018-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 9 Open Access OpenAccess  
  Notes ; This work was partially financially supported by EUROTAPES, a collaborative project funded by the European Commission's Seventh Framework Program (FP7/ 2007-2013) under Grant Agreement No. 280432. This work has been partially carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement no. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. ; Approved Most recent IF: 7.367  
  Call Number UA @ lucian @ c:irua:151520 Serial 5038  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: